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electron-phonon collisions is smaller than 1.4&(10 4 cm.
As would be expected, the zero-temperature energy gap
of the bulk material is not aQected by an external
magnetic Geld which is much smaller than the critical
Geld.
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'hsing a self-consistent p=rturbation theory developed in the 6rst two papers of this series we have calcu-
lated the deformation potentials for a general strain for points of high symmetry (P, X, and L) in the
conduction and valence bands of Si. We compare our calculated results with experimental values for (1)
hydrostatic-pressure dependence of various energy gaps, (2) uniaxial-strain dependence of the splitting of
the fourfold degenerate level at the top of the valence band, and (3) uniaxial strain depenclence ol the
splitting of the degeneracy between equivalent valleys at the bottom of the conduction band. The agreement
between theory and experiment ranges from fair to good.

I. INTRODUCTION

'HE change in energy caused by an arbitrary strain
is calculated here for states of high symmetry near

the top of the valence band and the bottom of the con-
duction band in Si. The experimental studies of these
effects can be grouped into three classes. (1) The four-
fold degenerate P» (j=—,') level at the top of the valence
band is split into two twofold levels by a general uni-
axial strain. Hensel and Feher' have measured the
cyclotron-resonance-effective masses of holes at the top
of the valence band in Si as a function of strain and,
thus, were able to calculate the strain-induced splitting
of these levels. In the first paper of this series' (hereafter
called I) the theory of the strain splitting of the top of
the valence band is presented, and three other experi-
ments performed on the holes to measure this splitting
are briefly discussed. (2) Donor impurity electron wave
functions in Si consist of linear combinations of con-
duction electron wave functions in the six valleys along
the equivalent L100j directions in k space. Because of
central cell corrections to the eRective mass formalism'
(chemical shif ts), that combination of conduction-
electron wave functions which adds in phase at the
impurity site lies lowest in energy. When a uniaxial
strain is applied along one of the valley directions, the
intervalley degeneracy is destroyed and the lower lying

* Supported by the Advanced Research Projects Agency.
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during the time of this research.
' J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).' I.. Kleinman, Phys. Rev. 128, 2614 (1962).

W. Kohn, in SoHd State I'hysics, edited by F. Seitz and D.
'I'urnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 258.

valleys contribute a greater proportion to the impurity
wave function. Thus, by measuring the amplitude of the
wave function at the. impurity site as a function of
strain, Wilson and Feher4 (by means of the hyperfine
splitting of electron-spin-resonance lines in strained Si)
measured the intervalley splitting. Similarly, a measure-
ment of the strain dependence of the ionization energy
of the donor electrons' leads to the intervalley strain
splitting. (3) Paul and co-workers' ' have measured the
shifts in the optical absorption peaks and, hence, in
their associated energy gaps as a function of hydrostatic
pressure. Unfortunately, most of the data is for Ge but
the pressure dependence of any particular gap seems to
be fairly constant among all the diamond and zinc-
blende semiconductors. ' Paul et a/. have measured the
pressure dependence of the indirect (Pss —6,) gap in Si
both by conductivity measurements and by direct ob-
servation of the shift of the indirect-transition edge.
Philipp, Dash, and Ehrenreich" have attempted to map
the motion of the band structure of Si under a bending
type of strain which had both a hydrostatic and a uni-
axial (either L100j or $111))component. In view of the
complexity of the behavior of the band structure under
such a strain (see Sec. II) and the breadth of the re-

4 D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).' H. Fritzsche, Phys. Rev. 115, 336 (1959).
e W. Paul, J. Phys. Chem. Solids 8, 196 (1959).
7 W. Paul and D. M. Warschauer, J. Phys. Chem. Solids 5, 89

and 102 (1958).
8M. Cardona and W. Paul. J. Phys. Chem. Solids 1?, 138

(1960).' W. Paul. J. Appl. Phys. 32, 2082 (1961).' H. R. Philipp, W. Dash, and F. Fhrenrejch, Phys. Rqv. 127,
762, (1962),
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Rection peaks, it is not too surprising that they were
unsuccessful.

The absolute shift of the bottom of the conduction
band or top of the valence band under hydrostatic pres-
sure cannot be measured directly. These are of interest
because each represents one of the components of the
electron-phonon or hole-phonon coupling tensor. Herring
et cl." have used this fact to obtain an experimental
value for the conduction band shift. Unfortunately, the
relaxation times required for Herring's theory vary
markedly depending on whether they are obtained from
transport ineasurernents or cyclotron resonance. " (See
the second paper in this series, "hereafter called II.)

In the next section we give a brief introduction to the
techniques of the calculation (which are discussed
thoroughly in I and II) and give a rather complete de-
scription of the response of the I', X, and L energy
levels to a general strain. In the last section we compare
the results of this calculation with all the available ex-
perimental data.

II. CALCULATIONS

We write the Hamiltonian for the electrons in the un-
strained crystal as a sum of three terms.

xKE+xPE+xR )

where the 3C~ is a nonlocal potential corresponding
strictly to the orthogonalization terms in an orthogonal-
ized plane wave" calculation. In I we showed that the
perturbation Hamiltonian due to a dilationless uniaxial
strain is a sum of 6ve terms.

X'=Xrrs'+Xg&. '+X&r'+iXp~ '+tXr& '. (2)

The first three terms would be all of the perturbation if
the structure factor remained unchanged under the
strain. Under a uniaxial strain along one of the L100)
directions the structure factor remains unchanged and
the "bond bending" terms are zero. But if the uniaxial
strain is applied in a L111jor t 110jdirection, inner dis-
placements may occur and the relative position of the
two atoms in the unit cell is not uniquely determined.
The case where the atoms move to keep all nearest-
neighbor bond lengths unchanged corresponds to f= 1.
/=0 corresponds to intracellular distances transform-
ing according to the macroscopic strain tensor and the
structure factor remaining unchanged. In I, we claimed
that f= 1 was required to obtain the experimental' ratio
of L1007 and L111j I'so deformation potential con-
stants. The present computer calculation has unearthed
several errors in the original hand calculation and the
value required to fit the experimental ratio is /=0 81.

C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); and C.
Herring, T. H. Geballe, and J. E. Kunzler, Bell System Tech. J.
38, 657 (1959).

~ D. M. S. Bagguley, D. W. Flaxen, and R. A. Stradling, Phys.
Letters 1, 111 (1962).

'3 L. Kleinman, Phys. Rev. 1N, 2283 (1963}.
'4 C. Herring, Phys. Rev. 57, 1169 (1940).

Following a suggestion in I, Segmuller's has measured f
for Ge using x-ray diffraction; he finds f=0.7. A first-
principles calculation of f is underway" but since, like
the elastic constants, it is second order in the strain, the
accuracy of the calculation should not be expected to be
as good as the accuracy of the present deformation
potential calculation. In order to show the sensitivity
of the various levels to inner displacements, we give the
deformation potentials for both /=0. 7 and |=0.81.

In II, we wrote the Hamiltonian for a unit. hydrostatic
strain perturbation

X'=Xrcz'+X»&. '+X&~'+ 8vooo, (3)
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FIG. 1. The Si hand structure taken from J. C.
Phillips, Phys. Rev. 125, 1931 (1962).

"A. Segmuller, Phys. Letters 4, 227 {1963}."I.Goroff and L. Kleinman (to be published).
'7 J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962).

where Uooo consists of core-valence exchange, valence-
valence exchange, and valence-valence correlation terms
as well as a large many-electron, many-ion Coulomb
term. All these terms except for the valence-valence ex-
change are either independent of energy level or are
very small so that they are of no interest when discussing
relative shifts between energy levels. In II, the valence-
valence exchange term was calculated for F25, the top
of the valence band, by assuming it to be the same as the
exchange energy of a free electron at the top of the Fermi
sea. Phillips and Kleinman" have calculated matrix ele-
ments of the screened Hartree-Pock exchange operator
from which the screened energy of the states I'», I'»,
and Xi&'& may be estimated (in their approximation
only the screened part of the exchange energy varied
from state to state). One finds the screened exchange
energy of Xi"& and I'i; to be 20 and 32%%uq less than
that of I'os' (E„„„„,z,„'»'= —0.326 Ry). However,
E,„»'=—T.221r, '= —0.61 Ry, so that the total ex-
change energy of Xi"& and I'» is only about 11 and 17 j~
less than that of F25 . This drop in exchange energy for
states just above the energy gap corresponds to the
infinity in dE'"/de at k=Epin. a free-electron 'gas. Be-
cause the percentages just quoted are only approxi-
mate, we take the valence-valence exchange contribu-
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TA&&LE I.Listed is the calculated change in energy (in eV/g) of each level under the indicated strains. The levels, whose deformation
potential constants are preceded by a %, are split under the indicated strain. The I.3 and 1.3 levels are split by spin-orbit coupling in
addition to the strain splitting. The linear relation given above for the L& and Ls splitting hold only when Astrain))A„. [See Eq. (5).]
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Fro. 2. The splitting of a twofold degenerate L level (e.g. ,
L3 or L3) under a [111]strain or a ys shear. a and 5 are two
independent deformation potential constants.

tion to &lV&&pp for all states just above the gap to be 15%%u~

less than that for all states just below the gap. Thus,
from Table II of II: 8Vppp ——0.929 Ry per unit dila-
tion; 6Vppp '=0.897 Ry per unit dilation. With these
and the BC"s for a general strain we may as in I and II
calculate the effect of any strain on the eigenvalues of
the unstrained crystal Hamiltonian.

The various states at I', X, and L in the Brillouin zone
have from one (e.g. , I's ) to as many as four (e.g. , Ls )
independent deformation potential constants. We shall
6rst consider the states at L. We have calculated the

deformation potentials for the state L~ in the valence
band and for the states L~ and L3 in the conduction
band. (See Fig. 1.) The state L& is nondegenerate within
a given [111]valley. There are, however, four equiv-
alent [111]valleys. Lr has two independent deforma-
tion potential constants, one corresponding to a hy-
drostatic strain, and one corresponding to a [111)uni-
axial strain. The effect of a dilationless [111)strain on
the L& valleys is to move the [111]valley a certain
amount and to move the [111],[111],and [111)each
one third that amount in the opposite direction, the
center of gravity of the four equivalent states remaining
unchanged. The states L3 and L3 would be twofold de-
generate, were it not for spin-orbit splitting. If one neg-
lects spin-orbit splitting, each of these (Ls and Ls)
has four independent deformation-potential constants.
In addition to the two which Lj boasts, there are two
independent strains which split the degeneracy, a uni-
axial [100] strain and a ys shear strain. These strains
destroy the threefold rotation axes which caused the de-
generacies. A [111)strain does not destroy the three-
fold rotation axis in the [111]direction, but does destroy
those axes along the [111],[111), and [111)direc-
tions, thereby splitting the L3 and L3. degeneracies in
those valleys. However, this splitting is not independent
of that caused by a ys shear since a dilationless [111]
strain tensor may be written

011 0 1 1 000
&g[111)~) 101 ~) 1 0—1 +$ 001

110 1-1 0 010
= —hI111)+x&b ) (4)
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Thus, since 6[111)causes no splitting within a [111]
valley, we see that h[111)splits L,s and Ls. in the [111)
valley s as much as a (yz) shear. A yz shear strain. shifts
both the [111]and [111]valleys as much as a [111]
strain. shifts a [111)valley, while under a yz shear
strain, the [111)and [111)valleys move equally in the
opposite direction. Furthermore, the intervalley de-
generacies are split identically in the four valleys (see
Fig. 2). The effect of a [111)strain is also shown in Fig.
2. On the other hand, a [100)strain cannot distinguish
between L valleys and only splits the intravalley de-
generacies. The total strain plus spin-orbit splitting is
given by"

~= (~so +~strain )

where 6„ is the spin-orbit splitting in the absence
of strain and vice versa. Thus when
A=A„+6„„„„'/2h„and the strain splitting becomes
a second-order e6ect. Similarly, the spin-orbit splitting
becomes a second-order effect when A,t„,„&)A„. The
shear strain intravalley deformation potential is rather
large for Ls (see Table I) and d, t„„„=0.05 eV should be
attainable with large strains. According to Phillips and
Liu", in Ge A„~3'=0.18 eV, while because of interfer-
ence efrects 6„3=0.01 eV. Presumably the correspond-
ing splittings in Si are an order of magnitude smaller,
Thus both limits Aso»~strain and ~strain&&~so are of prac-
tical interest.

All X levels in a diamond-structure crystal are forced
to be twofoM degenerate by the existence of the glide
symmetry operations. Specifically, an x direction X
level is split if both the xy and xs glide planes are de-
stroyed. These may be destroyed by a ys shear. While a
yz shear splits the [100) X level, it does not split the
[010) or [001) levels and does not shift the X valleys
with respect to one another. A [111)strain, being a sum
of 3 of each of the three shears, splits all levels 3 as
much as a yz shear splits a [100) level. A [1007 strain
moves the [100) valley up and moves both the [010)
and [0017 valleys down by half as much without split-
ting the intravalley degeneracies.

The I'2 level, having the full cubic symrrietry and
being only spin degenerate is affected only by the hydro-
static component of an applied strain. Similarly (since
for all but the largest strains in Si, D,.))D,t„;„), the
j=2 spin-orbit split 1» and F» levels are described by
a single hydrostatic deformation potential. The j= —,I'»
and F15 levels are fourfold degenerate. These may be
split into ~its,

~

=-,' and ~m;~ =-,' twofold degenerate
levels by either a [100) or [111)strain. Each of these

"Consider the $111j valley and a shear strain (ys) or a uni-
axial strain (xg). The degenerate transverse p eigenfunctions with-
out the spin-orbit or strain perturbations may be chosen to have
(x—y) and (x+y —2s) symmetry. These are obviously diagonal
under perturbations of (ys) or (ax) symmetry while they are off
diagonal under the spin-orbit perturbation. Equation (5) follows
directly from diagonalizing the perturbation matrix."J. C. Phillips and L. Liu, Phys. Rev. Letters 8, 94 (1962);and
L. Liu, Phys. Rev. 126, 1317 (1962).

strains gives an independent deformation potential
constant. A more thorough discussion of the I'25 de-
formation potentials is given in I.

TABLE II. Comparison of experimental values of D and D„'
(in eV) in' Si andb Ge with two calculated values for Si. The choice
of &=0.81 for one of these is to mak. e the calculated D„'D„agree
with the experimental Si value; |=0.7 is the value in Ge obtained
from x-ray scattering. '

Si exp.

2.04
2.68
1.31

Ge exp.

3.15
6.06
1.92

g=0.7

3.74
4.19
1.12

g=0.81

3.74
4.92
1.31

a Ref. 1.
b J. J. Ha11, Phys. Rev. 12S, 68 (1962).
o Ref. 15.

"L.Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
~' The reader is referred to I and II to obtain an idea of the order

of magnitude of the various contributions to the deformation
potentials.

III. RESULTS AND CONCLUSIONS

The calculations were performed using the complete
wave functions of Kleinman and Phillips" which are ex-
panded in plane waves. In the hand calculations of I
and II, many terms involving smal1 coefEcients of the
plane waves were neglected. Thus, the present F25 hy-
drostatic deformation potential is about 10%%u~ larger
than the hand calculation. On the other hand, the two
uniaxial F25 deformation potentials converged in the
previous calculation to within a fraction of a percent.
There is much cancellation between positive and nega-
tive terms; this takes place among K~~', Kp~', and
K~' and causes the rapid convergence in the uniaxial
strain case. In the hydrostatic strain case, most of the
cancellation occurs between 5Vppp on the one hand and
3('.ira'+3(!~a'+K~' on. the other; the poorer convergence
is due to the smallness of the cancellation among K~~',
K~~', and K~'. In Table I we list the deformation po-
tentials in units of eV per unit strain for all the levels
discussed in the previous section under hydrostatic,
[100], [111],and [011] strains. The results for the
latter two strains are listed for the experimental value"
of the bond bending parameter ()=0 7) as w.ell as for
the value that gives the experimental ratio of the two
r». uniaxial strain deformation potential constants
(/=0. 81). Because of the calculational errors in I, we
list in Table II D„and D„where

~
ssD„~ is the splitting

of I'ss per unit [1007 uniaxial strain, and
~
'sD„~ plays-

the same role for [1117strain. The comparison with the
experimental values' is worsened, but considering the
large cancellation among the various terms in the
Hamiltonian" and the uncertainties in the unperturbed
wave functions, the agreement should be considered
satisfactory. We also list the experimental values for
Ge since this is the only case of a degeneracy splitting
which has been measured in both materials.
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TABLE III . Calculated and experimental values of „ in the
notation of Herring and Vogt. ~ This is +~ the deformation potential
listed in Table I for the shift of (100) valley under a $100j strain
and is equal to that listed in Table l for the shift of a $111]valley
under a L111$ strain. The experimental value in Si is determined
for the valley pvhich is near but not exactly at the symmetry
point X.

Lj

Experimental

11b 8.3s (Si)
19 (Ge)'

Theoretical

9.57 (Si)
11.4 (Si)

a Ref. 11.
b Ref. 4.
e Ref. 5.
d J. E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig, Phys. Rev.

130, 1667 (1963).

TmLE IV. Comparison of experimental and calculated gap
dependencies in units of eV per 10'-atm hydrostatic pressure.

LI-I'25
I'2 -F2g
61—F2g
LI-L3.

Experimental

5.0 Ge'
12.0 Ge'
j 5 $js,b
7.5 Ge~

Calculated (Si)

4.27'

8.93—0.30'
4.62

a Ref. 6.
b Ref 7
& The calculated gap is X1-I'25 .
d R. .Zallen, W. Paul, and J. Tauc, Bull. Am. Phys. Soc. 7, 185 (1962).

In Table III we compare experimental and theoretical
values of "„(notation of Herring and Vogt") which de-
scribes the shift between a conduction band valley and
its equivalent valleys when a uniaxial strain is applied
along its major axis. In Si the valleys lie along $100j
near but not at the symmetry point X so that the good
agreement between theory and experiment may be
somewhat fortuitous. Judging from the experimental
diQ'erences between Ge and Si for the splitting of F25,
(Table II), we should expect only order of magnitude
agreement between the theoretical value of „ for L,1
in Si and its experimental value in Ge. The agreement is
therefore quite satisfactory.

In Table IV we compare calculated and experimental
values of various gap dependencies in units of eV per
10' atm. Unfortunately, most of the data is for Ge, how-

ever, the gap dependencies as a function of pressure are
known to be similar for all the diamond and zincblende
crystals. ' The percentage error between the experi-
mental 61—F25 and the theoretical X1—F25 gap de-
pendencies is quite large but this is because of the ex-
tremely small value of the gap dependence. Since the
gap dependence is small because of extremely good
cancellation between much larger absolute shifts of X1
and F25 and not because the individual shifts are small,
this large percentage error is to be expected. The over-
all agreement is seen to be quite good.

1Vofe added its Proof. R. Zallen and W. Paul (private
communication), measuring the reflectivity of Si under
hydrostatic pressure, have obtained the following gaps:

Er= 3.38+5.2P,
E,=4.4+2.9P,

where E is in eV and I' in 10' atm. The latter gap, which
they identify with an X4—X& transition, has a pressure
coeS.cient in good agreement with our value of 2.4. The
first gap, which they identify with a F» —F» transition,
has a pressure coefficient in sharp disagreement with our
value of 1.4. We feel that this throws considerable doubt
on the identification of this level. One is tempted to
identify the 3.38-eV reflection peak with the L1—1-3
transition for which we have a calculated pressure co-
eKcient of 4.5 eV/10' atm.

The largest errors in our calculated deformation
potentials are due to errors in the undeformed crystal
wave functions and to the approximations made in cal-
culating the strain dependence of the self-consistent
valence electron potential (see I and II). Crystal po-
tentials can be obtained which yield energy bands in
excellent agreement with experiment; presumably the
wave functions will be just as good. These should be
available in the irrunediate future. "A better calculation
of the strain dependence of the self-consistent potential
would require essentially a complete self-consistent band
calculation for the strained crystal. We think that with
these improvements, it should be possible to calculate
deformation potentials accurate to within 10'%%uo.

ss F. Quelle (private communication) and F. Herman (privs, te
communication).


