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conditions (25) and (27), the expression (76) for neutral
atoms takes the form

TABLE II. Atomic polarizabilities n (10 "cm')
for atoms of various elements.

(r') =6Zfz' x%'(x)dx ——',CX'
0

(77)

TABLE I. Magnetic susceptibilities x (10 ' cm')
for atoms of various elements.

where C is given by (28). The integral occurring in (77)
was evaluated numerically for each value of Z, and the
value of X obtained from extrapolation to Z—E=O of
the X versus (Z—1V)/Z data. The magnetic suscepti-
bilities and electric polarizabilities were then computed
by means of (73) and (74). The corresponding quantities
were also computed for the TF and TFD models. '~ The
results are presented in Tables I and II and compared

TF model
TFD model
Present model
Empirical

Ar

47.78
2.85
2.54
1.65

Cr Kr

43.41 37.92
~ ~ ~ 3.60
2.95 3.17
~ ~ ~ 2.50

Xe U

33.13 27.74
4 02 ~ ~ ~

3.70 4.00
410

with experiment, the latter values being obtained from
Ref. 4.

We see that in general our model leads to some im-

provement in the agreement with experiment although
the agreement is not yet quantitatively precise. From
the results for argon we may observe that our model
leads to much the same value for the magnetic suscepti-
bility as that obtained by the much more cumbersome
method of the Hartree self-consistent field.

Ar Cr Xe

TF model
TFD model
Present model
Hartree field
Experimental

81.0 ~ ~ ~

22.1 ~ ~ ~

20.88 25.96
20.6 ~ ~ ~

19.5 ~ ~ ~

102.0
35.0
33.00

~ ~ ~

28.0

117.0
45.5
43.61

~ ~ ~

42.4

59.25

) The TFD model calculations were based on the potential
tables given by L. H. Thomas, J. Chem. Phys. 22, 1758 (1954).
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2P ~ 18 Transitions in Muonic Tl, Pb, and Bi*t
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The mixing of states of a muonic atom with the nucleus in an excited state into the states with the nucleus
in the ground state, for natural Tl, Pb, and Bi (due to the multipole interactions between the nucleus and
the muon), is calculated. This effect fails to explain the ratio of the number of 2P&/2 ~ 1S&/2 to 2P3/9 —+ 1Sf/s
transitions (expected to be 0.5 in the absence of mixing) as observed by Frati and Rainwater. In Bi, the
calculation shows that the mixing is negligible, but the observed ratio was 0.75+0.05; in Tl (where the ratio
was 0.97&0.09) the off-diagonal matrix elements of the Hamiltonian, required for this effect to be the sole
cause of the change of ratio, difFers from theory by two standard deviations. For Pb the observed ratio
agrees with theory and the calculated mixing is, indeed, negligible. If we assume that some unknown efFect

is acting in Bi and is of the same order of magnitude in Tl, then the difFerence between the ratio in Tl from
that in Bi is explained by the above mixing. This assumption is suggested by the fact that Tl is one proton
below and Bi is one proton above a magic number closed shell (82). We suppose that this unknown effect
is absent in Pb since it is a magic number nucleus (82 protons). It is proven that nonresonant effects, due to
spin-independent operators, cannot afFect the radiative-transition sum rules. This is applied to nonresonant
hyperfine mixing and a hypothetical nuclear-Auger effect.

I. INTRODUCTION

N recent muonic atom studies by Frati and Rain-
~ - water, ' the relative number of 2I'~~~2 ~ 15~~2 transi-

~Research partially supported by the U. S. Atomic Energy
Commission.

t Research will be the basis of a Doctoral dissertation.
f Presently a Pfister Fellow.
r W. Frati and J. Rainwater, Phys. Rev. 128, 2360 (1962).

(Theoretical values here were calculated by K. W. Ford and J. G.
Wills; their values for Bi have been corrected. )

tions to 2Ps/s —+ 1SI/s transitions LW(2P ~ 1S)j is re-
ported for various atoms. The values obtained for
natural Tl and Bi are well above the value which is pre-
dicted by the sum rules. {Since the relative population
of the 2J'~~2 to 2P3~2 states measured in the 3D —+ 2I'
transitions LW(3D —+ 2P)] was approximately st, the
sum rules would have predicted that lF(2P ~ 1S) had
approximately the same value. ) The mechanism in-
voked to explain this is the mixing of the state ~2PI/s
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muon, nucleus in first excited state (1)) into the state
~
2Ps~s muon, nucleus in ground state (0)]. In Tl, this

could occur because the states are nearly degenerate. In
Bi, a large off-diagonal matrix element of the Hamil-
tonian could mix the states even though they are not
close in energy; the large spin of the nucleus (s) is
the supposed cause of this large off-diagonal element.
The ~2P,O) have been populated from higher ~ts1.,0]
levels (mostly from the ~3D,O) levels), whereas the
nucleus is not excited by the usual radiative or Auger
transitions. ' This resonance phenomenon has the effect
of: (1) bleeding the ~2P@s,0] level and (2) feeding the

~
2Pi~s, 1)level. Thus, the relative number of 2P,~s~ 15i~s

radiative transitions is enhanced, since the nuclear life-
times are of the order of 10 ' sec, whereas these transi-
tions occur in approximately 10 "sec.' The energies of
the true eigenstates are displaced from those calculated
for the unmixed levels, but the resulting transition lines,
of non-negligible intensity, are shifted by amounts less
than or equal to s of the 2P fine-structure splitting (See
Figs. 2 and 3). Since the experiment did not resolve the
fine structure lines (except by assuming two lines were
present and matching the spectrum with an assumed
line shape), the energy shifts of the true eigenlevels
could not be detected. The observed values of the
"2P3/2 —+ 1S~/2 energy" and the "fine-structure splitting"
can be calculated, once one has a means of averaging the
predicted spectrum into two lines.

In Tl, assuming the resonance to be the cause of the
discrepancy of the measured W(2P —& 15) from the ex-
pected value, we will predict the off-diagonal matrix
elements (0) and the difference between the diagonal
elements (b) of the Hamiltonian. The energy difference
between the unperturbed

~
2P3/s 0] level and th

) 15iis,0)
level (c) will also be predicted from the experimentally
measured quantities. The quantities 6 and c will be
shown to agree with the theoretically calculated values
(Ford and Wills as reported in Ref. 1, Table II), the
former agreeing within one standard deviation, the
latter within 1.2 standard deviations. The off-diagonal
elements will be reduced to one parameter. An argument
of "better-than-order-of-magnitude" validity shall pro-
vide upper and lower limits for this parameter (Oi of
Table II); the lower limit is expected to be closer to the
correct value. The value required by the experiment will
be seen to miss agreement with the lower limit by two
standard deviations. This, in itself, would not be very
poor agreement, but the presence of some other effect is
evident in Bi. The energy of the first excited nuclear
level of Bi is roughly five times the fine-structure
splitting, and a shell-model calculation has shown this
effect to be negligible for this atom.

The possible causes of the observed discrepancies
which have been considered are: (a) The effect of the

s V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).
s B.A. Jacobsohn, Phys. Rev. 96, 1637 (1954).The factor 2.3 for

the point quadrupole nucleus has been calculated for Z=82 and
R =1.2)&10 "A'I' cm by the present author.

radiative width of the levels on the diagonalization,
which has been shown to be negligible. (The width is
less than 1.2 keV which is to be compared with 17 keV
energies Tl.) (b) The magnetic multipole interactions,
which are negligible since the magnetic dipole inter-
action is smaller than the electric quadrupole interaction
by a factor of 10', making it negligible in comparison to
the radiation width. Furthermore, to erst approxima-
tion, it cannot change the spin of the nucleus. (c) Non-
resonant electric hyperfine mixing of states, which will
be shown to have no effect on the relative transition
rates. (d) A nuclear Auger effect with nonradiative
2P& ~ 1S transitions, which is energetically possible in
Bi, but will be shown to have no effect upon the relative
number of radiative 2Pg —+ 15 transitions. LSee the
Appendix for the treatment of (c) and (d) above. ]

The effect which causes Bi to have W(2P —+ 15)
equal to 0.75& 0.05 may be acting in the Tl atom, since
the former is one proton above and the latter is one
proton below a major closed shell. We would expect Pb
to behave normally since it is a major closed shell
nucleus (82 protons). This is indeed the case as the
experiment has shown that W(2P —+ 15)=0.49&0.07
for Pb which agrees with the theoretical expectation. If
we assume that in thallium, W(2P —+ 1S)=0.75 before
we take the resonance into account, then the observed
value for W(2P ~ 1S) requires an off-diagonal element
which agrees with the theoretical expectation. (The
predicted values of 6 and c are not significantly
changed. )

II. GENERAL THEORY

When the muonic atom is treated as a hydrogen-like
problem with Bohr-type orbits about an extended
spherical nucleus, '4 the Coulomb interaction between
the Inuon and the protons of the nucleus is assumed to
be of the form (—e1'p(r')/

~

r—r'~ d'r'), where r' is the
nuclear position and r is the muon position. The nuclear
charge distribution p(r') has been assumed to be
spherically symmetric. By the usual expansion of
(~r—r'~) ' in multipoles, we have (after doing the
angular integration)

V(r) = —e dr'(r')'p(r')t r,) '= V (r),

where r, is the greater of r and r'. If p(r') is zero when
r')R, then for r)R we have V(r)=( Ze'/r), —as
expected. )The V(r) for r(R may be calculated using
Eq. (1).) The true interaction, H, =P;(—e'/)r —r, '~),
i running from 1 to Z (where r, is the position of the ith
proton and r is the muon position), essentially has been
averaged over the nuclear state. One defines this average
as V (r) with Q ~

~
H,

~ Psi) = V(r), which is assumed to be
only a function of radial distance. 4 The difference be-
tween this and the true interaction must be treated as a
perturbation, mixing the eigenstates of the average

4 L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953).
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symbols are defined by Edmonds. ' These matrix ele-
ments are independent of M'p, and, therefore, this
interaction cannot remove the M'p degeneracy. Note
that these matrix elements are diagonal in P and 3fp as
expected for an interaction which is an over-all scalar.

We now make the following definition:

12Pl 0
Op ——Q Cr

P J I
I' J' (3')

$$ Q
l ISl,jl

)IS),OQ

Oi

FIG. 1. Tl level scheme. This figure is not drawn to scale. The
levels P and y, indicated by dashed lines, are eigenlevels of the un-
perturbed (hydrogen-like} Hamiltonian. The true eigenlevels are
designated +F+ as discussed in the text. In the symbols ~33Lz,N 1,
the first symbols refer to the usual muon quantum numbers;
when N is zero the nucleus is in its ground state (SE/3) and when N
is the one the nucleus is in its iirst excited stated (D3/3). The
2I' ~ 1S transition lines are labelled with numbers referring to the
lines of Table I, the subscripts of which are the Ii values of the
corresponding initial energy levels. It is easily seen from the
figure that A=E, —b.

xx1(I,I')&Fp &sr /31, (2)

where l is the multipole, in the expansion of H', being
considered. Here we have used the usual spectroscopic
notation, L and J referring to muon quantum numbers,
I to the nuclear angular momentum, Ii and M p to the
total angular momentum of the atom and its s com-
ponent, respectively, for the state N; similarly the
primed letters refer to the state 4". The ~'s are the
reduced nuclear matrix elements times the radial
integrals, and will be discussed later. The 3-j and 6-j

5 A. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957}.See
Ref. 9 for tables of the 3-j and 6-j symbols.

interaction. The perturbation, H'=P;( —e2/)r —r,'))
—V (r), can be expanded in multipoles in the usual way'
)only the zeroth multipole is altered by the V(r)). Using
the standard techniques of algebra, ' it can be shown that

(@~II '~@')= ( )P+1+r 1/2— —

X$(2J+1)(2J'+1)(2I.+1)(2I.'+1))'"
J J' / F J I L l L'

L' L -' / I' J' 0 0 0

where the constants (C1) are independent of F. For the
muon states 2I'@2 and 2P1/2, only the term with /= 2 is
nonzero in Op, for l) 2 we have zero because l cannot
connect a state which has L=1 with another whose L
is one (or a J=2 with a J=22state), for /=1 parity
conservation gives zero, and for l=0 we have zero be-
cause we cannot connect a state of J=—,'with one of

3 1
J=-,' i.e., we have for L')2 or l=0, ', =0 and

for 3=1,
~

~=0 in Eq. (2)
fi
lOOOq

For Tl, the amount of mixing between the
~
2P3/2, $]

and the 2P1/2, Ã), the
~
2P3/2, 1)and the

) 2Pg, o), or the
~2Pq, o) and the )2Pq, i] levels is negligible. This is
true because their energy spread (the difference of their
diagonal matrix elements of the Hamiltonian) is larger
than the off-diagonal matrix elements connecting them,
by a factor greater than 10.Thus, only the

~
2P3/2 0] and

the
~

2P 1/2, 1) states of the same F and M p can be mixed,
and the Hamiltonian may be factored into a set of un-
connected two by two matrices. By the usual treatment
of states whose oG-diagonal elements are not small in
comparison to their energy separation, we have

4 p+= (1 ap2)1/2e//F+ap—e&p,

Op ap% //p (1 a——p')'"@&p-, —
Ep+ E//+ ,'6 F3/= ', (6—p—'+4OF-')"'-

(4)

y =F2( 4/Opp)33'E+1, (4")

for the true eigenstates and their eigenvalues, where

2 Pg +2 (g 2+4O 2)1/2)2

y L{1+ +1(g 2+4O 2)1/2}2+O 2)—1 (4&)

The symbols Pp and yp represent the states
~
2P, /2, 0]p

and
~
2P1/2, 1)F, respectively (See Fig. 1); the differences

of the diagonal terms of the Hamiltonian matrix have
been represented by hp (AF= (Vp ~IIlVF) —(pp ~II~ pp))
and Op is the off-diagonal matrix element defined in
Eq. (3). Note that the quantity (1—ap') is a measure
of the amount of mixing occurring. The M p degeneracy
has not been removed, and so Eq. (4) holds for each
3fI; substate of the wave functions, with no mixing of
states of diferent M~. For convenience, we define
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which yields
ap' ——(I+y p) (2y p)

—',

Ep+=Fp+s6p+rdp, wl'tll Mp= s6pyp.

For the usual electric dipole transition from a statis-
tically populated state 0" to a state 0', with the same
nuclear angular momentum (I=I'), we have

C vsZ;, ~. , l(elrC"';le')I'
= v'~r„r„s z, ~'(2F+1)(2F'+1)

&& (2J+1)(2J'+1)(2L+1)(2L'+ 1)

', (L 1 L'q J J' 1 F 1 F'
X

~ (5)
(0 0 0 j I.' L —', J' I J

for the transition probability per unit time (4); where
v is the frequency of transition; r is a radial integral;
the e, L, J, and F are the usual quantum numbers (as
discussed before) for +; similarly the primed symbols
are those quantum numbers for +'. The 3-j and 6-j
symbols are defined in Edmonds'; the proportionality
constant is a universal constant. If the v dependence is
neglected, we may sum over F' and J' (of the initial
level) to derive the sum rules

P p~, J~ C/ec C(2F+1) / (5')

for the total intensity to a given level, from a set of
levels of definite e' and L'. Here C is independent of J
and I (as long as the level may be reached from the
upper levels and I=I').

If the nucleus is in its ground state when the muon is
in any of the higher shells, the muon transition to the
2P levels will populate each in proportion to the ab-
solute square of the coefficient of its component with
the nucleus in the ground state. From the sum rules
(Eq. (5')$ and Eq. (4), we see that the relative popula-
tions of 0'p+ may be written:

Population of 4p+ ~ (2F+1)(1—ap'),
(6)

Population of 4p ~ (2F+1)ap'.

These must be corrected for the ~ dependence of C, as
will be discussed below.

If one sums Eq. (5) over F, assuming v to be inde-
pendent of F (the 6nal level's total angular momentum)
we have:

Q C ee v'(2F'+1) (2J+1)(2L'+1) (2I.+1)

L 1 L'i J J' 1
X I (7)

0 0 Oj L' L

{Note that if we sum Eq. (7) over F', assuming v' inde-
pendent of F', we find that (Pp p C) is equal to (2I+1)
times the result obtained when the nucleus is ignored
Lsince P p (2F'+1)= (2I+1)(2J'+1)$.} For the
2P —+ 1S transition, v is independent of P and we have

J=-2, L=o, L'=1, J'=~ or 2, m=1, and e'=2; the
absolute square of the 6-j symbol in Eq. (7) has the
same numerical value for each value of J'. Therefore,
we may write

P p C ~ (2F'+1)v' (7')

for the 2P~ 1S transition. The proportionality con-
stant is independent of J' and I (for transitions with
I=I').

In the derivations of Eqs. (5) and (7), we have
assumed the initial levels to have definite values of J'
and I'=I. If the initial state is a mixture of states, the
right-hand side of each of these equations must be multi-
plied by the absolute square of the coefficient of the
component of the initial state with I'= I, and the primed
quantum numbers are to be taken as those of this
component. We have also summed over Mg', which
assumes the relative population of each initial P' level
is equal to (2F'+1). In general, the intensity of a line
from a mixed level is proportional to the product of the
absolute square of the matrix el,ement for the transition
and the relative population of the initial level. For our
2P —& 1S transitions we have

Intensity= f,4;, (7//)

where the index i refers to the lines shown in Fig. 1.The
C; are defined in Eq. (7') and the f; (for each i) is the
product of the absolute square of the coefficient of the
component of the initial level whose I' is equal to I, and
the ac/la/ relative population of the initial level divided
by (2F'+ 1). )In Jacob sohn's' notation we have
f'= P(I v F') P(Io v F') 3

where A; is the actual number decaying through mode i,
S; is the number assigned by the sum rules $Eq. (5')) to
the decay through mode i, and v; is the corresponding
frequency of transition. If we demand tha, t the total
number of particles being discussed remain the same,
then P;A;=P;S;, and we can write Ai=Si+e and
A 2= S2—e, with ~&0 if v~& v2. Thus, we may write

Si+e St( vi)

S..—e Ssk vs)

If we look at the mechanism which feeds the 4'~~

See Ref. 3, Eqs. (16) to (18), his J is our P and his j is our J.

III. FREQUENCY DEPENDENCE OF THE
TRANSITION RATES

If a meson has only one mode of radiative decay, the
relative number of such events (which is actually what
has been measured) is not changed by the v dependence;
only the rate is changed. However, if there are two
competing modes of radiative decay from a given level,
we must take this v dependence into account.

Ai Si

As Ss vs)
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levels, we see that we must change Eq. (6) so that the
populations are

(2F+1)(1—ap' —h p) for 4p+

and (6')
(2F+1)(up'+8 p) for

where we have replaced the corrections denoted by e in
Eq. (8') by (2P+1)8p.

If we assume the level is fed from an v=3 level, we
get the upper limits of Bp. Applying Eq. (8') to this case
we have

(1 ap' —fi p)/—(ap'+8 p)
= (1—ap')[(v+) p]'/(up')L(v )p]', (9)

where (v+) p are the energies of transition from the 3D
level to Cp+, respectively.

Now from Eqs. (6'), (4), and (7') we see that

(fs) p=ap'(ap'+bp),
(f,) p ——(1—ap')(1 —ap' —8p), (10)

(f4) p = (1—ap') (ap'+ op),
(fs) p ——ap'(1 —ap' —8p),

and S;= (2F+1)f, for the lines designated in Fig. 1.
We can also calculate the relative number of muons

fed into the i2Piis, O] state from the i3D,O] levels
(W(3D —+ 2P) }.If there are initially 15 muons in the
3D levels, and we assume a statistical distribution, then
there will be 9 in the 3D5/2 level and 6 in the 3Dai2 level.
The 9 are all fed to the i2Psis, O] level, in an electric
dipole transition. The 6 can go into the 2I'3/2 or 2Pii2
level; the number assigned to the 2I'ai2 level by the sum
rules is 1. [Thus, the sum rules result in 10 muons being
fed to the 2I'3/2 and 5 to the 2Pii2 level, giving
W(3D —+ 2P) = —',.]We must demand, however, that Eq.
(8') be employed, using Sr=5, Ss——1, v(3Dsis ~ 2Psis)
=vs, and v(3Dsis~ 2Piis)=vi. From the experiment
and experimentally determined value for b, we have:
hvar

——2.605 MeV and hv2 ——2.417 MeV. This results in
the value of e being 0.1735 which yields W(3D —+ 2P)
= (5+s)(9+1—e) '= 0.5265. This value of W(3D +2P)—
agrees with that observed' for Tl (0.53+0.03) and for
Pb (0.51&0.02). (The Bi' ' result (0.59+0.02) is already
explained by a capture p ray, in Ref. 1.) If this effect had
occurred in the feeding of the 3D level, W(3D —+ 2P)
would be even greater.

Since 0 p+ each have two different modes of decay,
we can apply Eq. (8') using Eq. (10) and get

((2F+1)ap'(ap'+fop)+ep )
X((2F+1)(1—ap')(ap'+5p) —ep ) '

={(2F+1)a p'(a p'+ 8 p) (vs) p')
X{(2F+1)(1—ap') (ap'+ 8p) (v4) p'} ',

nd (11)

( (2F+1)(1—a p') (1 ap' 3p)—+ep+—)
X ( (2P+1)ap'(1 —ap' —5p) —ep+}—'

= {(2F+1)(1—u p') (1—ap' —6p) (vs) p')
X ((2P+1)a p'(1 —a p' —5 p) (vs) p') —',

for the lines of Fig. 1.The 8p were defined in Eqs. (6')
and (9) and the e p+ are defined by Eq. (11).

The average intensity of a composite line will be
assumed to be the sum of the intensities of its compo-
nents; the energy of transition will be the average energy
of its components, each weighted by its relative
intensity. From Figs. 1 and 2 we see that line I is
made up of lines 1, 4, and 5 and line II is made up of
lines 2 and 3.

Thus, we have

A i= (2Ie+1)(2J +1)(U/-', )
+Q p- [(f4)p(2F+1)—ep

—]
+Q p+ [(fs)p(2F+1)—ep+]

and (12)

&xi=+p-[(fs) p(2F+1)+ep—]
+Z p+ [(fs)p(2F+1)+ep+].

Here (2Ie+1) (2I +1) is the multiplicity of level n (see
Fig. 1), U is the relative number of muons making
radiative transitions from n to i1Siis,0] (compared to
the total number making these radiative transitions
from %p+ to i1Siis,O or 1]), and we have divided by
that value ~ assumed by the sum rules. In the absence
of a resonance, W(2P ~ 1S) would be U. If we assume
that the 2I' level was populated by random processes
and the muons all made radiative transitions to the 1S
level, then we expect to have a statistical distribution
with U= —,'. If we assume that the muons reach th- 2I'
level after a radiative cascade, the distribution is slightly
different than the statistical one. The v dependence will
always cause more feeding of the lower I level (of a
given is and L) than the sum rules predict. This im-
balance will be propagated to the (is=1, I.= 1) level,
since most of the transitions are from states of
(L'=is' —1) to states of (L=N 1), which ha—ve the
greatest multiplicities in their respective shells. The
impoverished upper J level feeds the next state' s
upper I level (via electric dipole transitions) which is,
therefore, further impoverished. Thus, a radiative
cascade implies that U=W(3D ~ 2P), and this will be
denoted by "Case I."

IV. THE NUCLEUS AND THE OFF-DIAGONAL MATRIX
ELEMENTS OF THE HAMILTONIAN

The radial integral times the reduced nuclear matrix
element, denoted by Iri(I,I') in Eq. (2), can be related
to the reduced transition probability for exciting the
nucleus from a state whose spin is l to one of I'. We have
shown that only /=2 in Eq. (2) gives nonzero for the
2I' states under consideration, and therefore, we are
speaking of the quadrupole reduced transition proba-
bility, 8 (Es), as defined by Jacobsohn. ' Following the
arguments of Wheeler, r Wilets, ' and Jacobsohn, ' we
assume the quadrupole distribution of the nucleus to

' J. A. Wheeler, Phys. Rev. 92, 812 (1953).
L. filets, Kgl. Danske Videnskab. Selskab, Mat. I ys. Medd.

29, No. 3, 9 (1954), Eq. (14).
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be localized on its surface (Rainwater model). The
sensitivity of the calculation to this assumption is
shown to be small for a 2I' muon, since only where the
muon wave function is to be evaluated inside the
nucleus is the distribution of the quadrupole moment
involved. )Assuming the quadrupole distribution to be
concentrated at the center increases the result by a
factor of only 2.3.'] Using this as a "better-than-order-
of-magnitude" estimate we can determine upper and
lower limits for ~0~~. In a manner similar to Jacob-
sohn's" treatment we 6nd:

I ~2(I,I')
I

=
I L(B*t&2]/~') (4~/5) (2Io+1)]"'

&& «-~l g2IR-~) I, (»)
with g2 ———(e2//r') P (I,I'), where the

~

R z) are the muon
radial functions and a radial integral is to be done;
P(I,I') is the penetration factor. ' ' Of course P is one
for r)R )see Eq. (1)] and P is equal to (r/R)' when
r is less than R, for the Rainwater models 7 described
above. It has been shown, ' using Coulomb wave func-
tions, that

g2=—(R2i ( g2( R2I )= 5 (Z/237)'f, MeV/b, (14)

where f,= (1+0.1x') ' and x=RZlie'pj'R , is the
"nuclear radius" and p, is the muon's mass. This is
expected to be poor for high-Z elements but was only
6% higher than the results obtained from the Fitch and
Rainwater wave functions for Pb"'.'

V. NATURAL SAMPLESI'

A. Bismuth

Natural Bi is 100% Bi"'. The coupling of the one
extra proton with the surface of the double magic-
number core is known to be small. This conclusion may
be drawn from the fact that the measured quadrupole
moment is of the order of the single particle value, and
much smaller than that expected for the hydrodynamic
model. " A shell-model calculation shows that the off-
diagonal matrix elements from the ground ~ to the
first excited 2 state are less than 3 keV. The first
excited level is 900 keV above ground and, therefore,
6I:——E —6=700 keV. Thus, the perturbation treatment
of the Appendix includes this state and no resonance is
involved. Excitation of the core is seen to require more
than 2.6 MeV (the first excited state of Pb"', which is
a 3, and cannot be reached by even multipole inter-
actions). Even if 0 were a factor of 10 times the shell-
model off-diagonal elements, the perturbation treatment
still would apply. Note that 6 is much greater than b.
Therefore, the mixing of the ~2P3/2 1) into the (2P,i2,0]

~ M. Rotenberg et al. , The 3-j and 6j Symbols (Technology
Press, Cambridge, Massachusetts, 1959).

' All experimental numbers are taken from Nuclear Data Sheets,
compiled by K. Way et al. (Printing and Publishing OfFice, National
Academy of Sciences —National Research Council, Washington 25,
D. C.), and the references quoted therein,"A. Bohr and B. R. Mottleson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, No. 16 (1953).

state would almost cancel the effect of the P, y mixing
upon W(2P~ 1S), even when perturbation theory is
not valid.

B. Lead

Natural lead is made up of 52.3% Pb"' 22.6%%u
Pb"'

23.6% Pb"6, and 1.5% Pb' . No excited state of the
Pb"' nucleus has been found which can be connected
to the ground state by our quadrupole interaction. Thus,
A~ is larger than 4 MeV and no resonance is expected.

In Pb" there are two low-lying excited states which
can be connected to the ground state ~~ by the inter-
action. The ~ level, at 0.894 MeV above ground, is
adequately treated by perturbation theory. This may
be concluded by comparison with Bi"'. A similar level
in that nucleus has been shown to be amenable to a
perturbation theory treatment. In the Pb"' nucleus, the
extra-core particle is a neutron hole, and the interaction
is now due to the recoil of the core protons. Therefore,
the effect should sot be appreciably Iarger. Upon
examination of the observed reduced transition proba-
bility for exciting the &, 0.570-MeV level we find
B,(E2) =0.028X10 "cm'. Only the F= 2 level is mixed
here, i.e., ~2Pai2', I=—] and ~2P&i2, I=2] have only
F=2 in common. From Eqs. (2), (3), and (13) we
have' '

~0~~ =(2LS]'"/25) z(I,I')=6.0 keV. Thus, we
find that 4(02/A2)'=10 ', and this state is included in
our perturbation treatment.

In Pb' ' the first excited state is a 2+ at 0.803 MeV
above the ground state, 0+. Using the value B,(E2)
=0.11&(10 "cm', and the fact that only the F=

~ state
is mixed, we find: )03i2~ =9.4 keV, and 4(03i2/6)'
=10 '. Indeed, the perturbation theory is valid.

In Pb'04 the first excited state is a 2+ at 0.899 MeV
above the ground state, 0+. This is very much like the
Pb"' situation. Even if its B,(E2) were a factor of 10
greater, the effect would still remain within the realm
of perturbation theory. Since only 1.5% of our sample
was this isotope, even an anomalous 8,would have little
elect on the experimental results.

The "sum effect" (See Appendix) thus includes all the
states of our Pb sample, and our Bi sample as well
Lcf. subsection (A)].

C. Natural Thallium

Natural Tl is made up of 29.5% T12"and 70.5% Tl' '.
The ground states of both these isotopes are —',+ levels.

In TPO', the known low-lying excited states are a 2+
at 0.279 MeV and a —,'+ at 0.679 MeV above ground. The
second excited state has B,(E2)=0.210)&10 "cm'. We
find only F= 2 states in common with the ground states
(as in Pb"~). It is easily seen, using g2=8.9&&10 '
MeV/b, that ~0~

~

is about 12 keV. Since b, is approxi-
mately 490 keV, the perturbation treatment is valid.
The energy of the first excited state is close enough to
the 6ne-structure splitting to warrant a more exact
treatment.
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In Tl'", the excited levels have the same spin and
parity assignments as the corresponding Tl'" levels, but
their energies are 0.205 and 0.615 Mev, respectively.
The second excited state has B,(Es) =0.114X10 "cm',
yielding Iosl =16 keV. Again the perturbation treat-
ment is valid!

The first excited level (in both isotopes) may be con-
sidered to be in resonance with the ground level, since
d is of the order of the off-diagonal elements.

The ground level of the nucleus is an S~~2 state and
the first excited level is a Ds/s state. (These are shell-
model assignments; the I's have been measured. ) It is

easy to see that (PIHt'IP)=0=(yIHi'Iy) for lWO:
Since an S state has no multipole moments, the first
equality holds; since a 2P&/2 state can have nonzero

expectation value only for operators whose l(2 as seen

1 1
from Eq. (2), , =0 for f&2 and, if parity is

L L
to be conserved, an 3 = 1 operator has zero expectation

1 1 1l
value in this level in Eq. (2) we have

0 0 Oj
the second equality holds. Only the spherically sym-
metric part of the Hamiltonian has nonzero diagonal
matrix elements and these are the originally calculated
energies, which are independent of F. (The corrections,
due to errors in the nuclear charge distribution used,
are attenuated by the smallness of the 2I' wave func-
tions inside the nucleus. ) Therefore, we have hs ——6
=E,—b for thallium, where F., is the nuclear excitation
energy, b is the originally calculated fine structure
splitting, and 6 is independent of F.

For Tl we have Fp= i, 2 and F~= 1, 2, therefore, there
is mixing in the states Fp ——1=F~ and Fp ——2=F~. From
Eq. (3') we see that

5lo,
l

= Io, l.
From Eqs. (15) and (4") we see that

25(ys' —1)=yis —1,

(15)

(15')

so that only one parameter (yi) is free.
From Eqs. (2) and (3) it follows that

loil =(2v'5) 'IK(I,I')
I

= (1/5) I
(2~B.(a)/")"'«-~l asIR-~) I (16)

Using Eq. (14), with R= 1.2X10 "A'is cm, we find

gs=8.827X10 ' MeV/b for Tl"'

gs ——8.862X10 ' MeV/b for Tl"'

Recent measurements, " by Coulomb excitation of the
nucleus, yield

B (Es) = e'(0.100&0.010)X 10—4s cm4 for T1206

and

B,(Es)=e'(0.124%0.014)X10 ' cm for Tl'"
'~ F. K. McGowan and P. H. Stelson, Phys. Rev. 109, 901

(1958), and private communication.
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FIG. 2. Spectrum 2I' —+ 15 for natural thallium. Case I:
U=S'(3D ~ 2E). The circles are for transitions in Tl20& and the
squares are for those in Tl203; the subscripts are F values. A circle
and a square superimposed means the sum of the lines in both
isotopes is being plotted. If we had assumed no mixing, we would
have the lines indicated as (1)where J is the angular momentum of
the initial 2P level. From Fig. 1 it can be seen that: E(~2) =81
and E($) =c. Lines I and II are the composite lines (averages of
the true spectral lines).

The numbers are from Table I and there is an uncertainty of
~0.011 MeV in the absolute scale.

The total number of muons is 80(I+V).

Thus, Eq. (16) yields

Ioil = (14.0+1.4) keV for TP'"

I oil = (15.6+0.9) keU for TP".

Natural thallium is made up of 29.5 /~ TP" and 70.5%
TP", therefore,

W(2I' —+ 15)= L2.95Ai(203)+7.05Ai(205)$
X I

2.95Ari(203)+'7. 05Ait(205)]—' (12")

for natural thallium, where A, (T) is deined in Eq. (12),
with T referring to the atomic weight of the isotope
being considered. In the treatment of Tl2O3 we have
6=90 keV and, since

l oil is approximately 16 keV, the
parameter yis(203) is approximately 1.13 and is not
sensitive to small changes of

I Oi
I
. Since our sample was

only 29.5%%u~ TP", the sensitivity of our results to slight
variations in yis(203) is negligible. For TP" we must be
more precise, since

I
Oi

I
=A. In order to achieve agree-
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TAnLE I. Spectrum of 2P 1—S transitions for natural thallium W(2P ~ 1S)=0.97&0.09.

iii7

Iso-
Line Initial tope

2 1 205
2 2 205
3 1 205
3 2 205
4 1 205
4 2 205
5 1 205
5 2 205
i Total
2 1 203
2 2 203
3 1 203
3 2 203
4 1 203
4 2 203
5 1 203
5 2 203
I Composite

II Composite

Relative No. of events' "
. (Formula) (A}

[3aP(aP+bt)+et ][7.05]
[Sap(ap+ss)+et ][7.05]
[3(1—aP) (1—aP —St)+et+][7.05]
[5(1—aP) (1—as' —hs)+os+][7.05]
[3(1—aP) (aP+St) —ei ][7.05]
[5(1—aP) (aP+S,}—e, ][7.05]
[3aP(1—aP —St) —ei+][7 05]
[SaP (1—aP —be) —et+][7.05]
[4U/-;] [10]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
[same as corresponding line for 205][2.95]
+is, isotopes (A 1+[A 4]is+ [A t]r )
Zp, ;„t.pe, ([Asjp+[As]r)

Energy' '
(Formula) (E)

c+-', tZ(1 —y)
c+sh(1 —ys)

~+4~(i+XI)
c+-'tZ(1+y )
C+-,'~(1—yr) —~.
&+2~(1—S2) —&*
c+ ,'a(1+y, )-E. —
c+-', tZ (1+ys) —E,
c—6

weighted average'
weighted average'

8,21
26.58
3.42
0.75
4,87
3.86
4.66
4.07

42.12
8.34

14.72
0.01
0.00
0.25
0.02
0.25
0.02

60.1~3.2
62.0+3.2

5.899
5.930
5.984
5.954
5.694
5.725
5.779
5.749
5.745
5.930
5.933
6.026

~ ~ ~

5.651
5.654
5.747
5 744
5.742
5.930

12.93
33.71
1.18
0.02
3.53
0.73
3.51
0.80

60.00
8.34

14,72
0.01
0.00
0.25
0.02
0.25
0.02

69.1&3.
70.9+3.

5.925
5.931
5.956
5.949
5,720
5.726
5.751
5.744
5.744
5.929
5.932
6.025

~ ~ ~

5.650
5.653
5.746
5.743

7 5.743
7 5.930

Case Id: Case IP.
U= W(3D -e 2P) =0.5265 U=0.75

A E(MeV)e A E(MeV)e

' All symbols in columns four and five refer to Tl»5. The e's and 8's are corrections due to the frequency dependence of the transition rates. Here b, is
the energy difference of the levels being mixed. The yz are the energy shifts of the corresponding F levels from the center of gravity of two mixed levels,
in units of (4/2). (Note that as 6 approaches zero, ys approaches (2 (OP (/6); therefore, the energy shifts approach (+ (Oz (), where Os is the off-diagonal
matrix element of the Hamiltonian connecting the two states. g For Tl»g we have used (01( =16 keV and 6 =90 keV, which gives y12 =1.13. We calculated
the A and E, and found that the effect was small. The experimental sensitivity to this isotope is reduced since only 29.5% of the sample was Tl»3. No
matter what value of (01( we use for Tl»g (within the allowed range) our results are not significantly changed and those recorded in Table II are com-
pletely unchanged. Note that ap is the mixing coefficient, (1 —a~2) representing the amount of mixing occurring.

b We have not renormalized to 120 muons; we are discussing 80(1+U) muons.' See Fig. 1 for the definitions of c, E&, b, and h. We have used the relation Energy shift =—&coP = &qyzhs. The energies for lines I and II are calculated
as the following weighted average: Er = LZp, isotopes EIA1+(E4)g(A4)z+(ES)z(At)z](Ar j ' and Err = LEE, isotopes(E2)P (A2)s +(E3)s (A3)s jLArrj ', func-
tions of c, b, and h. Their difference is a function of b and d.

d Case I assumes that only radiative transitions occur; Case II assumes that the cause of the anomalous behavior in Bi acts also in Tl. We have defined
U as the relative number of muons making radiative transitions from the (2P1~2,01 to the (1S1)2,0j state. The quantity W (3D -+ 2P) represents the rela-
tive number of muons fed to the 2P1~2 state in the 3D ~ 2P transitions, the nucleus remaining in the ground state. We have for Case I:y12=24+12
fwhich gives y2'=1.92, aP =0.6021, am' =0.8608, 81 =0.0162, 82 =0.0030, e1 =0,047, e2 =0.052, &1+ =0.029, and ~2+ =0.009j for Tl»5. We have for Case II:
ye =3.5 %1.5 Lwhich gives y22 =1.10, a12=0.7673, a22 =0.9767, tzi1=0.011, 82 =0.000, e1 =0.043, ~2 =0.011, n+ =0.013, and e2+ =0.0007 for Tl»5. Here the
bs are computed assuming feeding from an 77, =3 level, and are really upper limits to the true values. The sensitivity of the results to the values used for
BJ is negligible, In both cases, for TP», we have used y12=1.126 (which gives y22=1.005, a12=0.971, a2'=0.999, and ~z =0=&j. The sensitivity of our
results to our choice of the e's and 8's for Tl»g is negligible in natural Tl.

e We set (Err —Er), as a function of b and 6, equal to 62P = (187.6+4.3) keV as observed in the experiment. We then solve for b, using the relations:
6 =E&—b, and E~ =(205 &2) keV (as reported in Ref. 12). This gives b, =(17.3 ~4.8) keV for Case I, and 6 =(17.7%4.9) keV for Case II. We then set
Err equal to the observed value, E(2Pg~2 —1SI)2) = (5.930+0.011) MeV, and solve for c. We find for Case I that c =5.932 MeV and for Case II that c =5.931
MeV, which are used along with 6 to calculate the energies.

ment with experiment PV(2P ~ 15)=0.97+0.09j, we
need yzs(205)=24&12 for Case I. Once yzs(205) is
determined, y2', ~p, up', 8p, e p+, and the relative inten-
sities may be calculated as described previously. The
values of Ez and Ezz may be determined (as functions

of c and b) as described above Eq. (12); we use the
known value" of E,. We then set (Ezz —Ez), which is
only a function of 6, equal to the observed "fine-struc-
ture splitting" (Asp) and solve for b. From Eqs. (4")
and (15), noting that A=K,—b, we fznd the required

TAsi.K II. Comparison of results for natural thallium.

Calculation

Experiment, '
Case I: U=0.5265

Experiment '
Case II: U=0.75

Theory

Fine structure
splitting
& (keV)

187.7a4.2

187.3&4.4

184.3b

Off-diagonal
matrix element'

~0t~(keV)

42 ~17

14.0&5.9

14.0+1.4(10i l«32.2a3.2s

Energy from P to
~
1St(s,0]

c (MeV)

5.933&0.011

5.932+0.011

6.001&0.050b

a The off-diagonal matrix element of the Hamiltonian (01) is for F =1 states; we have shown that the element for F =2, (02) is related to it by the
equation 5(02( = (01(. (See Eq. (15)j.

b The theoretical values for b and c were reported in Ref. 1 and had been calculated by Ford and Wills.
o The spectra for these cases are in Table I.
d The value of (01( is expected to be much closer to the lower limit (quadrupole distribution at radius R) than the extreme upper limit (quadrupole

distribution at radius zero).
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FIG. 3. Spectrum 2I —+ 1S for natural thallium. Case II:
V=0.75. The circles are for transitions in Tl'05 and the squares
are for those in Tl20'; the subscripts are Ii values. A circle and a
square superimposed means the sum of the lines in both isotopes is
being plotted. If we had assumed no mixing, we would have the
lines indicated as (J) where J is the angular momentum of the
initial 2P leveL From Fig. 1 it can be seen that: E(si) =Eq and
E(-',) =c. Lines I and II are the composite lines (averages of the
true spectral lines).

The numbers are from Table I and there is an uncertainty of
~0.011 MeV in the absolute scale.

The total number of muons is 80(1+0).

value for the off-diagonal matrix elements of the
Hamiltonian (lOpl). We determine c by demanding
that Eii be equal to the observed E(2Ps~s —1St~&). If we
assume that the unknown effect, which causes Bi"' to
have W(2P ~ 1S)=0.75, is acting in thallium and U
is 0.75, we find that Lyis(205) =3.5+1.5] gives agree-
ment with experiment (Case II). The justification for
this assumption is the fact that Tl is one proton below
and Bi is one proton above a magic number closed shell
(82). In Pb this effect must be absent in order to agree
with experiment LW(2P —+ 1S)=0.49&0.07], which we
suppose is due to the fact that the nucleus has a magic
number closed shell (82 protons). See Table I and Figs. 2
and 3 for the spectra. See Table II for a comparison of
the predicted values of

l
Op l, b, and c with the values

expected from theory.

VI. RESULTS FOR THALLIUM

Figures 2 and 3 and Tables I and II show the results
of this investigation. The predicted values of b agree

with that value calculated by Ford and Wills' (within
experimental error), and the predicted and calculated
values of c agree within 1.2 standard deviations. Cases I
and II make radically different predictionsfor

l Oil, how-
ever. Case I predicts an

l Oi
l

which misses agreement
with theory by less than 2 standard deviations, whereas
the

l
Oi

l
predicted for Case II shows excellent agreement

with theory. [The closeness of agreement depends upon
the accuracy of the value of 0; in order to know 6within
10% we must know b to better than 1%.In lieu of this
knowledge we have used the experimentally determined
b, which is in agreement (within experimental error)
with the theoretically calculated value. ]

For Case I we have assumed that U equals
W(3D ~ 2P). If there were random feeding of the 2P
level we might expect the sum rule prediction, that U
equals —'„ to be the case. This would give the experi-
mentally required va, lue of

l Oil as 44&18, also about
2 standard deviations from the theoretical expectation.
If we assume lOtl =14.0&1.4 keV, then the experi-
mentally determined value of b implies: W(2P ~ 1S)
=0.72+0.05 for Case I and W(2P —+ 1S)=0.97&0.05
for Case II. These are to be compared with the observed
value: W(2P ~ 1S)=0.97&0.09. Case I misses agree-
ment by 2 standard deviations, whereas Case II shows
agreement, as above.

The fact that Case I misses agreement with theory by
2 standard deviations is not convincing evidence that
there must be another effect involved, nor is the agree-
rnent of Case II with theory. We might be led to ques-
tion our means of averaging the spectrum into two
composite lines. (The lines of appreciable intensity are
shifted from the composite lines by less than 3 the 6ne-
structure splitting. Therefore, if we had put in line
shapes and then let the computer average the resulting
spectrum into two lines, the resulting composite lines
would not be too different from those obtained above. )
However, the resonance phenomenon is negligible in
Bi"' but' W(2P~ 1S)=0.75+0.05

l equals U, viz. ,
discussion after Eq. (12)j, and the assumption of the
existence of a similar, unknown effect in thallium (Case
II) gives us agreement with experiment. These two
circumstances, together, may be taken as an indication
that something besides radiative transitions is taking
place in these nuclei Lone proton (Bi) or one hole (Tl)
above the closed proton shell (82)j. For Pb, a magic
number nucleus, the unknown effect must be negligible.
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APPENDIX: NONRESONANT EFFECTS

The e6ect of nonresonant hyperfine mixing or a
possible nuclear Auger eGect" on the relative number of
radiative transitions from a set of levels ((eLq,N)) to
the levels ((ts'L'q, N')) is to be investigated.

The true eigenstates of our Hamiltonian may be
written

((nLg~, N)) = (1—P~, ~
I S» (crn')

I

')'I'I NLgM, Ng

+&&'. ' S»'(~ ~ ) I~ » ), (A1)

where n represents the quantum numbers e, L, J, and M
of the muon, M' means J„and the prime refers to the
quantum numbers of the functions mixed in by the
hyperfine interaction. The S» (rr,n') are completely
determined by the interaction. There are a finite
number of nuclear states for which the level ((1St~s,N))
lies below the ((2Pq, 0)) levels. Likewise, there are only
a finite number of levels which can bleed the ((2Pq, 0))
levels. The effects of such states (sum effect) have been
shown to be negligible.

We had been working previously in a representation
in which the wave functions were eigenfunctions of P.
The lifting of the Ii degeneracy by this interaction is
negligible; thus, when we finally sum over all the states
of a given e, 1., and X, the result will not depend upon
which representation is used since they are related by a
unitary transformation. We may use, therefore, product
wave functions

ItILg~, N]= ItsLg~)IN). (A2)

We further assume that the energy differences involved
are independent of J, which is approximately true.

"Suggested by J. Rosen (private communication).

where IHI is independent of J, M and J', M'. The P
and 7 depend upon the operators and intermediate
states involved, and S is ~~. Employing the orthogonality
properties of the 3-j and 6-j symbols' we And

P~ srsr I
T M E I'= (2J+1)G (A4)

with G independent of J."
Thus, the nonresonant hyper6ne mixing cannot affect

the relative number of radiative transitions, as long as
the interaction is small enough so that J is still a
relatively good quantum number. The 3D —+ 2I' tran-
sitions show that the levels are grouped in the way
expected if J were a good number.

Since the relative number of possible Auger transi-
tions is proportional to (2J+1), the relative number of
muons remaining is unchanged from the value expected
in the absence of such an effect. . The relative number of
radiative transitions is thus unaffected.

'4 The existence of such a theorem was recognized many years
ago. See J. H. Van Vleck, Electric and ilfugnetic Susceptibilities
(Oxford University Press, London, 1932), p. 195.

The S» (rr,n'), as well as the operators for radiative
or nuclear Auger transitions, may be written as sums of
products of spin-independent operators in the muon
coordinates with operators in the nuclear coordinates.
The transition matrix element (T.M.E.) from ((eLg»))
to ((ts' L'~, N')), via radiative or nuclear Auger transi-
tions, may be shown to have the same J dependence:

T.M.E.=L(2J'+1)(2J+1)]'"
J J' J J'

III, (A3)
L' I, S k —M M'


