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The energy spectrum of Ne" below 6 MeV and some ground-state and excited-state properties are dis-
cussed in terms of a model implying the coupling of a s-d particle to a rotational Ne2 core. Fair agreement
with the experimental data is obtained. A comparison with the standard collective model calculations is
given.

1. INTRODUCTION

HE model employed here for interpretation of the
positive parity states of Ne" below 6 MeV is

essentially a version of the "core-particle coupling"
model. The idea of coupling an outside nucleon to a core
is extensively used within the framework of the collec-
tive and shell models. Ke find an interesting remark on
the concept of a "core" in a paper by Lane. ' He
calculates the positive parity states of N" and C" by
coupling a 2s —1d particle to the "parent" configuration
(1p) of C" and antisymmetrizing the wave functions of
the combined systems properly. He states that even
though the 2s—1p and 1d—1p interaction integrals are
as large as the 1p—1p interaction integral, the coupling
of the extra particle does not seem to disturb the core
appreciably, as is confirmed by his results. Thus, the
picture of the core does not seem to be crucially affected
by the addition of a particle.

Litherland et a/. ' have shown that the spectrum of Ne"
can be resolved into various rotational bands. The
coupled system of the positive parity ground-state band
of Ne'0 and a 2s—1d neutron should represent the low-

lying and some of the higher positive parity states of
Ne" with isotopic spin 7= 2. The Hamiltonian of the
total system Ne"=Ne"+neutron takes the form

+=+ core + + neutron + +coupling.

For the coupling of the outside particle and th, e core
we will use an interaction term similar to the one em-

ployed in the collective model:

Usually only the term with 0= 2 is taken into consider-
ation. Furthermore, an extension of the discussion of the
spin-orbit force in the framework of the optical model
leads to the introduction of a coupling term between the
particle spin and the angular momentum of the core of
opposite sign as the spin-orbit coupling.

By use of a rotational wave function for the core in-
stead of a much more complicated four particle wave
function, we gain much in simplicity of calculation; but,
as in any collective model calculation of this type, we

t Work submitted as a partial fulfillment of the requirements
for a Ph.D. in Physics.

t A. M. Lane, Proc. Phys. Soc. (London) A68, 197 (1956).
~ A. E.Litherland, J.A. Kuehner, H. E. Gove, M. A. Clark, and

E. Almqvist, Phys. Rev. Letters 7, 98 (1961).

lose the possibility of antisymmetrizing our coupled
wave functions with respect to exchange of the addi-
tional particle and the core particles, for we do not know
the dependence of the collective coordinates on the
single-particle coordinates. The validity of this approxi-
mation has not been examined in detail so far.'

If we consider the number of levels obtained by apply-
ing the SU3 classjt6cation scheme' to Ne", we can at
least give some crude improvements on this situation.
Assuming the Ne" ground-state band to be of the spatial
structure

[4], (8,0) with /=0, 2, 4, 6, 8 (E=O);

(ff) partition of the number of particles, corresponds to
multiplet classification; (X,tt) partition of irreducible
representation of SUs), we find that the addition of
another s—d particle gives the levels

L417) (Sti) with i=if 2l 3) ''' 9 (E=1)
(6,2) with /=2, 3, 4, ~, 8 (E=2)

l=0, 2, 4, 6 (E=O).
The possible partition

L5j, (10,0) with /=0, 2, 10 (E=O)

is excluded by the Pauli principle.
If we work in j—j coupling rather than L—S cou-

pling, we have to consider bands with

x 5 3 3 1 1
2y 2) 2) 27 2 7

and have to exclude a band with

E=-'.2 ~

In the course of the diagonalization of LI we will see,
that it is necessary to introduce a band quantum num-
ber E, which is identical with the collective model E.
Thus, a straightforward procedure would be to drop one
of the bands with E=—', from the further calculation.
Another method would be to choose the parameters of
the interaction in a way to throw one band with E=O,
l„=2 in I.—S coupling high up and so allow a small ad-
mixture in the 6nal lower states. This procedure seems
reasonable as the SUB wave functions for Ne" are
thorough mixtures of 5 particle wave functions. It can
be achieved by taking the next contributing term of the
interaction (1.2) with /t=4 into consideration.

' A. de Shalit, Phys. Rev. 122, 1530 (1961).
4 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958).
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The Ne'0 ground-state band is not ideally rotational.
Ke will approximate this situation by taking a variable
moment of inertia for the states with diferent I.and re-
taining simple collective model wave functions for the
core. Kith this approximation the 2 and —, states turn
out too low by approximately 10% and 20%, respec-
tively. If we change the parameters of (1.2) for the L,=6
state by a factor (1—cr)'t', it is found that for a value of
et=0.2 (corresponding to a change of approximately
10% of the wave function), agreement with experi-
ment is improved.

The second section gives a collection of the available
experimental data, for Ne" and Ne". It is followed by a
review of the previous theoretical interpretations of
these data in Sec. 3. In Secs. 4 and 5 a discussion of the
Hamiltonian (1.1) and of the diagonalization process is
given. In Sec. 6 some moments and transition probabili-
ties are calculated.

A2

E=Cr,L(L+1)= L(L+1),
281,

(2.1)

we find for the ground-state band

C2=0.27 MeV, C4=0.21 MeV, C6=0.18 MeV.

The 7.60 MeV level with I."=6+ is not definitely
established.

The lifetimes of the 2+ and 4+ levels of the ground-
state band have been determined by Clark et a1.' by the
Doppler shift attenuation method. The results are

r (1.63 MeV) = (5.6 &.s+")X10 "sec
(2.2)

r(4.25 MeV) = (0.76 e ss+s.rs) X 10 ts sec.

The lifetime for the 1.63 MeV state is in agreement with
the value of (7.6+3.3)X10 " sec given by Devons
et al. ' and the value of 7.6)&10 " sec determined by
Lemberg' from the Coulomb excitation of Ne' .

2. EXPERIMENTAL DATA

(a) Ne"

The Canadian Chalk River Group has carried
out quite extensive work on Ne" using the reaction
C"(C",np)Nem. The resulting energy scheme is given
in Fig. 1.A slight deviation from the rotational pattern
is noticeable. If we assume a form of the spectrum of

10,

134 5" 9.11 4+

7.SO 6+

7.02 4 7)9 3 722 0
6.76 O+

F&G. 1. Energy 6.
spectrum of Ne"
from Ref. 1. 4.97 2

42K 4+

KIO

2.
1.63 2+

tions 0' (n rt)Ne" Ne' (tf p)Ne" Na" (tf n)Ne" and
Frs(Hes, P)Ne" The results of the papers before 1959
are summarized in Hinds and Middleton, ' who use the
last reaction. A more recent investigation of the reac-
tion Ne"(d, p)Ne" was made by Freeman. ' Nearly all
the 60 levels measured by Hinds and Middleton are ob-
tained in Ref. 9 also. The available spin and parity
assignments are mostly determined from the angular
distribution curves of the (d,p) reaction and are given
by Burrows et ul."

Using also the ENcleor Date Sheets", we can infer the
illustrated spectrum for Ne" states below 6 MeV. (See
Fig. 2.) We can get more information about probable
spins and parities of yet unassigned states by consider-
ing the mirror nucleus Na". There is a quite recent
summary of the available results by Ajzenberg et al. ,

"
who investigated the reaction Ne" (d, rt)Na".

Analysis of the angular distribution curves was
carried out by a distorted-wave Born approximation
(DWBA). The 1.73-MeV state gives no agreement for
l=0, 1, 2, so an assignment of 2+ is tentatively sug-
gested. The indicated transitions" for the 2.86-MeV state
would give a J of —,'+&J &-,'+ for E2 and J =—',+ for
M1 transitions, if we assume the 1.73 and 3.57 MeV
states to be ~+ and —,'+, respectively. The —',+ assignment
is supported by the existence of a similar state in that
energy region in Na" (see Gove'4).

The quadrupole moment of the ground state of Ne"

(b) Ne"

Experimental investigations of Ne" energy levels have
been carried out by several workers, using the reac-

~ M. A. Clark, H. E. Gove, and A. E.Litherland, Can. J.Phys.
39, 1241 (1961).

6 S. Devons, G. Manning, and J. H. Towle, Proc. Phys. Soc.
(London) A69, 173 (1955).' I. Kh. Lemberg, in Proceedgngs of the Second Conference on Re
actions between Complex Nuclei, D'60, edited by A. Zucker, E. C.
Halbert, and F. T. Howard (John Wiley R Sons, Inc. , New York,
1960), p. 118.

s S.Hinds and R. Middleton, Proc. Phys. Soc. (London) 74, 779
(1959).

e I. Freeman, Phys. Rev. 120, 1436 (1960).
"H. B. Burrows, T. S. Green, S. Hinds, and R. Middleton,

Proc. Phys. Soc. (London) A69, 310 (1956).
u Nnclear Data Sheets, compiled by K. Way et at. (Printing and

Publishing PfBce, National Academy of Sciences —National Re-
search Council, Washington 25, D. C.), NRC60-5-3.

'~ F. Ajzenberg-Selove, C, Cranberg, and F. S. Dietrich, Phys.
Rev. 124, 1548 (1961)."P.M. Endt, and C. van der Leun, Nucl. Phys. 34, 11 (1962).

'4 H. E. Gove, in Proceedings of the International Conference on
Nuclear Structure, Kingston, edited by D. A. Bromley and E. W.
Vogt (University of Toronto Press, Toronto, 1960), p. 450.



6-

R. M. 0 RE I ZLER

$+ state of
~~2~9.2&10 "sec. (2 6)

4

5.6 3
5.5 5
5.42
5.33

4.73
4.68
4.5 3
4.4 3

3.88
3.73
3.66

2.87
2, 79

5.68
—————555

= =~ 5.34&/2 /2)-

&/2 1/2)

-4.2 6

3.85
3.72

2,92
2.81
2.79

7)2

4.4 9
4.4 4
4.31
4.18

5.
/ 2 3.8 9

3/2-
3,57

9J2
1/2 2.86

5/2

2C.3

7(2
'I2-- --546
3J

5.0 1

4.8 6

1/2

'/2 'l2

3/2+
5/2+

'/2

/2 ' /2

o (5/2 )

'/2

A direct measurement of the lifetime by Khabakhpashev
and Tsenter" gives

r= (6.2&6.2)X10 "sec, (2.7)

and from the angular correlation they determined the
transition to be mainly M1."Deuchars and Dandy" de-
termined the ratio 5 of the amplitude of the electric
quadrupole transition to the amplitude of the magnetic
dipole transition from the angular distribution curves as

4X &0-'&S&3X~0-~. (2.8)

From the lifetimes given in (2.6) and (2.7) we can cal-
culate the partial lifetime 7~& of the ~+ state by

Tg2T

TE2 7

1.74

0.35

1.60

5~2+ ———0.35

—1.73
7/2

5I2 ——— 0.37 5/

r~i (6.67——s 7s +'")X1()

AVith the values (2.6) and (2.9) we find for

—T (g2) —1 /2 -r —1/2

T(M1) r~s

(2.9)

+ h.
3/2 ————0 /2 0 '/2

a) b) c)

FIG. 2. Comparison of measured and calculated energy spectrum
of Ne". (a) Energy spectrum of Ne" from Refs. 8—9 and Ngctear
Data Sheets (See Ref. 11). (b) Calculated energy spectrum of Ne '
case (b). (c) Energy spectrum of Na" from Refs. 12, 13. (The Na"
ground state is 3.53 MeV above the Ne" ground state. )

5
&"(&2)=—(s~s')'

4x
(2.10)

3= (27 ir +it) X 10-~

These values of 8 are higher than the values given by
Deuchars and Dandy.

If we use the estimate

has been determined by Groso8 et al."from the hyper-
fine structure as

with
RP=1.23' '&(10 "em)

MM= —0.662 nm, (2.4)

using the molecular beam magnetic resonance technique
and taking into account the diamagnetic corrections.

Andrev et a1.' have investigated the Coulomb excita-
tion of the first excited level (the same results are re-
ported also by Lemberg"). They found that the transi-
tion —',+~ ~+ was mainly of the Z2 type with a reduced
matrix element of

8 (E2,s+ —+ as+) =0.025 X 10 cme. (2.5)

This value would correspond to a partial lifetime for the

"G. Grosof, M. Buck, %'. Lichten, and I. Rabi, Phys. Rev.
Letters 1, 214 (1958)."J.T. La Tourrette, W. E. Quinn, and N. F. Ramsey, Phys.
Rev. 107, 1202 (1957)."D.S. Andrev, K. I. Erokhin, and I. Kh. Lemberg, Isv. hkad.
Nauk SSSR, Ser. Fiz. 24, 1478 (1960)."I.Kh. Lemberg, in Proceedings of the Second Conference on Re-
actions between Complex XNclei, 1960, edited by A. Zucker, E. C.
Halbert, and F.T. Howard, Oohn Wiley fk Sons, Inc. , New York,
1960), p. 126.

QM=e(j0.093+0.010)X10 ' cm' (2.3)

The magnetic moment of this state is given by La
Tourette et al."as

for the single-particle transition probability (see for
example Alder et al."), we find for the ratio Ii of the
measured transition probability (2.5) to the single
particle estimate

F(s ~ s)=15
The P+ decay of Na" to the Ne" ground state is

superallowed with a log ft of 3.6. There is a branch of
2.2% to the first excited —',+ state with a log ft of 5.0."

3. PREVIOUS THEORETICAL INTERPRETATIONS

(a) Ne"

A straightforward theoretical interpretation can be
given with the collective model assuming a Hamiltonian

H„„C(L)' (3.1)
» A. G. Khabakh ashev, and E. M. Tsenter, Zh. Eksperim. i

Teor. Fiz. 37, 991 1959) I translation: Soviet Phys. =JETP 10,
705 (1960)7.

80 A. G. Khabakhpashev, and K. M. Tsenter, Isv. hkad. Naut.
SSSR, Ser. Fiz. 23, 883 (1957).

s' W. M. Deuchars, and D. Dandy, Proc. Phys. Soc. (London)
77, 1197 (1961).

~ K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 and 439 (1956).
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with eigenfunctions

I
I le'i+r )= Xrntrinsic 'Yr sr (t7'.i rp.) (3 2)

For the ground-state band with EJ.=O the energy is
then given a,s in (2.1).

The deviation from the pure rotational character
cannot be explained in terms of the usual erst-order cor-
rections to the collective rotational bands. The rotation
vibration interaction"

the s—d shell is given by Bhatt."In the cast..of¹"he
found that for a value of the deformation parameter q
of g=3 a magnetic moment of —0.60 nm can be ob-
tained, while the fit of the energy spectrum is rather
poor. The E2 transition probability for the ~3+ ground
state and —,'+ erst excited state transition turns out too
low even for q=4. Furthermore, in the case of larger
deformations the agreement with the magnetic moment
deteriorates. '"

HRv= —constI. '(I.+1)' (3.3)

does not account for the deviations (it should be signifi-
cant at the beginning of a shell, where the rotational
spacing is large). The rotation particle coupling (RPC)'4
does not give any contribution, for there is no nearby
interacting band with El,= 1 and positive parity.

Shell-model type calculations using the SU3 classi-
6cation scheme have been carried out by Chacon and
Moshinsky" and Banerjee et cl."

(b) Ne"

The simplest version of the shell model predicts a
ground state of ~5+ for Ne", a magnetic moment of
—1.91 nm and a quadrupole moment of zero. Flowers'~

has calculated an improved value of —1.27 nm for the
ground-state magnetic moment by considering the con-
figuration (dsls)' with total J= s and T=—,'. He also in-

dicated that the quadrupole moment of odd neutron
nuclei can be improved by an appropriate coupling of
proton pairs and neutrons. Rakavy' performed some
preliminary calculations in the region beyond 0' using
the Nilsson model. For Na23 and similarly for Ne" and
Na" he predicts above the ground state of ~+ and the
erst excited state of ~+ a state of J= ~~+. Approximately
1 MeV above the ~+ state should be a —,'+ level. A ~+ and
a ~+ level should appear between 3 and 4 MeV. Paul and
Montague" considered another type of collective model
calculation for Xa23. They arrange three rotational bands
based on K= ~, 2, ~ so as to reproduce the lowest ~+, ~+,
and ~+ levels by means of the RPC interaction between
the bands.

This version was applied to Ne" by Freeman. ' She
obtains roughly the following spectrum for Ne":
Js s+ s+ r+ $+ s+ S+ $+ s+ r+

EM,v 0 0.35 1.35 2.80 2.85 3.00 3.55 5.15 5.25.

A more recent investigation of the Nilsson model in

"S. A. Moszkowsk. i, in IIandbuch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 532.

~ A. K. Kerman, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 30, 4 (1956)."E.Chacon, and M. Moshinsky, Phys. Letters 1, 830 (1962).

~~ M. K. Banerjee, C. A. I,evinson, and S. M. Meshkov, Phys.
Rev. 130, 1064 (1963)."B.H. Flowers, Phil. Mag. 43, 1330 (1952).

's G. Rakavy, Nucl. Phys. 4, 375 (1957).
~ E. B. Paul, and J. H. Montague, Nucl. Phys. 8, 61 (1958).
~ J. Freeman, in Proceedings of the lnternaHonal Conference on

Nuclear Structure, 1960, edited by D. A. Bromley and E. Vogt
(University of Toronto Press, Toronto, 1960), p. 447.

) jm;)= tv=2;jm;, ',1)—
= g (-,'jl; m, m&mi) I sm ) I

v=2; /mt), (4.2)
TS),71'

where (rs/j;m. m&m;) is a Clebsch-Gordan coefficient
and

~
I=2; 1m[)=Rt"l (rp) Yt, (t7y, q „) (4.3)

is an eigenfunction of H„'= T+ V (r„).
For H„„we use the collective model Hamiltonian

introduced in (3.1) and (3.2).
The following argument leads to the 6rst term of

H„„ol;„s. In an optical-model calculation (the shell
model is essentially a version of the optical model with-
out the absorptive (imaginary) part of the potential)
the spin-orbit force is introduced in the following way. "
Consider the scattering of a nucleon with spin s and
initial and final moments, k, , kr. The lowest order
scalar term that can be constructed from these quanti-
ties js

Ir ~s (k;Xkr).

The spin orbit potential is then given by

(44)

Ut(r) cc exp(steak r)Ls (k;Xky))p(Ak)d'(hk), (4.5)

where ckk=k~ —k; is the momentum transfer, and p is

st K. H. Bhatt, Nucl. Phys. 39, 375 (1962).I"Note added in proof. While this article was in press a survey
of the odd A nuclei in the s-d shell using the asymmetric core
collective model was published by Chi and Davidson (Phys.
Rev. 131, 366 (1963)j. Their more detailed model employs a
smaller number of parameters than the usual Nilsson model and
the model presented in this paper. While the results show a good
6t of the energy spectra and a reasonable fit of the ground state
magnetic moments, the ground state quadrupole moments and the
lifetimes of the 6rst excited states do not agree so well with the
measured values.I D. C. Peaslee, Ann. Rev. Nucl. Sci. 5, 118 (1955).

4. THE HAMILTONIAN OF THE SYSTEM
Ne" =Ne" +2s —1d NEUTRON

For the H~-part of the Hamiltonian (1.1) we take

H~= T+V(r,) D(s I), — (4.1)

where V(r„) is any shell-model single particle central
potential and the parameter of the spin-orbit force D is
greater than zero.

The corresponding normalized j—j coupling wave
function then takes the form
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+2
H, =n, (R„r„) g (—)~*'

the density distribution of the scatterer (presumed to be where
spherically symmetric). Evaluation of the Fourier in-

tegral (4.5) gives

1 Bp(r)
Ui(r) ~- -(s 1)

r Br
(4.6) X&2,3r;(O.,q.)I"2, ~~(a3, y3), (412)

+4
H3=«(R.r~) Z (—) '

where 1 is the angular momentum of the particle.
In our case we are not only concerned with the scat-

tered particle, but with the interacting particle (or par-
ticle group) in the scatterer too. So we have to work in
the corresponding center-of-mass system and consider
the term

I2&xs (K;XKr), (4.7)

where K;, Ky are the initial and final momenta of the
struck particle.

If we take into account that in the c.m. system the
momenta of the scattered and the struck particle are in
opposite directions, evaluation of the corresponding
Fourier integral yields

Ms=4

X&4,~;(&., qo)I'4, ~;(&„qp)

The total Hamiltonian of Ne2' then takes the form

H=H, +H~+D(s L)+H2+H4, (4.13)

where the different parts are given by (3.1), (4.1) and
(4.12).

5. DIAGONALIZATION OF THE HAMILTONIAN H

The diagonalization of H is carried out in the follow-

ing steps. We choose as a zero-order wave function

[JM,Lj)= Q (Lj J; Mirror;M)[LMI, )[jrN;), (5.1)
1 Bp'(r)

U2(r) ~ —— (s L),
r Br

Ml„m;

the Clebsch-Gordan coupled wave function of the core(4.83

and the outside particle, and consider the part

where L is the angular momentum of the struck
particle.

If we take the proportionality constants in (4.6),
(4.8) (including the Thomas term) negative, we get be-
sides the spin-orbit force in Eq. (4.1) the term

+D'(s L), (4.9)

H, , „=g3 n2(R„r ~) (24+1)E2(cos8„3). (4.10)

which couples the particle spin to the angular mo-
mentum of the core.

As p represents the density of the whole core, p' the
density of the core minus the struck particle group, we
should have to the first order D'&D, but exchange
terms are neglected in this argument. If we believe in
this phenomenological approach, we can say the follow-
ing. In other rotational nuclei where a particle with a
J=2+ could be coupled to a rotational core (see Ref.
22,), we find that the 2+ and 2+ levels, which would be
degenerate in the absence of spin-orbit forces, split up
into a lower 2 and a higher —,

' state. This could be inter-
preted by a force of the type (4.9). (The collective model
uses the "decoupling" term. )

For the coupling of the particle Ldescribed by Eqs.
(4.1) and (4.2)) and the core we use a 22—22 pole force
of the usual form

H(1)=H~'+H2
= T+ V(r~)+H2, (5.2)

(J,Lj[Hn'I J,Lj )=E&,, &„ (5.3)

where E is the separation of the 1=0 and l=2 levels.
We can omit the dependence on the magnetic quantum
numbers, as no term in our Hamiltonian splits this
degeneracy.

The diagonalization of H2 can be carried out explicitly,
if we retain j as a good quantum number. Introducing

Q2=+ (f2/~)(1 = 2 [n2(r~) [1=2)
X(intr [n2(R,) [intr), (5.4)

under the assumption that n2(R„r~) is of the form
f2n2(r„)n2(R, ) and a new quantum number E, which will

be discussed below, we obtain the following diagonal
elements (independent of J):

(J,s3Ei I H2I J,—,'Ei) =- —(5/14)Q2

(J,—,'E, [H, [ J,—',E,)= (1/14)Q,

(J)2E3 [H2 [ J)2E3) (2/7)Q2

of the Hamiltonian.
In the representation (5.1) the matrix elements of

H„' are already diagonal and we 6x our preliminary en-

ergy scale by taking

For the coupling of a particle with j=»» & to a core
with an angular momentum of I.=O, 2, 4, ~ ~ ~ only the
terms with k =2, 4 give contributions, so that

i=a
(J,—',E,'[H I J,-;E')= ——:Q

(J,2E3 [H2 I J,E3 )= -,'Q2

(5.5)

H, , „=H2+H3, (4.11) (J,-',E,"[H, [ J,~E,")=0.
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The corresponding eigenfunctions are of the form also, We obtain

(J, gEla. l J, -', K)=0

(J, -',Kla, l J, —;E)=0

(J, —'.—,
'

I &o I J, s s)= (3/28)Q.

(J, -', -', la, l J, —; —,')= —(9/28)Q,

(J, —;—;la,l J, —; -', )= (6/28)Q„

I JM,qK) =P, ax't(L)
I
JM,Lj ), (5.6)

(5.12)

Q4= (l=—2 In4(r„) I
l= 2)(intr I e4(R,) I

intr). (5.13)

If we write

where the expansion coeKcients atr~ '(L) can be cal-
culated with standard methods.

It can be seen in the following way, that the quantum
number E introduced here is identical with the collec-
tive model E;, the projection of the particle angular
momentum on a body-fixed axis. We rewrite Eq. (5.6) by with
transforming the right-hand side to a nuclear coordinate
system as

2 (2L+1)
I JM,JK)=Q Q a ~ l(L)

(2J+1)

where

+tr, st~(L) =

X (LjJ;OKgKr)+tr;~~(L), (5.7)

2J+1-'"
x~, o"'{&~x,'I jK;)

16m' —2(J j—J j) (5.15)

(f,)s= (J—j)'=J'+j' —2J ~ j (5.14)

we obtain the rotational part of the collective model
Hamiltonian for an odd-A nucleus. '4 The coupling term

E =E '=-'

Es =Es' ——Eo"——-', ,

(5.10)

and the ttx~ '(L) can be given by the closed expression

2 (2L+1)
art~ &(L)= (Lj J;OEE) . (5.11)

(2J+1)

+(—)' '&~-x Ij—K)& (5.8)

is a strong coupling wave function, if the intrinsic core
function Xo(~' in the body-fixed system is independent
of L (purely rotational core). It should be stressed at
this point that we use a spherical rotator for the core
(Ez, ——0) rather than the collective model picture (see
Discussion C). The S are symmetric top eigenfunctions
and jIE;) are the odd-neutron eigenfunctions in the
body-6xed system. If we have a purely rotational core,
we can execute the sum over L. For a proper choice of
phase of the air~ '(L) we obtain

2 (2L+1)
P ax' (I.) — (LjJ; OE,K,) =~xx, . (5.9)

(2J+1)

So we see that in this case our eigenfunctions (5.6) are
identical with the strong coupling wave functions (5.8).
We then have

Qs Qs' Qe; D; Do'Do', E; C. (5.17)

Qs'= (fs/s)(l =2
I trs(r„) I

k= 0){intr Irrs(E, ) I intr) (5.18)

is the H2 interaction parameter between j= 2 and j=+&,
~ states. The parameter D' for the coupling of particle
spin and angular momentum of the core is subscripted
to allow for a diferent coupling strength in the case of a
j=-', particle (Do') and a j=-'„-', particle (Ds').

If we assume the term Ho+H4 to stem from a short-
range force of the Yukawa type

represents the RPC.'4 The diagonal elements of H,
in the representation (5.6) can be written in the form

(J,~KIIJ,
I J,7K)=c(J(J+1)y~(~+1)

-2K'+(—)'+'(j+l)(J+l)~x;), (5 «)
which corresponds to the expression used in the col-
lective model, if we take a value of

(—)' '*(j+s)

for the decoupling parameter (Ref. 34). This choice
stems from the special form of the strong coupling wave
function (5.8).

For the anal. diagonalization of the total Hamil-
tonian H in the represents, tion (5.6), we ha, ve to con-
sider the following parameters:

The terms H2 and B4 are invariant under rotations.
Then we can choose a coordinate system (see e.g.
Rose"), that

exp( —ttIR, —r, l)
V(r„R,)

ttIR, —r„l
(5.19)

Ho cc F'g, o(8,0) .
As the coupling rule for spherical harmonics gives

I'4o= h(I'so)'+f sI'oo+&sI'so,

we fmd that the eigenfunctions (5.6) diagonalize H4
~ M. E. Rose, Elementary Theory of Angular hgomentnm (John

Wiley 8z Sons, Inc., New York, 1961),p. 94.

we 6nd after suitable expansion the relations

+ 0.33& (Q4/Qs) &+ 1.00
—0.60& (Qs'/Qs) & —0.10 for 0&tt& ~, (5.20)

by using harmonic oscillator wave functions for the

~ S. A. Moszkowski, in Handbgch der I'hysik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 482, 487.
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particle and the radial density distribution

1('2)

p(E,) = Q Q 2(21+1)NsP(R.)
A=O l

we get with the same wave functions for core and par-
ticle as used in the calculation of (5.20)

(Q /4Q )s= 15(f4!fs)(I '/~)'

(Qs'/Qs) = —0 9

(5.22)

where a is the inverse of the "shape parameter" for the
harmonic oscillator wave functions.

For the parameter D we can get an estimate from
Ot7 (see Ajzenberg —Selove and Lauritsen"): D= 2 MeV.
Kurath36 has examined the variation of this parameter
in the p shell. He found that the curve of D plotted
against the total number of nucleons A gives a smooth
increase up to A=8 with D=2 MeV, a steep increase
between A =9—12 and a smooth increase to D=5 MeV
at the end of the shell. If we anticipate a similar be-
havior in the s—d shell, we would have a parameter D
between 2.5 and 4.5 MeV. Dp' and D2' are essentially
free parameters, though one would expect

L?&Do'=D2'&0.

To account for the diGering C values of the I- states of
the core, we calculate the matrix elements of II, with
the energy values of the ground-state band of Ne" as
given in Fig. 1. The separation of the l=2 particle and
the l=0 particle E can be taken from 0"to be approxi-
mately —1.1 MeV. With the filling of the shell one
would expect this separation to get smaller, as the
centrifugal repulsion on the d particles decreases.

As pointed out in the Introduction there are two ways
to account for a,ntisymmetrization: (a) Not taking the
j=~, E=~ band into account, assuming that the j=~
subshell is filled first. (b) Lifting a band with X=0, f,= 2
in I.—S coupling up by a proper choice of the param-
eters. The final diagonalization of the Hamiltonian B
for these two possibilities was carried out on an IBM
1620 with various sets of the parameters (5.17). It was
fourid that the parameters (in units of MeV):

(with radial harm. onic oscillator Nqq) for the core.
If we assume Hs+H4 to be a long-range potential of

the usual 2~ pole interactions with

(5.21)

583
5@8
S.SS
M4

4

4.61—

437

3.67—
385

3/2~.n

2g3 5
2.81 = 9y 2.81
227 1y 2&9

FIG. 3. Calculated
energyI spectrum of
Ne" for cases (a)
and (b).

(b) Qs =+9.80 Qs' —7.70 Q4 15.85

D= 3.3 Ds' —— 1.2 Ds' 0.——7 (5.23b)

E=—0.71
(and

C2= 0.27 C4= 0.21 C6= 0.18

in both cases) yield a fair 6t for the ~a+, ss+, ss+, and $+
states of Ne" below 6 MeV.

The spin-core coupling strength for the l=0 particle
is slightly bigger than for the I= 2 particle in both cases.
This might be due to the fact that in the l=O case the
spin-orbit strength is zero and for this reason the spin
couples more strongly to the core. The parameters D
and B show a greater deviation from the 0'~ values in
case (a) than in case (b). The values of Qs, Qs', and Q4
favor the long-range case, though in both cases we 6nd
a smaller ratio of

~
Qs'/Qs ~

than the estimate of 0.9 ob-
tained with harmonic oscillator wave functions.

If we readjust our energy scale by putting Eg d=0,
we can list the following levels:

(a) J=-,'+: 2.77, 10.01 (MeV)
j= ss+: 0, 3.67, 8.76, 12.09 (MeV)
J=—',+:0.37, 2.83, 4.81, 11.62, 13.88 (MeV)
J=-,'+: 1.52, 4.37, 5.83, 10.10, 14.37 (MeV)
J=-',+:2.81, 6.00, 7.84, 14.32, 17.55 (MeV)

(5.24a)
(b) 1=s+:2.81, 5.55, 24.25 (MeV)

J=-'+ 0 3 72, 5.34, 10.38, 23.70 (MeV)
J= s+: 0.35, 2.79, 3.85, 8.17, 11.65 26.58 (MeV)
J= s+: 1.60, 4.26, 5.68, 6.94, 13.16, 25.31 (MeV)
J= —',+: 2.92, 5.68, 6.49, 11.88, 14.81, 30.09 (MeV)

(5.24b)

(The states above 20 MeV in case (b) are nearly pure
E=0, 1=2 states, as can be seen by transforming rep-
resentation (5.6) into the L, Scoupling pi—cture. ) The

(a) Qs= —6.25 Qs'=+4.00 Q4=0
D= 4 Dp'= 0 5 Dg'=0 4

E= —0.15

(5.23a)
2 ~

1.52

"F.Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 222
(&959)."D.Knrath, Phys. Rev. 101, 216 (1956).

0 i
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TABLE I. Comparison of theoretical and experimental energy levels of Ne" below 6 MeV.

0
0.37
1.52
2.77
2.83
2.81

3.67

4.37

4.81

~ ~ ~

5.83

Calc. (a)
J Dev.

~ ~ ~

+6%
—12%

—
7'%%uo

+6%

0
0.35
1.60
2.81
2.79
2.92

3.72

3.85
4.26

~ ~ ~

5.34
5.55

5.68

Cele. (b)
J Dev.

~ ~ ~

+2%

—20%

+2%
~ ~ ~

7 9
272

Meas.

0
0.35
1.74
2.79
2.87
3.66
3.73
3.66
3.73
3.88
4.43
4.68
4.53
5.33
5.55

2

(2)
p

Comments on assignment of meas. level

Suggested for Na" by Ref. 12.

From transitions in Na2'.

A $ level in Na" at 2.'/1 (see Ref. 13, p. 5)
would support a —', level in that region.

From comparison with Na2' one of these levels
should be a —,'.

No —,
' level observed in this region.

Could be 5.42 (-', s2).

~2 level in Na" at 5.47 MeV. 5.33 or 5.55 levels
open to the assignment of —,'.

high-level density and paucity of spin and parity assign-
ments for the experimental levels above 6 MeV do not
allow any definite interpretation in this region.

The possible breaking oQ of the rotational spectrum
for Ne'0 or the fact that we put all the deviation from
the pure rotational structure into the parameter C in-
stead of modifying the wave functions, could well ac-
count for the growing deviations from the measured
levels in the case of the ~~ and ~ states.

We write Qs(L,L'), Qs'(L, L'), Q4(I.,I.') instead of
the parameters Qs, Qs', Q„, which are independent of I.
and introduce the following modifications:

Q(L,I.') =Q for L,L'W6

Q(6,L) =Q(L,6)= (1—~)'"Q

Q(6,6) =(1—~)Q

This change effects only states with J&~. If we cal-
culate the matrix of the total Hamiltonian H for J= 2, ~

in representation (5.1) and carry out the diagonaliza-
tion with the parameters (5.23b) for diA'erent values of
~, we find that for o.=0.2 the lowest ~~ level coincides
with the measured level within 1% and the lowest s
level shows a deviation of approximately 2% only.
(Compare Table I). We have not accounted for some
positive parity levels in the region 4-5 MeV. They
could probably arise from the coupling of a f ppar-—
ticle of a p hole to the negative parity states of Ne", or
from the coupling of a s—d pari, icle to the higher posi-
tive parity bands or a more complicated configuration.
(For level schemes see Figs. 2 and 3.)

The final eigenfunctions take the form

~
IPr) = P c&(q,z)

~
I,m~Z), (5.25)

j,K

where the c~(j,E) can be given numerically. For further
convenience we note the c's of the ground state and the

first excited as+ a,nd —',+ states for cases (a) and (b) in
Table II.

Q.=Q3f=Ze
5

(6.1)

If we evaluate the quadrupole moment for the ground
state I=M= ss using the representation (5.25) we ob-

TanLE II. Expansion coeKcients c (j,X)
in the Anal wave functions.

2 2
3 1
2 2

5 3

2

R2

1

2
1
2

(a)

0.1992
0.9800

0.9945

—0.0920
—0.0477
—0.0165

0.3962
0.9117

—0.0958
—0.0491
—0.0147

c~ (j,E)
(b)

0.7802
0.4632
0.4205

0.9947
0.0478

—0.0849
—0.0107
+0.0324

0.3584
0.9171
0.1405

—0.0880
0.0281
0.0463

6. CALCULATION OF MOMENTS AND
TRANSITIONS

The quadrupole moment operator of our system can
be written as

QNe» =Qcore+Q»,

where Q„ is zero. Q, is given by the usual definition
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where the reduced transition probabilities are given by
(using the notation of Rose" and Condon-Shortley")

&(E2'L'~Lz)=
I (L IIZR 'I"&(c)II'Lz)l'

(2Lz+1)
i (Lz i', 'Fp(c)

i
L,) i

'. (66)
(2L~+1)

The second formula follows from the principle of de-
tailed balance.

As we have

B(E2; 2 ~ 0) = (1/4w) (Qoo)'

a(E2;4 2)=(5/14 )(Q„),
(6.7)

we obtain from Eq. (6.5)

(Q,p)' = (4~/1.41)10—"(1/r pp)
(6.8)

(Q4p)o= (14r/7. 56)10 oo(1/r4p)

The sign of Qz, z,. is not determined by experiment; to fit
the data we take it positive, which corresponds in the
language of the collective model to a prolate shape for
Ne". (Nilsson model rt)0.) Then we find from Eq. (6.8)
and the values for the lifetimes

goo= (3.99 p ro+ )X10 cm

Q42= (2.7Lp 7p+o'zo) X 10 po cmo

If we insert the mean value

(6.9)

Qo= (3.38 o.7p+z'oo) X10 Po cm2

"J.P. Elliott, and A. M. Lane, in Huedbech der I'hysik, edited
by S. Fliigge, (Springer-Verlag, Berlin, 1957), Vol. 39, p. 256.' E. U. london, 6. H. Shortley, Theory of Atomic Spectre
(Camhridt;e University Press, New York, 1951).

tain for the cases (a) and (b)

(pp ap
~
QM ~

ap ap) =e(0.0025gpp+0. 2421gpp

+0.1938Q4p —0.0404Q44), (6.2a)

(po ap~ QM~ po op)=e(0.0029QPP+0. 2515QPP

+0.1743Q4p —0.0315Q44), (6.2b)

where the Qzz ——Qz, z are the intrinsic moments de-
6ned by

Q». ——Z(intr (L) I &' I intr (L') ) . (6.3)

If we assume the intrinsic moments all to equal Qp (this
should be the case for a purely rotational core) we have

(-,' —,
'

~ QM j-o, —,')=e(0.398)Qp (6.4a)

=e(0.397)Qp. (6.4b)

We can determine the quantities QM and Q4p from the
lifetimes of the 2+ and 4+ states of the Ne" ground-state
band, which have been given in (2.2).

We use the formula (see Klliott 8z Lane, ")
PT (E2; L; +Lz)$ ' = T—(E2; L; —+ Lf)

14m E, '
e'B(E2; L ~Lz), (6.5)

0 75 Ac

Ii(E2 p ~ p) = l(oil«'I'p(c)lip&l'

1
(1.3250gpo —0.1028goo

14m

+1.1713Q4p+0.3560Q44)' (6.12a)

B(E2; —,
' ~ —', ) = (1.4471gpo —0.0245Q„

14m.

+1.0625Q4p+0. 2836Q44)'. (6.12b)

If we assume again tha t the intrinsic moments are equal,
we have

&(E2; —,
' —+ —,') = (0 020 o o

+' "')X10 "cm' (6.13)

for both cases. The measured value of 0.025)&10 falls
well within these limits.

If, on the other hand, we take the same procedure as
for the quadrupole moment, we get a second linear
equation in Q» and Q44

(1 96—o Vp+' ) X10 o = —0 1028gpp

+0.3560Q44, (6.14a)

(1 77 p po+' ")X 10 "=—0.0245gpp

+0.2836Q44. (6.14b)

Solution of the system (6.11)and (6.14) yields

Q2p= (2.62 o.op+' ")X1Q "cm'
Q44= (6.25 o.oo+'") X10 "cm'

goo= (2.54 p.or+'~)X10 "cm'
Q44= (6 46 zp pz+ ' )X10 cm

(6.15a)

(6.15b)

Ke see that the fit of the given experimental data leaves
us too wide a scope for the quantities Qpp and Q4o. For a
more accurate determination we would need further
experimental data on the remaining E2 transitions.

The operator of the magnetic moment for our system
is defined by

p= iz p(fk+g tl+g~&}, (6,16)

of these quantities into Eq. (6.4) we find for the quad-
rupole moment

(ap ap~QM~ap 2)=e(0.134 o.pop~ ")X10 ' cm', (6.10)

for cases (a) and (b). This is higher than the measured
value of e(0.093+0.01)X10 '4 cm

If we want to be more accurate we have to consider
(6.2). Since we do not know the values of Qpp and Q„4,
we can only get a linear equation in these quantities

(0.38 o, 4&+o zo) X10 "=(0.2421Q&p —0.0404Q 4) (6.].1a)

(0 44—o.os+ ' ) X10 = (0 2515gpo —0 0315Q44) ~ (6 11b)

To determine Qpp and Q44 we need further experimental
information. Ke can get this form the measured value
of the —,'+ —+ op+ E2 transition, given in (2.5). If we cal-
culate the E2 transition with representation (5.25)
according to (6.6) we obtain
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where we assume an equal g, for all the core states, g&=0
for a neutron and g.= —3.83 nm (po).

If we apply the decomposition theorem of the second
kind (see Ref. 33), we get in units of ps'.

=ss(sllg, (L'+L j)+g, (s L+s l+s') l'-). (6.17)

For ~~~3 3

For -' —+ —'

Ds 1 DoT=0.354 (case a)

Dp = 1 DoT=0.256 (case b)

DF=O DoT=0.053 (case a)
Dp ——0 DQT 0.049 (ca.se b) .

(6.22)

Evaluation of this matrix element gives:

(s ';
l p, l s —,')=0.1964g.+0.5948g, (6.18a)

g(1—x)'" and g(x)'" (6.20)

for Fermi and Gamow —Teller transitions, respectively,
the comparative half-lifes may be written in the form

jt=Bgt (1—x)Ds (0)+xDoT(0)$ '. (6.21)

Conventional values are

Bg= 2.6)&10' and x=0.5. (6.21a)

Evaluation of the matrix elements (6.19) gives:

~ W. Bauer, M. Deutsch, Phys. Rev. 128, 751 (1962).
'OA. Bohr, B. Mottelson, Kgl. Danske Videnskab. Selskab,

Mat. Fys. Medd. 27, 118 (1957).

=0.2304g,+0.5116g,. (6.18b)

To obtain the measured value of —0.662 nm we need a
geo

g, =0.15 in case (a)

g, =0.43 in case (b) .
Bauer and Deutsch3' have measured the g, values of
the first excited states of Sm'", Gd'", and Gd"'. They
found that the values are (0.35+0.03), (0.367&0.03)
and (0.32+0.03), which corresponds to a deviation from
the Z/A values of 5—29%, if we consider the maximal
errors. Our values show a deviation of 70% and 14%,
respectively, from the Z/A value of 0.5 for Ne". While
the second value is reasonable in comparison with the
results in Ref. 39, the deviation of the first value is
rather large.

If we assume that the wave functions for the Na2'

ground state can be approximated by taking the Ne"
ground-state wave functions for a proton, we can give
an estimate for the ft values and transition probabilities
of the P decay between these two nuclei (see Sec. 2).
The reduced transition probabilities for Fermi and
Gamow —Teller interactions for allowed P+ transitions
are~

D, (o)=El(sl~ I j)ls
DoT(0) =4K l(sl s ~ T-lf) I',

where s is the spin operator of the particle and T is the
component -', (Ti—4Ts) of the total isotopic spin. If we

take the usual choice of the partial coupling constants
as

%ith these values we find that the relative probabilities
of the transitions are

96%(97%) for s+ ~ -,'+ with a log ft value of 3.61 (3.58)

4%(3%) for s+ ~ s+ with a log ft value of 5.00 (5.02) .
for cases (a), (b). These values compare favorably with
the measured values given in Sec. 2.

'F. DISCUSSION

(A) General

Basically the model contains three approximations:
(1) It is assumed that the addition of an extra particle
does not disturb the Ne' core crucially. (2) The anti-
symmetrization between core and outside particles is
not properly taken into account. (3) As the Ne" core
shows a deviation from the rotational pattern, the strong-
coupling wave functions (5.8) are not the exact eigen-
functions of the Hamiltonian H(1) =H„+IIs(+H4).

The validity of the first two approximations can only
by supported by the results. The e6ect of the last
approximation is to give too low ~ and ~ states and to
imply the use of diGering intrinsic quadrupole moments
for the different core states, at least in the calculation
of quadrupole features of Ne".

(B) Comparison of the Two Methods
of Calculation

The SU3 classification scheme for Ne" implies a
thorough mixture of five particle states with l=0, 2,
while the model employed here treats the fifth particle
in terms of an extreme single particle picture. So neither
of the two methods of calculation can represent the
situation obtained in the SU3 scheme and we can only
use it as a rough guide. While the first case (a) follows
the single particle picture in assuming, that first the
j= s shell is filled independently (the same assumption is
used in the Nilsson model), the second method (b) tries
to simulate the SU3 situation more closely at the cost
of taking into consideration an additional term of the
Hamiltonian. in the form of a 24—24 pole interaction. As
we do not know the exact form of the intrinsic core func-
tion and the appropriate coupling parameters js and

f4, the estimates given in Sec. 5 are not too helpful.
If we compare the results, we find that in both cases

the ss+ ground state contains approximately 99% of the
J= s state of the j=$, E=ss- band, the s+ first excited
state contains approximately 85% of the -', state of this
band, while the next well established state, the —,

'+ state
at 2.79 MeV, shows a different composition in the two
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cases:

(a) 4% j=$, 96% j=k (all E=—,')
(b) 61% j-8, 21% j=k, 18% j=2 (all&=i)
Unfortunately, the E2 transition to the ground state
is extremely weak:

(a) B(E2; —+ ~g) =0.02X10-"cm'

(b) B(E2; —,
' —+ -', ) =0.2X10 " cm4

(assuming equal QI I. =3.2X 10 "cm'), so the transition
seems to be mainly M1. As the determination of the
ratio of transition probabilities for E2 and M1 transi-
tions is not too accurate, we have no possibility of dis-
cerning the two cases from this point so far. Further-
more by a choice of the Qz, r, other than taking equal
va, lues [but within the limits given by Eq. (6.9) and
Eq. (6.15)7,we could obtainequal values of B (E2;2~-,')
for the two cases. Similarly the E2 transition probability
from the —,'+ to the ~+ first excited state is small and in
fact has not b'en detected. The quadrupole moment of
the ground state, the E2 transition of the -', + ground
state to the —',+ first excited state and the P+ decay fea-
tures from Na" are well reproduced by both methods.
The magnetic moment of the ground sta, te can be fitted
better in case (b) than in case (a), though we have only
an admixture of 0.2% of the J=-,' j=—', E=—,'state in the
first case. A decrea, sing value of g, for the core states
with higher L instead of the uniform value employed in
the calculation would improve the situation in case (a).

As we used positive intrinsic quadrupole moments to
fit the quadrupole moment of the ground state, we used
a negative value of the coupling strength f2 in case (a),
while it has to be taken positive in case (b). The first
sign corresponds to the usual choice of the sign of
the quadrupole-quadrupole force in collective model
calculations.

Having only relatively scanty information about
higher states in Ne" and corresponding transitions, we
come to the general conclusion, that we can not tell so
far, which of the two modes of calculation gives a better
picture of the actual situation. From the point of view
of consistency one would fa,vor the mode, which gives
the smoothest variation of the parameters of the model,
if we extend the calculation to neighboring nuclei in the
same shell.

(C) Comparison with the Collective Model

In most cases in the s—d shell the Nilsson model fails
to give the right magnitude of the E2 transition proba-
bilities and the quadrupole moment of the ground state,
once the deformation parameter g is fixed to 6t the spec-
trum and (or) the magnetic moment of the ground state
(see Ref. 31).This suggests that the illustrative picture
of the nucleus a,s an ellipsoid is not quite correct at least
in this region of the Periodic Table.

The model employed here tries to avoid any classical
picture with its consequences (particle j not a good
quantum number in a. cylindrical well). The Ne"

ground-state band shows approximately the features of
a quantum-mechanical spherical rotator. This is a
statement on the angular part of the core wav|."function
only. It is conceivable, that the radial part of the core
wave function gives the right magnitude of the measured
intrinsic moments Qz, r, by an appropriate coupling of
the core particles. The coupling of this system with an
ordinary shell-model particle gives strong-coupling wave
functions as an intermediate step, if we use a body-axed
coordinate system. Ke find that the projection of the
angular momentum of the particle on an intrinsic co-
ordinate system E; is a good quantum number. Here we
had to assume, that the intrinsic core functions are the
same for all the L states of the core. This condition is
only approximately fulfilled in Ne'0.

In the further calculation the parameters of the
coupling term of the Hamiltonian a,re treated essentially
a,s free parameters, while all the core parameters Cl., g„
Qr, r, , can (at least in principle) be obtained trom experi-
ment. So we are sure, that the core eGects are properly
taken ini, o account.

The decoupling term of H, [see Eq. (5.16)7 is only a,

special case of the collective model form, as we are con-
sidering the coupling of one single particle only. As
pointed out before (Sec. 3), the coupling term between
particle spin and angular momentum of the core removes
the resulting degeneracy in the case of a j= ~ particle.

The choice of our parameters (5.23) corresponds to the
usual Nilsson model parameters.

(a) q=1.67 ~=0.135 @=0 (with f2(0)
(b) g=3.18 x=0.111 @=0 (with f2) 0),

if we assume h~o=41 A '~' MeV=14.86 MeV. So we
find that the spin-orbit splitting D is larger than the
values 1.50&D&3.00 obtained from the usual choice of
0.05&~&0.10. As hero decreases with increasing A, one
would expect an increasing value of ~ with the filling of
the shell rather than a constant value. If Kurath's re-
sults for the variation of the parameter D in the p shell

apply to the s—d shell, one would even expect a rapid
variation of x in some part of the shell. The deforma, tion
parameter g in case (a), which corresponds more closely
to the Nilsson model calculation, is smaller than the
values used by Bhatt3' (&=3, 4) and Rakavy" [c=0.48
corresponding to g(~=0.05)=7, g(~=0.10)=3.57 for
Ne".

In the model employed here we find that all the final
Ne" eigenfunctions of the lower stateshavean admixture
of more than 80% of one particular

~
J,j,E)state, but'

still do not show any rotational structure. In fact as
long as the core states are of the form XOI'l.~ and Q2
is not equal to zero, we always obtain the strong cou-
pling wave function (5.8) as an intermediate step, ir-
respective of the coupling strength of H2.
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