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Quantum Theory of the Residual Electrical Resistivity of Disordered Alloys*
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Nordheim's theory for purely random alloys and Hall's extension for nonrandom alloys in terms of
Cowley parameters are further developed and applied to substitutional binary systems. The theory is valid
for any degree of order, excepting perfect superlattices. Purely random alloys and nonrandom alloys are
shown to possess certain analogies with nornsal and Nmktapp processes, respectively. By accounting for those
Fermi volume changes with concentration arising when the two atoms are different in size and valence, it is
possible to explain the experimental non-parabolic curves of resistivity versus concentration. Applications
are made to the cases of the Cu-Au and the Cu-Ni systems rapidly quenched from a high temperature.
Results of a limited study of the data for the slowly annealed Cu-Au system are presented, but more experi-
mental measurements of the Cowley parameters are required to test the theory. A few new relations obeyed
by the Cowley parameters are given. The work reported here meets certain independent checks carried out
by Christy in unpublished calculations on ordering energy.

1. INTRODUCTION to explain the discrepancy. Nordheim's theoretical
model is one in which each atom is represented by a
potential which vanishes at the cell boundary; the
total potential representing the disorder is treated as a
perturbation. The associated matrix elements, which
have many contributing terms, are then calculated
approximately by discarding many terms without
rigorous justification. Moreover, considerations (1) and
(2) above are completely ignored.

In 1959, Hall' considered a more general model in
which each atom is permitted to possess a potential
"tail" extending over many cells and he introduced the
Cowley order parameters into the formalism in a manner
similar to that used in Flinn's treatment' of ordering
energy. Hall reported that the contributions to the
matrix elements discarded by Nordheim turn out to be
identically zero for a purely random alloy but constitute
the order dependent contributions in the nonrandom
case. Hall also found a parabolic resistivity curve for the
purely random case, because he, like Nordheim, failed
to consider items (1) and (2) above. Furthermore, both
Nordheim and Hall failed to notice that in the non-
random case the k, k' matrix element depends, in
general, upon the direction of k with respect to the
crystal as well as upon the angle between k and k'. The
erst of these dependences gives rise to a problem similar
to that encountered in umklaPP Processes. r This point
will be discussed in detail in Sec. 2.

Criticisms similar to those outlined above can be
directed toward the work of Dyhne, Matysina, and
Smirnov', who developed a formalism without testing
it in detail with an application.

The three main tasks undertaken in this paper are:
(A) to develop a method for handling the features,
similar to those in umklapp processes, which are en-
countered in the nonrandom case; (8) to demonstrate
in the applications the necessity, and success, of ac-

ERY little work has been reported on the quantum
theory of the residual resistivity of nondilute dis-

ordered alloys. Here the theory of Nordheim' for purely
random alloys and Hall' s' extension for nonrandom
alloys are further developed and applied to substitu-
tional binary alloys. In order to explain the nonparabolic
curves of resistivity versus concentration for nearly
random (rapidly quenched) alloys, it is essential that
changes in the volume enclosed by the Fermi surface be
taken into account. Fermi volume changes with concen-
tration considered in this paper are of two types: (1)that
resulting indirectly from the change in the lattice
parameter as the stoichiometric proportion of two ions
of appreciably different size is varied, and (2) that
arising directly from the change, with concentration, in
the effective number of conduction electrons when the
two ions possess diGerent valences. Most of the applica-
tions reported here are for the nearly random case, which
turns out to be somewhat analogous to norma/ processes
in thermal resistivity. The theory of nonrandom (slowly
annealed) alloys, which is shown to be analogous to
Nmklapp processes, is applied to the Cu-Au system. The
latter application is somewhat limited at the present by
lack of knowledge of the Cowley order parameters'; to
proceed further in testing the theory more experimental
measurements of the Cowley parameters and knowledge
of the geometrical interrelationships between the various
Cowley parameters are required.

In 1931, Nordheim' used perturbation methods to
develop a theory for purely random substitutional alloys
which predicts a parabolic dependence of the resistivity
on the concentration of one component of a binary alloy.
This prediction does not agree with experiment, and
various qualitative explanations4 ' have been suggested

~ Work supported by the National Science Foundation.' L. Nordheim, Ann. Physik 9, 607 (1931).
s G. L. Hall, Phys. Rev. 116, 604 (1959).' I. M. Cowley, Phys. Rev. 77, 669 (1950).
4H. Jones, in IIandblch der Physik, edited by S. Flagge

(Springer-Verlag, Berlin, 1956), Vol. 19, p. 269.
~ N. V. Grum-Grzhimailo, Fiz. Metal. i Metalloved. 5, 23 (1957).
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counting for the changes of the Fermi volume arising
from changes in the lattice parameter and the changes
in the effective number of conduction electrons; and
(C) to point out what experimental information is
needed, and to indicate where further knowledge of the
interrelations between the various Cowley parameters
would be helpful.

Section 2 on theory treats the potentials to be used,
introduces the Cowley parameters, and presents a calcu-
lation of the relaxation time; Sec. 3 applies this theory
to the nearly random case; Sec. 4 reports limited appli-
cations to the nonrandom case, particularly for the
Cu-Au system; finally, Sec. 5 summarizes the results and
discusses the need for further experimental and theo-
retical work.

2. THEORY

1. Theoretical Model and Cowley Parameters

Consider a binary disordered lattice of A and 8 atoms
placed on a Bravais ~ lattice. I-et the rigid potential
associated with an A atom be U~(r) and that associated
with a 8 atom be Us(r), where both potentials do not
necessarily vanish outside the unit cell. The total
potential U(r) is given by

U(r) = P Ug(r —~)+ g U~(r ~) . —
A atoms B atoms

n= +11' 1&11Np+2&2+'+31' 3&8

e;=0, +i, +2, - -.
It then follows that

C,+ =C„
and U~ leads to Bloch functions

Pq(r) =uq(r) expik. r,
expik n=1, u~(r+~) =uk(r),

(2.5)

where ~ is any Bravais lattice vector. It is imagined
that these exact Bloch functions are known, In the
second step of the construction, the model is completed
with the addition of the potential U2, which is assumed
to cause only a small perturbation on the Bloch func-
tions. This potential is the source of the residual resis-
tivity. By insisting that C,+ equals C„ it is insured
that periodic boundary conditions are also applied to
the perturbed crystal.

It is then possible to show (see Appendix A) for
potentials extending outside the unit cell and for general
Bloch functions that the matrix element of U2 defined by

ill(k, k') =— f~.*(r)Up(r)f~(r)d'r, (2.6)
EQ Ng

vanishes if k equals k' (first-order perturbation results)
and is otherwise given by

This total potential can be decomposed into a more
workable form by introducing a function C, defined at
the lattice points as follows:

N

M(k, k') = Q C,
iV0

(r)6 U (r ~')fi,(r)d'r .—

C,=m~, if an A atom is at ~

= —mA, if a Batomis at ~,

where ns; is the concentration of the ith component.
Further, let an average potential be defined by

Ui(r)—=P fm~U~(r ~)+m~U~(r ~)j, —(2.2)
T

which is periodic and produces no resistivity; let a
"difference potential" be defined by

In the same manner it is also shown that

~
M(k, k')

~

'= P n,J(k,k', ~),

o.,=Q C;C,+;/Emgmji,

(2.7)

(2.8)

which describes the disorder. The various potentials
are simply related by N

n, =n, , np=1, Q n, =0, n+ n„(2.1 )Oa——

The X Cowley order parameters as defined by Eq.
(r)—Q C +U(r ~) AU(r) U' (r) U' (r) (2 3) (2.8) are not all independent, but so far no one has

reported all the interrelationships. The following prop-
erties are easily established':

U(r) = Ui(r)+ Up(r) . (2.4)

The theoretical model is constructed in two steps:
In the first step, a crystal of infinite extent is imagined
to exist with the periodic potential U~. Periodic bound-
ary conditions are applied to a volume EQ described
by the three vectors X&~&, X&~2, and X3~3, where X
equals 1l &X&1Vp and 0 equals

~
~& (~& & ~;)

~
. In applying

periodic boundary conditions, it is convenient to intro-
duce the infinite set of vectors n defined by

0&mA&-,'

0&�nzg-',
�&5

a,~p ———1/(.V—1), random case.
9 G. I,. Hal1 and D. O. Christy (to be pubHshed).

(2.10b)

(2.10c)
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H(k, k') =—1Vmgmii Ng *(r)gi,(r)
EQ

&&exp[i(k —k') r hjU(r) dr . (2.12)

2. Calculation of the Relaxation Time

The general theory of a relaxation time T(k) for
electrons excited by thermal or structural distortions
of a periodic lattice is well known. In a review article,
Jones" derives the expression

T(k) Sz' ~o

k'—
P(k,k') 1—x( )

d'k', (2.13)
x(k)-

relating the relaxation time T to the probability per unit
time P of an electron being excited from the Bloch
state k to the state k', where x is a function related
to the general distribution function of the Boltzmann
equation. For a large class of phenomena, it is as-
sumed that the scattering is elastic and that the
energy E of the electron depends only on the magni-
tude of the wave vector,

A2

z=—)k[2,
2p

where y is the effective electronic mass. Furthe-, approxi-
mations, which are usually necessary, depend upon the

' H. Jones, Ref. 4, p. 237.

It shouM be noted that o,, is a discrete autocorrelation
function which describes the arrangement of atoms and
is independent of the functional form of the potentials.
The quantity J, also expressible as an autocorrelation
function, depends only on the potentials and not the
arrangement of atoms.

Equation (2.7) is equivalent to Jones" Eq. (25.5) in
his discussion of the Nordheim' theory. In the limit as
E approaches infinity all o,, for purely random solutions
vanish except O.p. This proves' that the second sum in
Jones' Eq. (25.5) is identically zero for random solutions
even if rigid atomic potentials extending over more than
one cell and Bloch functions are used. In nonrandom
solutions, Grst- and higher-order neighbors contribute
to the matrix elements in (2.7).

It is of importance to note that care has to be exer-
cised in the use of (2.7) for perfectly ordered crystals.
Although the n, can describe perfectly ordered as well
as disordered crystals, the finite sum in (2.7) is identi-
cally zero for many k, k' pairs if o., represents a perfect
superlattice. In the sequel it will be pointed out where
it is assumed that no perfect superlattice exists.

When Bloch functions are considered, (2.9) may be
rewritten in an alternate form which is more convenient
for calculations made later in this paper; this alternate
form lS

J(k,k', ~) =exp[i(k —k') ~jH(k, k'), (2.11)
where

nature of the phenomenon under study. Interest here is
centered on the residual resistivity of disordered alloys,
a structural e8'ect, but it is instructive to draw an
analogy between this and thermal resistivity. The main
justification for this analogy is for the nonrandom case
where P(k,k') will be approximated by an averaging
process similar to that used for Nmklapp processes.

2&@
P(k,k') =

i M(k, k')
i
'b(k' —k) .

52k
(2.14)

For this type of thermal resistivity, cV(k,k') is the
matrix element of an instantaneous configuration of
vibration, and it is understood, although the notation
does not indicate it, that an average over all possible
configurations is to be performed. In normal processes,
M(k, k') cannot depend upon the relation of k or k' to a
crystallographic direction.

Although a purely random array of atomic potentials
placed on a Bravais lattice does not yield an isotropic
total potential, it still follows under certain conditions
that the associated matrix elements are similar to those
for normal processes. Sufhcient conditions for a signifi-
cant correspondence are that AU(r) and Ni, (r) be
spherically symmetric. Under these conditions it follows
from (2.7) and (2.10) that in the limit of large E one
has for the random case

i M(k, k')
i
'= J(k,k', 0), (2.15)

where J'(k,k', 0) is a function of the magnitudes of k and
k' and of the relative angle between them. With these
restrictions the relaxation time for the purely random
case becomes

1 pEQ k' z-
J(k,k', 0)

T 4m'A'kp kz
dS', (2.16)

where the integration is over all k' lying on the spherical
Fermi surface denoted by kp and where z is a unit vector
in the direction of the electric field. Equation (2.16)
will be evaluated for speci6c potentials after the analog
of (2.16) has been developed for the nonrandom case.

Nonrandom Contributions Similar to Umklapp Processes

In Nmklopp processes the transition probability is
dependent on the direction of k relative to the crystallo-

Pmrely Random Case Similar to norma/ Processes

In normal processes it is assumed that the solid is
isotropic, which leads to three results: (i) P(k,k') be-
comes a function of the magnitudes of k and k' and the
relative direction between them, and is independent of
the current; (ii) y(k) becomes a function of the magni-
tude of k and the angle between k and the direction of
the current; and (iii) T(k) depends only on the magni-
tude of k. The probability P(k,k') is then simply related
to the modulus squared of the scattering matrix by
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graphic axes of the crystal; accordingly, the crystal can
no longer be assumed to be isotropic. The usual method
of handling the associated difficulty' in (2.13) is to
average the transition probability over all possible
directions of k. Similarly for a disordered alloy the
transition probability is dependent on the relative
directions of k, k, and ~ As.olution to this problem is
obtained in the same manner as used for U processes.
Thus, for a disordered alloy, (2.13) may be written

NQ k' z-
(P(k,k')). 1— d'k', (2.1/)

T 82rp iVn — k i

where (P(k,k')), is the average of the transition prob-
ability over all possible directions of k. Note that this
averaging procedure need not be applied to the random
case. Equations (2.7), (2.14), and (2.17) give for the
relaxation time

equal to q. Substitution of (2.21) into (2.12) yields

m~meQ'
H(k, k') = ua. *(r)ua(r)r '

where

&(exp( —qr) exp(iAk r)d'r, (2.22)

Q=—~ze2/4~«, ~I =—k—k'. (2.23)

The exact forms of ua *(r) and u2(r) are not known, so
it is assumed that the product of these two quantities
can be taken outside the integral and approximated as
follows

!u2 *(r)u~(r)! '=C, a const.

This constant and other parameters appearing in the
potential will be chosen so that the theoretical resistivity
curves for the random case are fitted to the experimental
data. Integration of (2.22) now yields

(2.18)
24 r2Q22Cmgme

H(k, k') =
1VQ2(q2+ LN2) '

(2.24)

where

I(0)= J(k,k', 0) 1— dS',
~ 9

/ A

(2.19)
If rs, does not represent a superlattice, then (2.24)

can be used for all hk. It is shown in Appendix II that
(2.24), (2.11), and (2.16) yield for the purely random
case.

I(~)= (J(k,k', ~)). 1— ds',
~ 8

(2.20) 4kp'
(2.25)

q2 q2+4k 2Svreo'5'k '0

1 tie4(DZ) 2Cmgme 4kp2

!
ln 1+

and where Eq. (2.16) has been used for the random case,
that is, for ~=0. The only restrictions on (2.18) are that
both AU and Nk must be spherically symmetric.

Relaxatiol Time for the Yukaroa Poterttial

In order to proceed further with Eq. (2.18), it is
necessary to specify the potentials U& and U& and,
hence, b, U. In most of the applications reported here
the Yukawa potentials

U;(r) =Z;e'(42l ppr) ' exp( —q,r), i=A, B,

In the same Appendix it is shown for the case of general
order (other than superlattices) that (2.18) gives

1 pe'(AZ) 2Cm~me
(G(kp, q)+P' b(r)u, F(kp, q,r)),

8~~o'&'ko'~

(2.26)

where ~ is the magnitude of ~, o., is the average of all n,
over a shell, G(kp, q) is the bracketed portion of (2.25),
b(r) is the coordination number of the rth shell, and
F(kp q r) is given by

will be used with q~ equal to g~. With this simplification
AlU becomes

F(kp, q, r)

2A sin'B 3A I sinB —BcosB '

where
AU(r) =AZe'(42l «r) ' exp( —qr), (2.21)

(A' —1)pi 2 B' A' —1 A

3 sin B 2
+ (B cosB—sinB)—3'—1 B B' (2.27)

It is evident that for some alloy systems q& cannot be
taken equal to q&. A few calculations will be reported
for"

U;(r) =Z;es(42repr)-'(cosp, r) exp( —p,r),

but the detailed calculations in the sequel are for the
Yukawa potentials with both screening constants set

"E.C. McIrvine, J. Phys. Soc. Japan 15, 928 (2960).

A =—1+(q'/2kp') B= kpr . (2.28)

p= u/e'r)T, (2.29)

where q is the number of conduction electrons per unit

It should be noted that only the averages of a, over a
shell, the o.„are required. More complicated potentials
may require more information about the o,

The resistivity p is related to the relaxation time by
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volume. For a face-centered cubic (fcc) lattice, one has
the relation

rf =4n/ap', (2.30)

where e is the electron to atom ratio and ap is the fcc
cube edge. It is also noted that for this lattice

12m'm =kp'Q. (2.31)

Substitution of (2.30), (2.31), and (2.26) into (2.29)
gives for the residual resistivity of a fcc binary alloy

p= DCap'(AZ)'n 'mneme

X (G(kp, q)+P, ' b(r)n, F(kp, q, r)), (2.32)
where

D—=p'e'/384s'ep'k'

FIG. 1.Residual electrical
resistivity (expressed in pQ
cm) as a function of con-
centration for copper-nickel
alloys. The circles ( ~ ) in-
dicate experimental meas-
urements (B.R. Coles, Ref.
16). The solid curve is
simply a visual aid.
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When the ions in the alloy are appreciably diferent
in size, the change of the lattice parameter ap as a func-
tion of concentration is taken into account through
the relation

ap = adam~+ acme, (2.33)

where a, is the lattice parameter of the ith component.
When the ions have different valences, the change in

the effective number of conduction electrons as a func-
tion of concentration is taken into account through the
relation

n= V~m~+ V~mn, (2.34)

3. GENERAL PROBLEMS OF APPLICATIONS
AND THE NEARLY RANDOM CASE

The final equation (2.32) for the residual resistivity
is expressed in terms of the Cowley order parameters,
which must be supplied theoretically or experimentally
before the theory can be compared with experiment. A
quantum theory of the order parameters has been de-
veloped by Christy and Hall" for a theoretical model
identical to that of this paper. With these two theories
it is now possible to calculate a theoretical resistivity
which can be compared directly with experiment. This
program is in progress but the associated numerical
calculations have not been completed. In the meantime,
certain rough checks on the theory of this paper are
being supplied in this section and Sec. 4.

lt would be desirable to have measurements of both
the residua, l resistivity and several order parameters on
the same specimen for a range of concentrations. Such

"D.O. Christy and G. L. Hall (to be published).

where U; is the valence of the ith component.
It should be noted that, in the random case, parabolic

shaped curves are predicted by (2.32) if both ap and n
(and, therefore, kp) are independent. of the concentra-
tion. In general, ap and e depend on the concentration
and vary according to Eqs. (2.33) and (2.34), respec-
tively. Consequently, the above theory does not predict
perfectly parabolic curves even in the random case.
The theory does, however, predict zero resistivity for
concentrations of zero and unity.

data has not been reported. A great deal of work has
been reported on measurements of residual resistivity
(usually at concentrations for which perfect super-
lattices can exist at suKciently low temperatures), but
the Cowley parameters have not been reported for the
same specimens. Confronted with this situation, the
authors have used the order parameters reported by
Cowley" as a function of quench temperature for single
crystals of Cu3Au to calculate a resistivity and com-
pared this with the measurements of Damask'4 on small
(0.01/-in. -diam) wires. It was found that the three
significant figure accuracy to which Cowley's measure-
ments were made produced only one significant figure in
the calculated (change of) resistivity to be compared
with that of Damask. The possibility of the propagation
of round-off error raises doubts as to the significance of
these calculations. Nevertheless, these questionable
calculated values (for q='2. 5) fall on a curve of roughly
the same magnitude and slope as that of Damask.

With the preceding limitations in mind, the authors
concentrate in this section on checking the power of the
theory to explain nonparabolic curves of resistivity
versus concentration for the nearly random case. The
rough checks are to be considered only as illustrations
of how the theory can be applied.

Figure 1 is typical of the experimental data found in
the literature"" for resistivity curves for an alloy
rapidly quenched from a temperature near the melting
point. After the quenching procedure, the measurement
of resistivity is frequently performed near room tem-
perature where thermal resistivity is not negligible. In
Fig. 1 it is seen that the resistivity is appreciable at
concentrations of zero and unity. Furthermore, the
thermal resistivity is not in general independent of the
concentration, ' so some method of reducing the data is
required. The assumption made here is that the thermal
resistance varies linearly with concentration so that the
residual resistivity reduces to zero at concentrations
of zero and unity. The parameters of the potential and

"J.M. Cowley, J. Appl. Phys. 21, 24 (1950).
"A. C. Damask, J. Phys. Chem. Solids 1, 25 (1956)."V. Johannson and J. O. Linde, Ann. Physik 25, 1 (1936).
'6 B. R. Coles, Proc. Phys. Soc. (London) B65, 221 (1952).
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0 8

20 40 60 80
ot.%Au

FEG. 2. Residual electrical
resistivity (expressed in pQ
cm) for copper gold alloys.
The circles (0) indicate re-
duced experimental values
taken from measurements
{Johannson and Linde, Ref.
15) made at 20'C for
samples quenched from
650'C. The solid line gives
the theoretical results. The
values for the adjustable
parameters used in the
theory are V&„=1.075, Vo
=0.925, q=2 (in Hartree
units), and C=2.71X10 '.

and the constant C are chosen to 6t the theory to
experiment by assuming that the rapidly quenched
alloys are purely random. Figures 2 and 3 demonstrate
the agreement between experiment and theory for the
Cu-Au and the Cu-Ni systems, respectively. These two
particular systems illustrate the necessity of accounting
for types 1 and 2 (Sec. 1) changes of the Fermi volume
as a function of concentration. Equations (2.33) and
(2.34) are used for both systems. Although the assump-
tions of pure randomness and linear thermal resistivity
may not be valid, it is nevertheless demonstrated that
the theory is capable of explaining nonparabolic curves.

The adjustable constant C and the parameters of the
potential thus determined for the purely random case
were used to investigate the nonrandom (slowly
annealed) case. Although it was quite easy to pick out
the fits reported in Figs. 2 and 3 as the best for the
range of potentials investigated, it must be admitted
that good fits were obtained for values of q ranging from
1.0 to 10.0 in Hartree units with large associated varia-
tions in C. It was also possible to obtain good fits using
a potential of the form

r '(cospr) exp( —pr).

In view of the apparent arbitrariness in the choice of
the potential parameters, it was desirable to have an
independent test of the selections represented by
Figs. 2 and 3. For the case depicted in Fig. 2, an inde-

pendent test has been supplied by unpublished calcula-
tions of Christy" on ordering energy. Christy has found
several errors in Flinn's' theory of ordering energy which
worsen Flinn's reported agreement between experiment
and theory by a factor of sixteen. When Christy uses
the parameters of Fig. 2, good agreement between
experiment and theory is regained for the Cu-Au system.
Christy's work also confirms some of the work reported
in the next section.

4. NONRANDOM CASE. LIMITED APPLICATION
TO Cu-Au SYSTEM

Because of a lack of experimental measurements of
the Cowley order parameters and theoretical knowledge
of the interrelationships between them, exact compari-
son of the above theory to experimental data, such as
curve 8 in Fig. 4, is not possible at the present time.

l2

ew

9
CO

IX

Ct

O

UJ

20 40 60 80
at. % Au

Fro. 4. Resistivity (expressed in pQ cm) as a function of con-
centration for copper gold alloys; curve A, quenched from 650'C;
curve 8, annealed at 200'C (i.e., cooled from 400 to 200'C in
380 h, at 200'C 150 h). (Johannson and Linde, Ref. 15.)
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Of. % Ml

FIG. 3. Residual electrical
resistivity (expressed in pQ
cm) for copper nickel alloys.
The circles (O) indicate re-
duced experimental values
(Coles, Ref. 14) taken from
measurements at 100'C.
The solid line gives the
theoretical results. The
values for the adjustable
parameters used in theory
are VN; ——0.54, Vg„=1.00,
11=2 (in Hartree units), and
C= 18.4.

But if the quickly quenched case (curve A in Fig. 4) is
assumed to represent a purely random alloy and if the
annealed case (curve B in Fig. 4) is assumed to represent
a nonrandom alloy, then it is possible, by the following
technique, to predict an "average" order parameter aI
for first neighbors. The technique is as follows: (1) The
experimental data is reduced as indicated in Sec. 3.
(2) All n, for second- and higher order neighbors are
assumed equal to zero. (3) The theoretical resistivity
fEq. (2.32)j, now a function of nr, is fitted to curve B
wherever possible without nr exceeding its bounds (Sec.
2). In the remaining regions of curve B,nr is taken equal

"D. O. Christy (unpublished).
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to the appropriate bound and curve 8 is approximated
as seen in Fig. 5. Figure 6 gives n~ so calculated.

The portions of curve 3 not fit ted by this first approxi-
mation possess a degree of order extending beyond first
neighbors, but even these rough results suggest that,
with a few more n„experiment and theory might agree
except at concentrations very close to those for which
perfect supperlattices exist.

This method of predicting an cx& is very rough, because
it ignores any interrelationships existing between the
cx, and because the bounds on O.„which are also bounds
on a„yield little information about n, . An illustration
of the latter point is given by the ordered CuAu struc-
ture for which it is easy to show that n& equals —

3
whereas the 0., for the various first neighbors are
either +1 or —1.

The predicted cx& of Fig. 6 has been examined by
Christy to see if the first-neighbor contribution, using
o.&, tends to increase the cohesive energy beyond that of
a purely random alloy. This question is answered in the
affirmative for all concentration less than 66% Au in Cu.

Clearly, more experimental measurements of order
parameters and further knowledge of the interrelation-
ships between the n, are needed.

S. SUMMARY

A quantum theory of the residual electrical resistivity
of binary disordered a,lloys is developed in terms of
Cowley order parameters and for atomic potentials
extending outside the unit cell. The theory is valid for
any degree of order, excepting perfect superlattices. The
purely random case possesses certain analogies with
zzorma/ processes in thermal resistivity, and the non-
random case with Nzrz8app processes Fermi v. olume
changes with concentration are taken into account;
indeed, this is the factor that gives the theory the

flexibility to explain nonparabolic curves of resistivity
versus concentration in the random case.

Most of the details of the calculations are presented
for the particular case in which the two atomic potentials
are of the Yukawa type. The parameters of the po-
tentials and a certain adjustable constant are fixed by
fitting the theory to the experimental data for quickly
quenched alloys. In this case the alloys are assumed to
be purely random, but the fitting procedure can be
carried out just as well if the Cowley parameters are
supplied (experimentally) as measures of the deviations
from purely randomness. Kith the potentials deter-
mined, the data for slowly annealled (nonrandom) alloys
is investigated. The lack of experimentally measured
order parameters and the lack of theoretical knowledge
of all interrelationships between the Cowely parameters
at the present time limit this investigation, and hence
prevent a very exacting test of the theory. Nevertheless,
it is possible to produce a crude predicted value for the
average of the Cowley parameters for the first neighbors.
goth the choice of potential g,nd the predicted order

l0

8
lK

20 40 6o 80

of.% Au

FIG. 5. Resistivity (expressed in pQ cm) of copper-gold alloys;
the dashed curve indicates the reduced experimental results for
the purely random case; the dot-dashed curve indicates the re-
duced experimental results for the nonrandom case; and the solid
curve indicates the theoretical results using only the 6rst neighbor
order parameter a&. The circles (Q) are the points at which
calculations were made. The values used for the adjustable param-
eters are the same as those used for Fig. 2.

parameter meet checks supplied by independent un-
published calculations by Christy on ordering energy.

It would be very helpful at this stage to have more
and better experimental data. Measurements of the
Cowley parameters are needed for stoichiometric ratios
for which perfect superlattices do not exist. Resistivity
measurements at temperatures sufficiently low to elimi-
nate thermal contributions are also essential.

Kith the unpublished theoretica, l developments of
Christy and Hall" mentioned at the beginning of Sec. 3,
it is now possible to predict order parameters for the
theoretical model of this paper. This will permit the
calculation of the residual resistivity which can be
directly compared with experiment. Associated numeri-
cal work is in progress. In this connection it should be
noted that some care has been taken in Appendix A and
Sec. 2 to indicate limits of the defining summations for
the Cowley parameters. The Cowley parameters intro-
duced here are not identical to Mattuck's" version.

FIG. 6. 8ehavior of the
theoretical 0.1 as a function
of concentration for copper-
gold alloys. The circles (0)
indicate the points at which
calculations were made.

RO 40 80 80
at% Au

"R, D. Mattuck, Phys. Rev. 127, 738 (1962).
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~(NQ) 'P P C,C,~,

a a' NQ —z—a
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+pl~~~ N
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FIG. 8. A set of spheri-
cal triangles on the sur-
face of a unit sphere
showing the relative di-
rections between the
unit vectors k, k', r,
and 9.

h
gl

exp(iAk r)d'r
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P o.,
(NQ)'

Therefore, (B1) tnay be writtenJ —oo

2 1 uQ'Cmgm~
AU(r) exp(iAk r)d'r, (As) sined8

j'l'kp'0

N

n, =QC—, C,p, /Nmgm~. (A9) where

where the Cowley order parameter n, is defined by (1—cos0—tann sin0 cosQ)
X dy, (B2)

[ 1—cos0+q'(2k ') '7'

cosP/cosn= cos0+tana sin0 cosQ.

Use of the definition given by (2.9) leads to Eq. (2.7) Integration of (B2) yields (2 25)

APPENDIX B

1. Integration of Eq. (2.16) for the
Yukawa Potential

Substitution of (2.24) and (2.11) into (2.16) yields

2. Integration of Eq. (2.20) for the
Yukawa Potential

Consider the evaluation of

1 4pQ'Cmgm~ k' z-
(q'+6k') ' 1— dS'

T kz
(B1)

(J(k,k', ~)),, —= (4vrkps) ' J(k,k', ~)dS. (B3)

Substitution of (2.24) and (2.11) into (B3) yield

where
[k[= [k'f =kp.

(J(k,k', ~)).
= L Q'Cm„m exp( —ik' )K7/NQ'ko', (B4)

From Fig. 7, which is a spherical triangle determined by
k, k', and z, it is seen that

Ak'= [k—k'['=2ko'(1 —cos0),

k'z=kp cosQ
&

k' z=kp cosP,

K=—kp ' exp(ik ~)(A —k k') 'dS,

2kp

(B5)

dS'= kp' sin0d0dg

FIG. 7. Spherical
triangle on the sur-
face of a unit sphere
showing the relative
directions between
the unit vectors k,
k', and g.

From Fig. 8, which is a set of spherical triangles deter-
mined by k, k', ~, and i, it is seen that

k ~=8 cosu,

k ~ g=B cosp,
A A

k' k= cos0= cosu cosp+sinu sine coso",

where 8 equals kp7. and where O~ is the angle between
the plane formed by ~ and k and the plane formed by
~ and k'. It follows that

dS =kp2 sinudNZO~.

Kith the change of variable

g = cos'v )
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(85) may be written in the form Equation (2.20) can now be written as

exp(iBx)dx

[A —x cosv —(1—x2) sjnv cos0~$ dO~. (86)
where

4pr'Q'Cm~rnoA
I(~)= [Ig(~)—I2(~)j, (810)

XQ'kp'(A '—1)P~'

I~(v) =Re [L~+iL2 cosv+Lp cos'v$

The 0 integration can be evaluated by making the
change of variable

s= expiO',

and using residue theory, hence it follows that I2(~) = Re

Xexp( iB—cosv)dS', (811)

cosP
[Ly+zL2 cosv+Lp cos'vj

-cosa

(A' —1)P" Xexp( —iB cosv)d5', (812)

X [1+(A'—1) '(x' —2Ax cosv+cos'v)] "'
cos'0

X 1— x exp(iBx)dx. (87)

For the values of A (i.e., q and kp) of interest in this

paper

therefore, the terms

dS =k smvdvdO".

The evaluation of (811) is straightforward; the result is

I~(~) =4prkp'(L~'+LpB '(sinB —B cosB)
+Ip[B ' sinB+2B '(B cosB—sinB)]) . (813)

In order to evaluate (812), the ratio of the cosP to the
cosn must be expressed in terms of v and O. By use of
identities from spherical trigonometry it is found that

x /(A2 —1) and cos v/(A —1)

are neglected, and the denominator in (87) is expanded.
Neglecting all but the first two terms of this expansion,
one can write (85) as follows:

cosP/cosn
= cosu cosv+sinu sinv cosO —tann sing sinv sinO

+tann cosy(sinu cosv —sinv cosO'). (814)

Substitution of (814) into (812) and evaluation of the
O~ integration yields

E=2vA(A' —1) @' exp(iBx) dx

+(2A'+1)(A' —A) ' cosv x exp(iBx)dx
I2(~) =2prk(Pf Re (I.,x+ iI. x'+I.,x')

Xexp( —iBx)dx, (815)

—3(A' —1) 'cosv

Integration yieMs

x' exp(iBx)dx . (88) where
f= cosu+tann cosy sinu.

/

K=4prA(A' 1) "'(Li+iLp co—sv+Lp cos'v), (89)

Ip(~) =0. (816)

L~=B 'sinB,
Lp (2A'+1)(A' —A)B '(sinB———B cosB),

Lp —3(A' —1) '[B 'sinB+2——B '(B cosB—sinB)j.

Substitution of (89) into (84) gives (J(k,k', ~))„.

Substitution of (816) and (813) into (810) gives the
value of (2.20) for the Yukawa potential.

Pote added in proof It has been s.tated by some that,
in comparing experiment and theory, the present
authors should have selected "better" low-temperature
data which contains little thermal resistivity. A number
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of works have been cited as qualifying in this respect.
It would require a lengthy discussion to explain why
each of the suggested works on the Cu-Au system has
been rejected, but one example may help. The sug-
gested data of Pasaglia and Love )Phys. Rev. 98, 1006
(1955)j for the rapidly quenched Cu-Au system ap-
pears to exhibit a nonrandom character for 50—50
concentrations. Further, they do not report measure-
ments on the pure metals for their sample sizes and
histories.

More complicated systems pose a problem of the
determination of the eQ'ective number of conduction
electrons as a function of concentration. Nevertheless,
with A. H. Wilson's suggestion of 0.3—0.6 for the HRc-
tive valence of Pd and with the use of Eq. (2.34), it is
possible to obtain a good theoretical fit to the low-
temperature data of Schindler, Smith, and Salkovitz

t J. Phys. Chem. Solids 1, 39 (1956)j for the Ni-Pd
system. The values of the other parameters required are:
VNi=2. 0 q=1.5—20, C=1.83X10 ' and HZ=18.
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Magnetic Susceptibility of Cu(NO, ) & 2.SH&O at Low Temperature*
L. BERGER, S. A. FRIEDBERG, AND J. T. SCHRIEMPF

Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received 24 June 1963)

The magnetic susceptibility of cupric nitrate "trihydrate" Cu(NO&)s 2.5HsO has been measured on the
powder and on single crystals in the 14—20 and 0.4—4.2 K ranges of temperature. The susceptibility of the
powder has a rounded maximum at 3.2'K, where it is equal to 0.065 cgs/mole, and drops very rapidly
towards zero below this temperature. This behavior diQ'ers from that of a typical antiferromagnet. The
experimental data have been compared. with existing theoretical calculations for antiferromagnetic linear
chains or binary clusters. In the single crystal, the susceptibility measured in a direction parallel to the
monoclinic axis is always larger by 20% than the susceptibility in the perpendicular directions. This is
probably due to a uniaxial anisotropy of the g factor.

INTRODUCTION

HE study of the cupric salts provides one of the
most convenient experimental tests for the

theories of interacting paramagnetic ions. The Cu~
ion has a spin 5= ~, value for which the largest amount
of theoretical work has been done. Moreover, the rela-
tively small value of the magnetocrystalline anisotropy
simpli6es comparisons between experiments and theory.

Very little is known about the magnetic properties
of cupric nitrate trihydrate, which is one of the most
common cupric salts. The magnetic susceptibility has
been measured' only above 78'K. The paramagnetic
resonance has been observed at room temperature on
the powder. '

We have measured the susceptibility of this salt in
both powder and single crystal forms, in the liquid
helium and in the liquid-hydrogen ranges of tempera-
ture. The measurements on the powder have been
extended down to 0.4'K, using a Hea cryostat.

DESCIUPTION OF THE SAMPLES

The salt obtained above 26'C by cooling a saturated
solution of cupric nitrate in water is usually referred to

*Work supported in part by the Once of Naval Research, and
the National Science Foundation.' P. EscofBer and J. Gauthier, Compt. Rend. 252, 271 (1961).

2 Z. Miduno, O. Matumura, K. Hukuda, K. Horai, Mem. Fac.
Sci., Kyusyu Univ. Ser. B 2, 13 (1956).

as the trihydrate' Cu (NOs) s 3H&O. According to
Schreinemakers, Berkhoff, and Posthumus, ' and also
to Wilcox and Bailey, ' this salt is rather Cu(NOs)s
~ 2.5820. In a short note' on the x-ray determination
of the structure, Dornberger-Schiff and Leciejewicz
give a projection of the electron density on a plane
perpendicular to the monoclinic axis, from which one
may infer that the formula is Cu(NOs)s 2.5HsO.

The material used in the present investigations was
obtained from the J. T. Baker Chemical Company, in
the "Baker Analyzed Reagent" grade. All samples were
recrystallized, by cooling a saturated solution down to
40 or 30'C, in order to insure the proper degree of
hydration. Solutions of cupric nitrate should not be
heated to more than 70'C, as a white powder precipi-
tates slowly above this temperature. Care should also
be exercised to prevent organic materials from coming
into contact with this strongly oxidizing salt. Sheets of
filter paper catch fire spontaneously when soaked with

3 J. W. Mellor, A Comprehensive Treatise on Inorganic and
Theoretical Chemistry (Longmans Green and Company, Ltd. ,
London, 1923), Vol. 3, p. 280.

4 F. A. H. Schreinemakers, G. BerkhoR, and K. Posthumus, Rec.
Trav. Chim. 43, 508 (1924).

e K. W. Wilcox and C. R. Bailey, J. Chem. Soc. (London) 150
(1927).

~ K. Dornberger-SchiB and J. Leciejewicz, Acta Cryst. 11, 825
(1958).According to a private communication from these authors,
the formula Cu(NO3)21. 5H20 given in their note should read
Cu (NOg) s2.5Hs0.


