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A theoretical discussion of some of the eGects resulting from the interplay between strong crystalline-
field torques and weaker exchange torques acting on rare-earth ions is given. The crystalline field is sup-
posed to have cubic symmetry. A semiclassical discussion of the effect of the crystalline field in determining
easy directions, anisotropy, and the depression of ground-state ordered moment values for the rare-earth
series is given and used to interpret the results of the exact calculations. It is shown that for some of the
rare earths the crystalline field may be so large that no long-range magnetic order is possible at low tempera-
tures. The theory is applied to the case of the rare-earth phosphides. Adjusting the exchange and crystalline-
Qeld parameters to yield the observed ordered moment values (and moment directions) of TbP and ErP,
one predicts the HoP moment in agreement with the experimental value, and predicts that TmP will not
order at all. The "holmium Qopside" moment pattern is explained as being due to magnetic dipole forces. The
ratio of the sixth-order component of the crystalline potential to the fourth-order component must be in-
creased some five times over the naively computed value in order to reach agreement with experiment;
however, an experimental indication of a possibly important noncubic component of the crystalline potential
may change this value appreciably.

I. INTRODUCTION

'AGNETICIANS have long found the study of the
- ~ rare earths interesting and instructive. The work

of Van Vleck' and co-workers on the high-temperature
paramagnetic susceptibilities of various rare-earth salts
established that the magnetic moments of the rare-
earth ions were closely the same as that expected for the
free 3+ ion coupled according to Hund's rule with J=S
coupling, and that the principal effect of the chemical
environment could be understood as due to the "crystal
fields" exerting torques on the asymmetric 4f shell
electrons. The integrity of the 4f shell electrons was
regarded as being due to the deep embedment of the 4f
shell in the ion which reduced to negligibility its direct
overlap with the electron shells of neighboring atoms,
and at the same time made the intrashell exchange
forces and spin-orbit forces suKciently strong such that
the remaining interactions with the environment could
not disrupt the free-ion coupling.

Further evidence of the essential correctness of this
view of the rare earths was provided by the analysis of
Elliot and Stevens' of the paramagnetic resonance
studies of various rare-earth salts conducted by Bleaney
and co-workers. '4 These workers found that the results
could be explained in terms of the Van Vleck model if
the strengths of the crystalline potentials were given

*Supported in part by the U. S. Atomic Energy Commission.
t This work was begun and much of it performed while the

author was employed at the Oak Ridge National Laboratory.' J.H. Van Vleck, The Theory of Electric and Magnetic Suscept~-
Nlities (Oxford University Press, New York, 1932), Chap. IX.

2 R. J. Elliot and K. W. H. Stevens, Proc. Phys. Soc. (London)
A64, 205 (1951);Proc. Roy. Soc. (London) 218, 553 (1953);219,
387 (1953).

s B. Bleaney and H. E. D. Scovil, Proc. Phys. Soc. (London)
A63, 1369 (1951);64, 204 (1951).

4 Further references to and a summary of the theoretical and
experimental results may be found in W. Low, in Solid State
Physecs, edited by F. Seitz and D. Turnbull (Academic Press Inc.,
New York, 1960), Suppl. 2, Sec. 20.
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values in rough accord with that suggested by simple
electrostatic considerations of the fields due to the sur-
rounding ions. However, these naive values were some-
times found to differ considerably from those revealed
by experiment, in particular, the quadrupole component
of the potential was in some cases found to be re-
markably low. '

The magnetic properties of the rare-earth metals have
been investigated by Spedding et al. ' by the "classical"
means of susceptibility and specific heat measurements,
and by Cable et al. ' using neutron diffraction techniques.
The principal features of the unusual magnetic behavior
disclosed by these studies seem to be well accounted for
by theories advanced by Elliot, ' Kaplan, ' and Miwa and
Yosida, "who attribute the ordering to the polarization
of the conduction band electrons by the 4f electrons.

Child et a/. "have recently begun a study of the rare-

e B.R. Judd, Proc. Roy. Soc. (London) 232, 458 (1955).' F.Spedding, S.Legvold, J.Doane, and L. Jennings, in Progress
eu Lots Temperature Ph-ysics, edited by C. J. Gorter (North-
Holland Publishing Company, Amsterdam, 1957), Vol. II, p. 368.

7 J. Cable, E. O. Wollan, W. C. Koehler, and M. K. Wilkinson,
J. Appl. Phys. 32, 49S (1961); W. C. Koehler, ibid. 32, 20S
(1961);M. K. Wilkinson, W. C. koehler, E.O. Wollan, and J.W.
Cable, ebsd 32, 48S (1961.); W. C. Koehler, J. W. Cable, E. O.
Wollan, and M. K. Wilkinson, ibid 33, 1124 (19.62); J.Phys. Soc.
Japan 17, Suppl. B III, 32 (1962), Proceedings of Third Inter-
national Conference on Magnetism and Crystallography, 1961
(unpublished); M. K. Wilkinson, H. R. Child, W. C. Koehler,
J.W. Cable and E.O. Wollan, J.Phys. Soc.Japan 17,Suppl. B III,
27 (1962), Proceedings of Third International Conference on
Magnetism and Crystallography, 1961 (unpublished); W. C.
Koehler, J. W. Cable, E. O. Wollan, and M. K. Wilkinson, Phys.
Rev. 126, 1672 (1962); J. W. Cable, H. R. Child, W. C. Koehler,
M. K. Wilkinson and E. O. Wollan, "Neutron-Diffraction Studies
of Rare-Earth Metals and Compounds, " reprinted from Pile
1Veutron Researchin Physics, International Atomic Energy Agency,
(Vienna, 1962), pp. 379—390.

R. J. Elliot, Phys. Rev. 24, 346 (1961).
9 T. A. Kaplan, Phys. Rev. 124, 329 (1961)."H. Miwa and K. Yosida, Prog. Theoret. Phys. (Kyoto) 26, 693

(1961).
"H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler,

and E. O. Wollan, preceding paper, Phys. Rev. 131,922 (1963).
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earth intermetallic compounds (anion in the nitrogen
column) by neutron diffraction methods. While not so
bizarre as the metals, these compounds also exhibit
interesting magnetic behavior, "which it is our purpose
to try to elucidate.

Unlike the metals, the ordered component of the
magnetic moments of the rare-earth ions in these mate-
rials was found to be considerably smaller than the
maximum free-ion value, while the total moment was
the same (to within a few percent) as that appropriate
to the free ion. The critical ordering temperatures are a
few tens of degrees Kelvin. On the other hand, it is
known, from crude theoretical estimates and from the
properties of rare-earth ions in similar materials, that
the crystalline fields will remove the spatial orientation
degeneracy of the 4f shell by introducing an over-all
splitting of order of 100 cm ' (except for the nearly
spherical Gd'+ ion, of course). The strong crystalline
torques, then, inhibit the full alignment of the moments
in the ground state, accounting for the observations. In
the case of TmN the crystalline splittings are suKciently
large relative to the exchange energy to lead to the
theoretical prediction that it will not exhibit long-range
order at all, and no ordering has been found down
to 1.4'K.

While the "strong" crystalline torques complicate the
theoretical analysis, their interplay with the weak ex-
change torques lead to some interesting effects.

In Sec. II the basic assumptions and formulas are
stated and a discussion of their consequences given.
Section III contains a semiclassical discussion of crystal-
6eld effects. Section IV contains the eigenfunctions and
eigenvalues of second-half rare ions in 6elds of cubic
symmetry. In Sec. V a discussion of the crystalline
ground state with exchange and crystalline fields effects
included is given. In Sec. VI the theory of Sec. V is
applied to the rare-earth phosphides. Then, in Sec. VII,
we consider the effects of magnetic dipole and electric
quadrupole and the possible indication of a noncubic
distortion which might severely modify the Es/E» esti-
mate made in Sec. VI.

II. BASIC FACTS AND ASSUMPTIONS

The neutron diffraction results" are on the second-
haif (more than half-filled 4f shell) rare-earth com-
pounds. We assume the 4f shell configuration is that of
the free 3+ ion and that the 4f electrons are coupled in
the Russell-Saunders manner and are in the Hund
ground state. That is, the total orbital angular momen-
tum (L), the total spin angular momentum (S), and the
total angular momentum (J) are good quantum
numbers; S is the maximum possible, I.is the maximum
possible consistent with this 5, and J=l.+5 (for
second-half rare earths). Van Vleck, ' Elliot and Stevens s

and Low, 4 may be consulted for data and arguments
attesting to the accuracy of these assumptions. In short,
this assignment leads to values of the magnetic moments

within a few percent of the measured values, and values
of the various electric moments probably' not more than
10'% in error.

With a somewhat larger error, we shall assume that
the effective exchange interaction between two rare-
earth ions is isotropic. The direct-exchange energy re-
sulting from the direct overlap of the 4f shells of neigh-
boring rare-earth ions may be estimated to be less than
1 cm ' if the separation distance is greater than 3A'."
The principle exchange interaction is then via the outer
electrons. The isotropic exchange could be justi6ed if the
interaction is via the 6s electrons, but the exchange via
5d and 6p electrons will result in an anisotropic exchange
contribution. Liu" has considered this effect but has
made no quantitative estimates. In any case, the major
source of anisotropy in the intermetallics are the spin-
independent crystalline fields. A possible indication of
a nonisotopric exchange term is discussed in Sec. VII.

The exchange energy between electrons in the 4f
shells of different rare-earth atoms may, in principle, be
calculated in second-order perturbation theory, and the
result be represented in the Dirac-Van Vleck"" manner
as a dot product between the spin vectors of the elec-
trons occupying the 4f orbitals in the two rare-earth
atoms. The energy of the collection of rare-earth atoms
in the crystal may then be represented by

a=/ v.,——;pg, 's,"s+".

where V„ is that part of the energy of the rare-earth
atom "i"which does not depend on the spin directions
of the other rare earths. The second term in Eq. (1)
represents the isotropic part of the exchange interaction,
and the dots indicate the nonisotropic exchange terms,
the magnetic dipole, electric quadrupole, etc., inter-
actions between the rare-earth atoms.

The rare-earth intermetallic compounds have a cubic
rock salt structure. An x-ray analysis of" HoN showed
that any noncubic distortion was less than about
2X 10 4. According to Sec. VII Eq. (56), such a distor-
tion would introduce only about 1% correction to the
crystalline potential energy, V„and could then be
neglected. One might expect similarly small distortions
in the other intermetallics, however, a close analysis of
the diffraction data" has given an indication of the
existence of perhaps a 20% noncubic component in the
V. of HoP (Sec. VII). A recomputation of the phos-
phides along the lines of Sec. UI, but including V2, is
now underway. The dominant crystal 6eld terms in any
case are those showing cubic point symmetry and in this
paper we neglect the noncubic terms.

With these assumptions and dropping the spherically

~ This was estimated using the Hartree-Fock results of Freeman
and Watson (Ref. 20).

ie S. H. Lin, Phys. Rev. 121, 451 (1961)."P. A. M. Dirac, Qstantnnt Mechanics (Oxford University
Press, New York, 1947), 3rd ed. , Chap. IX."J.H. Van Vleck, Phys. Rev. 45, 405 (1934).
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symmetric part of U, we have

V,= V4+ Vs+.
where

(2)

coe%cients of Stevens" by using

(5)

where

with
'U, ='U4+*Us, (6)

'U4 ——(8/35) E4[(P4 (J,)+(P4 (J,)+(P4 (J„)]—: (P4 (J)
=E4[J*4+Ju4+ J'

——,
'J(J+1)(3J'+3J—1)]—: (P4(J)

=E4( (1/20) [35J.4—30 J(J+1)J.s
+ s (J+'+J-')}—:(P4(J), (3')

'Us= (16/21sl (Ps(J.)+(Ps(J.)+(Ps(J.)]—:(Ps(J)
=@4[11(J,'+J„+J, )

—15J(J+1)(J,'+J„'+J,') ]—:(P,(J)
= (3/8) Esf [11J ' —15J(J+1)J,4

—s J44[11J,(J,+4)+50—J(J+1)]
—-,'[11J,(J,+4)+50—J(J+1)]J '}—:(P,(J), (4')

where
IC4= (w4(r))(g P4( sr/)) J
& =( ())(2 &(s! )),

(7)

(8)

and the expectation values refer to the 4f shell electrons
in the state with M~= J. The rnultipole moments,
(P P, (s/r))q, ma, y be obtained from the P and

"K.W. H. Stevens, Proc. Phys. Soc. (London) A65, 209 (1952).

V4= (8/35)Z ~4(r) [&4(s/r)+ J'4(x/r)+ I'4(v/r)]
=P tt4 (r) r 4[x'+—y4+ s4 ,'r4]——

=Q s4(r)r 4((1/20)(35s4 —30s'r'+3r4)

+s[(x+4))'+ (x—4) )']}, (3)
and

Vs= (16!21)2ts(r)[&'(s/r)+~s(x/r)+ I's(y/r)1
=P ss(r)r '[11(x'+y'+s') —15(x4+y4+s')r'

+ (30/7)r']
= s P vs (r)r '{[11s'—15s r'+5s'r' (5/21—)r']

—l (x+sy)'(1»' —r') —l (1»'—r') (x—6)'} (4)

In Eq. (2) the potential energy of the charge distribu-
tion in the crystal field is expanded in the multipole
expansion, account being taken of the cubic point sym-
metry of the rare-earth sites, and in Eqs. (3) and (4) we

give U4 and U6 in terms of sums over the coordinates
(x,y, s) of the 4f electrons of a given rare-earth atom. ,

the E's are Legendre polynomials. Charge distributions
of f electrons have no electric multipole moments higher
than 2' pole. '

The matrix elements of the right-hand side of Eq. (1)
(among states of good J), according to the Wigner-
Kckart theorem, are the same as those of' "

The 6"s are the operator equivalents of the Legendre
polynomia, ls which are given by Stevens. " (The terms
in Eqs. (3') and (4') which are indicated by dots, for
brevity, are easily filled in by comparing with Stevens'
operator equivalents expressions. ) The values of P, y,
(P4(M), (Ps(M) are given by Stevens for all of the rare
earths. Finally, in Eq. (5), g,;= (g—1)'g,,', where g is
the Land~ g factor. For the second-half rare earths
(g—1)=S/J.

It is useful to make some preliminary comments con-
cerning the magnetic behavior of these materials. If the
exchange forces tending to align the spins of neighboring
ions are, at first, neglected, then the (2J'+ 1) degenerate
free-ion states are split by V, into various states which
form bases of the irreducible representations of the cubic
rotation group'r (with an expected over-all splitting of
the order of 100 cm '). These states are usually not
eigenfunctions of any component of J, of course; so to
form the state, for example, having the component, J,
along some direction would generally require a super-
position of states from several of the cubic symmetry
types with concomitant energy spread of the order of
100 cm '. Exchange energies of only a few tens of wave
numbers will generally cause a mixture of just a few low-
lying cubic symmetry types which will lead to ground-
state ordered moment values less than J. Of course, it
must not be concluded that if the exchange energy is
much less than the over-all crystalline splitting then the
ground-state ordered moment will be much less than J.
The classical effect of the crystal fie/d is to yield certain
directions of minimum potential energy along which J
may have a time-average value equal to J; it is a
quantum-mechanical effect due to the finite size of J and
quantum-mechanical tunneling which reduces this value
along the "easy" directions. It is only in the off-"easy"
directions where the crystalline potential energy and
torques are large that it necessarily requires large
exchange fields to attain time-average moment values
near J.

If the ordered moment, induced by exchange energies
which are small compared to the over-all crysta]
splitting, is near J, then one may be sure that the rnate-
rial is very anisotropic; i.e., the exchange energy re-
quired to obtain the same ordered moment in off-easy
directions would have to be of the order of the total
crystalline splitting. (This follows from the fact that the
expected value of the anisotropy energy for a state
having a definite component of angular momentum
along some direction when averaged over all directions
is the average crystalline-field splitting). For the large
ordered moment cases (large anisotropy), then, the

The classic paper on the splitting of atomic levels in crystals
is H. A. Bethe, Ann. Physik 3, 133 (1929).
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magnetic domain boundaries are expected to be sharp,
the moment switching abruptly from one easy direction
to another. The anisotropy may be small, on the other
hand, if the ordered moment is considerably less than J,
as we shall discuss more fully in Sec. V.

For rare earths with an odd number of 4f electrons
the ground state in the crystalline field will be either
doubly or quadruply degenerate, " and there will be a
magnetically ordered ground state.

If the 4f shell contains an even number of electrons,
then the stationary states in the cubically symmetrical
crystal field are of the cubic symmetry types I'&, . , F5
in Bethe's notation, "the first two types being singlets,
the third a doublet, and the last two triplets. If the
ground state is of the type I'4 or F5, then exchange
coupling will give a magnetically ordered ground state
for the crystal as a whole. If the ground state is of type
r„rg, ol I'3, on the other hand, one may'or may not get
ordering under the exchange forces, depending, of
course, on their strengths relative to the crystalline
splittings. As an example (see below), in the nitrides
both Tb'+ and Tm'+ have crystalline ground states of
type F&, extrapolating the crystal field and exchange

parameters which give the observed moment for Tb to
Tm, one finds, as mentioned earlier, that TmN should
not be expected to exhibit long range magnetic order.

As final general comments on the effects of strong
crystal fields one may notice that if a given ion has an
expected moment (J) in the ground state, then it has a
mean-square fluctuating moment J(7+1)—(J) (J).Ex-
change forces will cause a partial correlation in the
Quctuating moments of neighbors, and in the ground
state there will be a short-range moment correlation
superposed on the long-range order.

The final generality, spin waves in these substances
are peculiar. If one considers the stationary states of a
given ion in the crystalline field and the average ex-
change field of its neighbors, then several of the excited
states will have matrix elements of J to the ground
state, and there will be several spin-wave modes.
Further, there will be modes of oscillation of the moment
of a given ion involving the oscillation of a single compo-
nent of J, for example, the component parallel to (J);
when these oscillating moments from the various ions
are coupled together the result is the same as for spring-
coupled linear oscillators: ferromagnetic spin waves with
frequencies proportional to the wave number rather
than to its square. "

III. SEMICLASSICAL DISCUSSION OF THE
CRYSTAL FIELD

It is, first of all, necessary to get an idea of the relative
sizes and signs of the multipole moments of the second-

' This peculiar eRect of anisotropy has been recently pointed
out by Kaplan (Ref. 9),by G. Trammell, Suppl. J.Appl. Phys. 31S,
362S (1960), and in an unpublished summary and ampli6cation of
the material covered in the &alk from vrhich the present paper is
largely taken.

TABLE I.Electric multipole moments of the second-half earths.
The P's are Legendre polynomials, the sum is over the 4f electrons,
and the expected value is for the state indicated with J,=J.

Tbs+(4f) s

Dy" (4f)'
Ho +(4y)'
Er4+(4f)11

Tms+(4f)n
Pb4+ (4f)13

ip
+15/2

518
I15/2

3H6
'~7/2

(»s(e))I
—1/3—1/3—2/15

2/15
1/3
1/3

(»4(~))Z
1/11

-4/33—1/11
1/11

+4/33—1/11

(»4(&)).
—5/429
25/429—50/429
50/429—25/429
5/429

half rare earths. These may be obtained from the tables
of Stevens. "We give the indicated quantities in Table I
and shall often call them for short the quadrupole,
hexadecapole, and the 2'-pole moments (the moments
are actually (r') times the tabulated quantities). We
note that the moments are antisymmetric about the
10-,' electron (3-,' hole) position. The hexadecapole
moment shows only a 30% variation (however, (r4) will
exhibit a systematic decrease down the table) in mag-
nitude, while the 2'-pole moment of Tb'+ is a factor of 10
smaller than that of Ho'+ and Er'+. The quadrupole
moment is actually irrelevant in pure cubic fields.

We now imagine that J is a classical vector and con-
sider the dependence of 'U, as given by Eqs. (6), (3'), and
(4'), on the direction of J. Actually the direction of J
may be fixed at best to within 8= ta,n '(f U'), of course.
For Ho'+ and Tb'+ we have 0= 20' and 22', respectively,
showing that the directional uncertainties are not
negligible even for these large J's. To take this indeter-
minancy partially into account, we take as the classical
analog of the potential energy for J pointing in a certain
direction the expected value of the potential energy for
the state of maximum component of J along that direc-
tion. Making use of the addition theorem for the P's we
have from Eqs. (6), (3'), and (4')

(V,)=E4(x4+y4+s4 ',)—-
+Es[11(x'+y'+s') 15(x'+y'+ s')—+30/7],

=(~ )+(~ ), (1o)

where K4 and Z'4 are given in Eqs. (7) and (8), and ('U, )
is the expected value of 'U, for the state of maximum
xJ.+yJ„+sf „with x'+y'+s'= 1.

The values of Eq. (10) in the [100],[1111,and [110]
directions are

«.) -= (2/5)~+(2/7)~. ,

(U,)»r ———(4/15) E4+ (32/63) E„
(U ) jrp= —(1/10)E4—(13/28)E's.

The maxima and minima of (U, ) are always in one of
these directions. (The values of ('U, ) in the direction
[nfl] is the same as in the direction [~

n' ~P'I y'
~
],where

[n'P'y'] is a permutation of [nfl].}From Eqs. (10) and
(11) we see that (*U4)/E4 has a peak at [100],a bottom
at [111],and a pass at [110].('Us)/Ep has a peak at
[111(and a bottom at [110].
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It is now convenient to make an estimate of the
magnitudes of E4 and Es. (P E4)~ and (P I'p)q are
given in Table I. We make the rough approximation
that the crystalline potential is that due to six (—q)
point charges situated at the nearest anion positions to
a given rare-earth ion, w'e then obtain

(n4 (r) )= (q/3) (105e'/4a') (r4)

(re(r)) = ( q/ 3) ( 63e/ 8~')( r')
(12)

(n4(r)) = 1.9&&10'(q/3) cm ' (TbP)
=1.6&&10'(q/3) cm ' (HoP)
=1.5&(10s(q/3) cm ' (ErP),

(np(r))=73(q/3) cm ' (TbP)
=59(q/3) cm-' (HoP)
=52(q/3) cm—' (ErP).

(13)

E4 and Es may now be estimated from Eqs. (7), (8),
(13), and the values of the multipole moments given in
Table I.

If the values so obtained are now substituted into
Eq. (11), then it is seen that the Vp terms are at least
an order of magnitude smaller than the t/'4 terms in the
three principle directions indicated. In Sec. VI, however,
we shall present evidence indicating that Eq. (13)
severely underestimates the value of (np(r)) relative to

G. T. Trammell, Phys, Rev. 92, 1387 (1953).
20 A. J.Freeman and R. E.Watson, Materials Research Labora-

tory Report No. 118, Ordnance Materials Research Office, Water-
town Arsenal, Watertown, Massachusetts, 1962 (unpublished).

"M.Blume, A. J.Freeman„and R.E.Watson (to be published).

w'here e is the electronic charge, a is one-half the lattice
spacing, and the expected values are for a 4f electron
of the rare earth considered. It was found" that a
moderately good fit to the neutron form factor of Er'+
could be obtained by using hydrogenic wave functions
for the 4f electrons with an effective charge Z —S=23.
This gives (r')=07ap', (rs)=09aps, where as is the Bohr
radius.

Freeman and Watson' have recently determined the
Hartree-Fock wave functions for the various rare earths.
Their results for Er'+ are (r )E,——1.1ap', (rp)E, =4.0a pass

is to be expected the hydrogenic wave functions under-
estimate (rs) —: (r4) ratios. Although, according to Blume,
Freeman, and Watson" there still seems to be about a
10%discrepa. ncy in the "size" of the 4f shell as given by
their calculation and that given by the neutron diffrac-
tion results of Koehler and Wollan, on the oxides of
Nd and Ho, indicating a possible expansion of the 4f
shell in the crystal, their results are sufficiently accurate
for our purposes. Interpolating in Table VII of Ref. 20,
we obtain (r4)Tb=1.4ap, (r')Th=5. 6ap', (r')n, ——1;2ap,
(rp)n. 4 5ap'—— .

Taking a=2.8A' for ErP (and neglecting the varia-
tion of a) and substituting Freeman and Watson's
values of (r4) and (rs) into Eq. (12), we obtain

TABLE II. The position of the peaks (P or p) bottoms (8 or b),
and passes (s) of the right-hand side of Eq. (9') for u4)0, a6&0,
and ~a4/ap~ =f. The highest peaks and lowest bottoms are
indicated by capital letters. [1nn7 and [11pg are itinerant passes,
n going from zero to one as i goes from 3/2 to 1, and P going from
1 to 0 as f goes from 1 to 3/4.

1')3/2
4/3&1 &3/2

1&1.&4/3
5/6&1 &1
3/4&1 &5/6

0&1.&3/4

[100) [110$ [111j [1nnj [11Pg

P s B
b P B s
B P b s
B P p s
B p P s
B s P

~ W. C. Koehler and E. O. Wollan, Phys. Rev. 92, 1380 (1953).
~3 This is with the assumption of negligible noncubic distortion;

see Sec. VII.

that of (n4(r)) s' and so it is desirable to have the posi-
tions of the peaks and bottoms of (n, ) for all ratios
of Ep/E4.

From Eq. (11) we obtain that if (a) E4)0, Ep)0,
then the peak is at [100]if

~
Ep

~

&3
~
E4~, otherwise it is

at [111],the bottom is at [111]if ~Ep~ (6/35~E4~,
otherwise it is at [110]; (b) E4&0, Ep&0, then the
peakisat [100]if ~Es~ (-, ~E4~, otherwise itisat [110],
the bottom is at [111].If E4&0, Ep(0, or E4(0, Ep) 0
we interchange peaks and bottoms in (a) or (b),
respectively.

The positions of the extremas of ('U, ) may be more
succinctly expressed by rewriting Eq. (10) in the form

('U )=a (x'+y'+z')+a (x'+y'+z')+u . (10')

If u4)0, as)0, [100] is a peak, [111]is a bottom,
and [110]is a pass, there are no other extrema. If @4(0,
a6&0, the peaks and bottoms are interchanged. If we
define

~
a4/ap

~ f, =—then if a4) 0, ap &0, the peaks,
bottoms, and passes are given in Table II. If a4&0,
a6&0, the peaks and bottoms of Table II are
interchanged.

The bottoms of the (U.) plot are the easy directions
of magnetization for the case of very large exchange
forces acting on the rare-earth atoms, and we expect
them to usually be the easy directions (directions of
maximum susceptibility) in the weak-exchange force
case.

Classically, J would move along the equipotentials
of ('U, ), precessing clockwise around the bottoms or
counterclockwise around the peaks. Very near a peak or
bottom the equipotentials are circles which become
progressively distorted as one moves away from the
peak or bottom, the distortion exhibiting the rotational
symmetry of the peak or bottom to which the contour
belongs.

We may now draw some conclusions concerning the
quantum states in the semiclassical case. Consider one
of the peaks or bottoms of (U,), call this direction Z'.
Now let J be very large. Then, for large Jz' the
stationary states will be states of pretty good Jz' [if for
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angles 0(b the distortion of the equipotentials from
circles is negligible, then for (J—Jz')/J( (b'/2) we may
neglect the admixture of different Jz' states), with
spacings about equal to the classical precession rate,
(8('U, )/80) —:Jo. As (J—J'z')/ J increases into the region
of appreciable distortion Jz' ceases to be stationary, an
appreciable admixture of Jz'+ p, Jz'& 2p, etc. , resulting
where p is the symmetry index of Z' (p=4 for L100j,
etc.). In the region where the classical equipotentials
from different bottoms or peaks join, these considera-
tions become useless. Returning to the very low (or very
high) states with Jz'=' J these are still not stationary, in
6rst-order perturbation theory there will be mixed into
them the states of Jz'&p, however, more importantly
they are not correct zero-order states because the similar
states built around the directions Z" (into which Z' is
carried under the operations of the cubic group) are
degenerate with them. The zero-order states are linear
combinations of these similar states belonging to the
different directions Z', Z", . (in fact, they are basis
functions of the irreducible representations of the
group) with splittings proportional to overlap integrals
(of the nondiagonal-in- Jz' part of 'U, ) of the similar states
belonging to Z', Z", . Speaking roughly, a very low
(or high) lying state (actually at least two states to
make up the wave packet) would precess "rapidly" in
a circle about a direction Z', but after a while it would
have "jumped" to the neighborhood of Z" ~ . The
jumping rate vanishes relative to the precession rate as
J becomes very large, and, other things being equal, the
jumping rate, if Z'= L100],is less than that if Z'= L111],
which is less than that if Z'=L110$ because of the
increasing overlaps. For very large J the over-all
splitting may be obtained from Eq. (11), the low- and
high-lying states may be grouped into multiplets with
the degeneracies of the peaks or bottoms to which they
belong. The spacing between multiplets decreases
roughly as 1/J as J becomes large, the intramultiplet
splitting for the very high and very low lying states de-
crease exponentially with J.

In this limit then, exchange energies only of the order
of the intramultiplet splitting are suKcient to attain a
ground state with Jz'= J if the exchange 6eld is applied
in the easy direction, whereas exchange energies of the
order of the over-all splitting are necessary to attain
Jz'=' J in off-easy directions.

These semiclassical considerations have only a heu-
ristic value for the ions dealt with in practice (J&~ 8) and
it is unprofitable to elaborate this picture further. We
shall 6nd these considerations of some aid in understand-
ing the results of our quantum-mechanical calculations
in the succeeding sections.

TABLE III.Th'+ and Tm'+. a's and b's LKq. (14)j
for the states of Kq. (15).

(~',v.~')
(p' v y')
(v', v.v')
(p' v p')
(v'(6),v.v'(6))
(v'(2), v.v'(2))
(v'(2), v.v'(6))

(5/2)o

-14/11
22/33
38/33

—32/33
1

—59/99
(5/99) '~'

(7/2) b

3/11
8

-24/11
4/li
1

—32/11
—7 (5/11)'"

TAnLE IV. H03+. u's and b's PKq. (14)j for the states of Kq. (16).

(~',v.~')
(y'(6) v y'(6) )
(y'(2),v.y'(2))
(v'(6),v.v'(2) )
(v'(8),v.v'(8))
(v'(4),v.v'(4))
(v'(S),v.7'(4))
(y'(6),v,y'(6))
(v'(2),v.v'(2))
(v'(6),vn '(2) )

(5/2)a

14/13
—3/4
47/52

(1/4) (165/91)'~'

—6/13
(1/2)(5/91)"'

—3/4
—1/4

(1/4) (165/91) '~'

(7/2)b

—8/13
—3/4
127/52

—(11/4) (105/143)'is
1

16/13
—(3/2) (35/13) '~'

—3/4
—125/52

—(11/4) (105/143) 'i'

in a previous paper" along with references to earlier
work. Of this earlier work, only -that of Ebena and
Tsuya" gives the eigenfunctions and eigenvalues of
rare-earth ions, in general, cubically symmetric poten-
tials. We give our results because it is desirable to have
an independent check of these complicated computa-
tions"; but more importantly, it is not easy to transcribe
their representations of the eigenfunctions into that
which we have used for all of our computations and
d1scuss1ons.

The eigenfunctions of 'U, are cubic symmetry func-
tions. The number of times each cubic symmetry type
is represented in the (2J+1) states of given J is ob-
tained by reduction of the character and is given by
Bethe" (or Table IV of Ref. 24). We give only one
member of each symmetry type occurring in the reduc-
tion, the other members may be obtained from Tables I
or III of Ref. 24. In Tables III to VI we give the non-

vanishing matrix elements of 'U, among the symmetry
functions. If a symmetry type appears in the reduction
only once, this gives the eigenvalue directly. If a sym-
metry type appears M times, one must diagonalize the
MXM matrix to get the eigenvalues (and eigenfunc-
tions). We don't perform this diagonalization since it
would complicate the tables. Except for Er'+ and Dy'+

IV. THE CRYSTALLINE SPLITTINGS

In this section we give the eigenfunctions and eigen-
values of 'Us LEqs. (6), (7), and (8)j for the second-half
rare earths. The notations and methods are explained

~ G. T. Trammell, J. Math. Phys. 4, 431 (1963).
25 Y. Ebena and N. Tsuya, Sci. Rep. Res. Inst. Tohoku Univ.

Ser. 3 12, Nos. 1, 3, and 4 (1960)."Our computation, which was carried out before we were aware
of Ebena and Tsuya's, was found to contain a few errors when we
compared with their results.
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TABLE V. Er'+, Dy'+. a's and b's (Eq. (14)7 for
the states of Eqs. (17) and (19).

(~, .~ )
h', v.v')
(u1,v,u1)

(u2,v.u2)

(Qs, salus)

(u1)v,u2)

(u2, v,ue)

(5/2)a

1.08
—0.095

0.961
—0.904
—0.546

0.10
0.11
0.14

(7/2) b

—0.615
—4.80

1.82
0.120
0.753

—2.10
—2.38
—0.58

there are only the trivial 2&(2 matrices to diagonalize,
for Er'+ and Dy'+ there is a 3)&3 matrix.

We write

tions given in Eq. (16), there is a physical significance
in introducing a y' function based on the 8; functions.
We have

pr'(8) = (128/127X3)'/'

X[8.+8 .--, (S.+8 .+8„+8,)], (»)
and from Table V and Eq. (5) of Ref. 24 for the d
matrix, ' we obtain

X[(15)'"7rs(6)+(1001)'"»s(2)] (18)

q rs (8)= (1/32) (128/127)'/'

X [(1oo )'"v '( )—( 5)'"vr'( )],
where its is the»s function orthogonal to mrs(8). For
the matrix elements we have

(u, U.r/) =aK4+bKs,

where K4 and Ks are given in Eqs. (7) and (8). We give
the a's and b's in Tables III to VI.

We conclude this section by a brief discussion of the
results along the lines of the preceding section.

Tb'+ and Tm'+. J=6. 13~1'+I',+I'+I'+21'.

(14)
[»s(8),'U.»s(8)]= (8X127) '[15'U«+1001'U»

+2 (15X 1001)'/'Uss],

(7ts, 'U,mrs) = (SX127) '[1001U«+15'U»
—2 (15X 1001)'"'Ust],

19

[mrs (8),'U,y ts]= (SX127) '[(15X 1001)"'*0ss

—(15X 1001)"'0ss+986"Uss],
The symmetry functions may be taken,

7'= (2"'/3) (0.+os+o.)
q'= [4/3(10)"'](6.+6,—6,—6,+6„+6 „),

q
'= [4/(66)'/'](6, +6,—6„—6 „),

y 4 —2—1/2(4 4 )

q '(6) = 2 "'(6 —6 )

v '(2) = 2 "'(2 —2- )

where in Eq. (19) we use the notation

[Vrs (6),'U,»s (6)]='Uss, etc.

Dys+ and Ers+. J=15/2. 16~ I'a+I'r+31"s. We
(15) may take as symmetry functions for I's and I'r

»' —3—'/'(64/65) '/'[(15/2), +2
—'/sF (s /4 15/2) ]~

(20)» ——(64/33)'"[(11/2) g
—2 '/'F (—3T/4, 11/2)].

y'=6 '"(64/65)"'(8.+8 .+8,+8,+Ss+8 „),
mrs(6) =6—"'(6,+6,+6„+6 „),
q rs(2) =6—"'(2.+2,+2„+2 „),
yr4(8) = 2—'"(8.—8,),
v '(4) =2-'"(4.—4 .),
v '(6) = 2-"'(6.—6 .),
q rs(2) =2—'"(2,—2 .).

(16)

The a's and b's are given in Table III.
Has+. J=8. 17~ I't+21's+21'4+21's. We may take

as symmetry functions

Three linearly independent and normalized Fs functions
are

q '(15/2) = rs (128/127)"'F (3s-/4, 15/2),

»s(11/2) = 16(543) r/s

21
X[(11/2),+2 s/'F (3s./4, 11/2)],

q '(9/2) =4 (2/185)'"Il (3rr/4 9/2).

The three spinors of Eq. (21) are not orthogonal; to
avoid the inconvenience of the use of nonorthogonal
functions we introduce spinors Ij, u2, and n3 which are
orthonormal. These are linearly independent combina-
tions of the spinors of Eq. (21) and take them to be

TABLE VI. Yb'+. o's and b's LEq. (14)g for the states of Eq. (20).

h', v.v')
h' v.v')
(v' v v')

(5/2)a

—18/7
2/7

(7/2) b

—20—12
+16

The a's and b's are given in Table IV.
Rather than the mathematically convenient y' func- ur ——q r'(15/2),

us ——1.007' rs (11/2) —0.118' r
s (15/2),

us 1.367' rs (9/2)+0.9——20yr s (11/2)
0 298' ts (15/2)

The a's and b's are given in Table V.

~ 1/2
sr Which in this case is /f (rr/2) =2 /

2+m

(22)
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Yb'+. J= 7/2. 8 —+ Fo+I'7+I'o. The cubic symmetry
spinors we may take as

approximation to the ground state,

fo =II ~oi& (24)
v '(7/2)=[2/(15)"'][(7/2)-;+2 "'F( /4, 7/2)],
vi'(5/2) = [2/(27)"']

(23)
X[(5/2), 2—'"F( 37—r/4, 5/2)],

y '(7/2) = (2/7)"'F (3~/4, 7/2).

The a's and b's are given in Table VI.

Discussion

If at first the effect of V6 is neglected then, according
to Eq. (11), in the extreme classical limit there should
be six highest (let E4)0) states with (5/2)a=1, Eq.
(14), and eight lowest states with (5/2)a= —oo. In the
semiclassical case these multiplets should be split, the
lowest states being split more because of larger overlap
integrals. In Ho'+ (Table IV) there is a singlet, doublet,
and triplet with (5/2)@=1.08, 0.97, and 1.01, respec-
tively, and these states are constructed from the six 8;
functions with a 1o/~ admixture of other states. There is
a doublet and two triplets with (—,')a= —0.812,
—0.471, and —0.918, respectively, and finally there is a
triplet with (5/2)a= —0.08. Even in this largest J' state
the octet constructed from [111]functions is split con-
siderably, however, for the sextet states the splittings
are only 5% of the over-all splitting. The situation for
Kr'+ and Dy'+ is not much different.

For Tb'+ and Tm'+ there is a singlet, a doublet, and
triplet with (oo)a=0.67, 1.15, 1, respectively; and a
singlet and two doublets with (oo)a= —1.3, —0.97,
and —0.6, respectively. The "multiplets" are appre-
ciably split. Finally, the multiplet structure has, of
course, disappeared in the case of Yb'+(J=-', ), where

one has two doublets and a quartet with (oo)a=2,
—2.6, and 0.29, respectively.

Because of the increasing importance of overlap
integrals as J decreases, the over-all splitting [of (o)a]
has increased from the infinite J limit of 1.7 to 2.0 for
Ho'+(J=8) and 4.6 for Yb'+(J= o).

In the extreme classical limit V6, according to Eq.
(11), would give a highest octet with (-,')b equal 1.8,
and a twelve-fold lowest multiplet with (-,')b= —1.6.
For Ho'+ there is a doublet and two triplets with (~o)b

=3.9, 3.6, and 1.2; a singlet, a doublet, and two triplets
with (~~)b= —0.615, —2.1, —1.3, —4.3. The semi-

classical considerations have little relevance for a pure
V6 potential for J&~8.

Cases in which V4 and V6 both contribute importantly
to the splitting will be considered in the practical cases
encountered below.

V. THE EFFECT OF EXCHANGE

We may now investigate the ground state of a crystal
with H given by Eq. (5).

Let us first find the best product wave function

where the product is over the various rare earths and
wo; is the yet to be determined ground-state vector (in
this approximation) of the ith rare earth.

The condition that H of Eq. (5) be minimum then
gives

['U-—ZJ ae&»)o J~]~o'= ~o'~o' (25)
where

In this approximation the ground-state energy is

(Po,HPo) =Q(4o, 'U A' o) 2 ol "&J )o'(J )o

(26)

=Z.o,+o 2 g„&»)o &J,)o. (27)

[Uc~ i'~i]~ni= &n~&'m) (29)

may be used to specify any state of the ith atom. The
functions

nI, n2, " = ~n;iP (30)

constitute a complete orthonormal set of states for the
crysta. l. We may now rewrite H, Eq. (5), in the form

H=Ho+Hi, (31)
where

H =2 [&-—2 8' &»)o J~]+l Z 8' &»)o (J')o (32)

alid
H, = -k Z 8;,(J,-&J,)o) (J,-&J,)o). (33)

Ho is diagonal in the states Eq. (30), and its eigenvalue
for the state po is the self-consistent approximation to
the energy of the ground state. H~ has zero expectation
value for the state go but it does have matrix elements
between @0 and @ 's where two of the e,'s are different
from zero. H~ causes a short-range correlation in the
ground-state moments which will be discussed in a
future paper along with a discussion of the low-lying
excited states (spin waves) of Eq. (31)."

2'A short account of an investigation of the effects of short-
range correlations and of the spin-wave spectrum in the rag|„.-t:.g,yah
nitrides was given by the author in the refercIKe of 18,

For a given g,, the self-consistent equations (25) and
(26) generally admit many solutions, but we mean by
the wo, functions those solutions of Eqs. (25) and (26)
which minimize Eq. (27). In terms of these "ground-
state" wave functions (we use "wave function" in a
loose sense —we mean state vectors), we define

(28)

and the orthonormal functions m„; which satisfy
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TaBLE VII. The nonzero matrix elements of (y', Jv&') are repre-
sented by 1's for the cubic symmetry functions corresponding to
FI to 75.

2
3

5

In this paper we shall ignore the effect of the mixing
in of the higher p„,, into go and shall assume that the
ground state is adequately described by Po [Eqs. (24),
(25), and (26)j with the right-hand side of Eq. (27)
minimum.

If 'U, is negligible relative to the exchange forces then
l(J,)ol =J, and Yoshimori" and Villain'o have shown
that in the ground state the spins are parallel in layers
and turn by a certain angle as one goes from layer to
layer, the screw pattern (this includes the ferromagnetic
and antiferromagnetic arrangements as special cases).
If 'U, is small relative to the exchange terms, Yoshimori"
has shown how the screw is distorted, hurrying over the
hard directions and lingering in the easy directions.

In our case we assume that the exchange energy is
small compared to the over-all crystalline splitting. We
then expect that the eA'ect of exchange is just to cause
an intermixture of several of the low-lying states of 'U,, in
the formation of the mo s. It, thus, is expedient to use
the crystal symmetry functions as bases for the expres-
sion of the m's, and it is then necessary to obtain the
matrix elements of J between the cubic symmetry
function.

Since the components of J transform like I'4, (v~, Jve)
is zero unless F4gl p contains F in its reduction. The
reduction may be readily accomplished by means of the
character tables, and we give the results in Tables VII
and VIII. In Table VIII the 2 represents the fact that F8
occurs twice in the reduction of I'4&&1's(= I's+I'r+21's).

One sees from Tables VII and VIII that if the ground
level of 'U, is of one of the Ave typesF4 ~ ~ -Fsthenone
can take a linear combination of the degenerate ground
states for which (J) does not vanish and, therefore, for
no matter how small rI; s the crystal ground state will

TABLE VIII. The nonzero matrix elements of (y*',Jy&') are repre-
sented by 1's and a 2 for the cubic symmetry functions correspond-
ing to I'6, I'7, and 1 8.

(v', ~tvt') =
(v', ~.v ') =

(vt', ~svs') =

(v",~.v")=

(v',~.v")= (v', ~.v '),
(v', ~2vs') = (v', ~svs'),

(vs% tvr') = —2(vt', Jsv")= —2(vtÃrvt')
=-2(v",~.v")=-2(v",~.v"),

(v',J v')= —(v',~v')
= —(Vs' JsVs'),

(34)

(vtVsvs') = (—)'(v~', ~,v'),
(vtVsvs') = (v~',~.v ')

(vt', ~svs') = (—)'(v~', ~.v.')

In the last three equations (X,tt, v) is a permutation of
(1,2,3) and P is the number of interchanges required to
get (X,tt, v) from (1,2,3). The significance of the sub-
scripts on the p's may be manifested by giving the
prototypes:

(vt'; v")= [z'—l (*'+y'); *'——.'(z'+y') j,
(vt'; vs'; vs')= (*,y,z), (vr', vs', vs')= (yz, z*,*y).

be magnetically ordered. The question comes up con-
cerning the anisotropy of these moments, among these
states how do the eigenvalues of J ~ depend upon the
direction of the unit vector ~? The answer is that
except for F8 the eigenvalues are independent of ~, i.e.,
if the ground level of 'U, is F4 - Fy then for sufhciently
small ri;t s the crystalline ground state exhibits the
same ordered pattern as if 'U, were zero, except the
ordered moment is reduced.

To show this, and for other purposes as well, we must
get the matrix elements (v', Jv'). Koster and Statz"
obtained these for all the point groups. If

I
w,") and

I u; ")
are state vectors transforming according to the irre-
ducible representations l g and F„ofa group, and 8I," is
an operator which transforms according to F„, then if in
the reduction of F,)&F„,F), occurs once then

(to,",e&"tt;o) = (~"Iln"litt v)(:;„&"v,

if F" occurs twice, "
(to .x 8 ret .v) (tox

I I
i9

I I
tt o) lc, .) r o

+ (~"Ilt)"llu") "cs """

This is an expression of the generalized Wigner-Eckart"
theorem. The Clebsch-Gordan coefficients (the C's) do
not depend on m, 8, or I:That dependence is in the
"reduced matrix elements" (allbllc). The Clebsch-
Gordan coeKcients for the cubic group and for v=4
(J transforms according to I'4) may be obtained from
Koster, or directly by making use of the prototype
symmetry functions of the cubic rotation group. One
obtains for the nonzero matrix elements of J among
~l to ~5

'9 A. Yoshimori, J. Phys. Soc. Japan 14, 807 (1959).:"J. Villain, J. Phys. Chem. Solids 11, 303 (1959).

"G. F. Koster and H. Statz, Phys. Rev. 115, 1568 (1959);113,
445 (1959); G. F. Koster, end 109, 22/ (195.8)."E.P. Wigner, Group Theory and ets A ppltoateon to the Quantum
M'echcnics of Atomic Spectre (Academic Press Inc. , ¹wYork,
1959); C. Eckart, Rev. Mod. Phys. 2, 304 (1930).
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We take as prototype spinors for r„r„r,":
(71/3" 7-1/2') = [I -' 2) '

l 2
—-')] '

(7-'; 7e') = [*ys I l,3); xys
I 2, —-')j;

[73/2 j 71/2 ) 7—1/2 ) 7—3/2 ] [~ 2)2) ) [ 2)2) j

Eqs. (24) to (27) become

['U,—B„.J173)„=e„33)„,

B-=u(J)-,
Z„=e„+-',B„(J),

(39)

(40)

Then the nonvanishing matrix elements of J are

(71/2 )Jz71/2 )

(71/2') J)71/2 )=

(7 ',J.7-') =

(7-1/2 )Jz7—1/2 ) 2 (71/2 )J+7-1/2 )
= 2 (7-v2', J-7+v2'))

(7—1/2 )Jz7—1/2 )= (71/2 )J~7—1/2 )
—(7-v2', J-71/2') = 3 '"(7-1/3' J+7-3/2')

(71/2 )J-73/2 ))
—(7e',J.7e")= (I/2) h -",J+7e')

= (I/2) (7e' J-7-'),

In Eq. (35), J~=J,+iJ„, J =J, iJ„and the-
matrix elements given (and their complex conjugates)
are the only nonvanishing ones of J„J+,and J .

Among the four 7' states the eigenvalues of J ~
=xJ,+yJ„+sJ, are determined by a characteristic
equation whose coeKcients involve x2+y2+s2= I, and
x'+y'+s' (the irreducible representations I", i(8, in-
volve only x'+y'+s' and, hence, the eigenvalues are
independent of ~). Since x4+y'+s' has its extreme
values along the cube edge and the body diagonal, the
maximum J.~ value will occur for one of these direc-
tions. The secular equation is rather clumsy, so we just
give the eigenvalues in these two directions.

Jloo= +43) &3 (43+4b), (36)

(J»1/&)'= 2[&+(&+4P)'/9j~2(D —(I+4P)'/93'
+(64/2&)P(2+3P P'))" (37)—

where a and b are given in the last few lines of Eqs. (35)
and p= b//3

r~, r~, or r3 Grolnd State. If the ground level of'U, is
of type rJ., r2, or I'3 then according to Table VII the
expected value of J ~ in the ground state is zero, and
we can show that for suKciently small zi,; the ground
state will not exhibit long-range order. For simplicity,
we shall assume that zi,;&0 so that in the ground state
all the atoms are equally aligned, then the self-consistent

(7-',J.7 3/2') = (7e' -J 73/2')

= (7-',J+73/2') = (7e',J 7 3—/2') (3-5)-

3—1/2(7 7 J—7-1/ 8) 3—1/2(7e7 J 71/28)

(73/2 )Jz73/2 ) (7—3/2 )Jz7—8/2 )=/3)

("/",J.7.")= (7 v",J.7 .-")= (I/3) (~+4b),

(73/2', J+71/.') = (7-3/2', J-7-i/2') = (2/3) (e+b),
(71/2', J-73/2') = (7 v2', J+7 3/2') =-(2/v3) (/3-+b),

(73/2') I 7 3/2') = h' —3/-2'—)J+—73/2') =——2b)

(7v2' J+7 v2') = (71/2') J——7v2') = (2/3) (2& b).

and to compute (J„)from e„we have

de.—/dB =(J) (4I)

In Eq. (39) g=P, zi;;, and we are interested in the
solution e=o for which E is minimum.

Call the direction of Bp the Z direction, a ground state
function of 'U„N~, an excited state function of 'U. , 02.
Let (ul, 'U,ul) =0, (u2,"U,u2) =6, (ul, Jsul) = (u2,J,u2) =0,
(ul, J,u2) =j.Ke then have among these states,

Q/2 1[+2+4+82j2)l/2

(J )3—2g(J )8j2[+2+4zi2(J ) 2j2j 1/2

Equation (43) has solutions

(J.),=0
or

(J )8 j[I Q2/(4/2 j2) jl/2

(42)

(43)

(44a)

(44b)

where it is clear that (44b) can hold only if 2zij'& 6, and
if this condition holds this gives the lowest energy.

In this simple example, 6/2 is the crystalline energy
in the fully aligned case, —2g j' is the exchange energy in
the fully aligned case, and we get alignment only if
—:aj'&l(~/2).

Thus, if the ground state of 'U, has (J)=0, then for
given exchange integrals there is a critical value of
'U, above which no long-range order exists in the ground
state. In a sense, 'U,. plays the role for the ground state
that the temperature does for ordinary materials. The
interesting question of whether at higher temperatures
there might exist long-range order and none at lower
temperatures is left open here. We shall see later that
TmN seems to be a realization of a nonordered zero
temperature system.

Concerning anisotropy in these cases, to the extent
that the ground state consists of just a mixture of r& and
r4, or r2 and I'5 there is no anisotropy as may easily be
shown from Eqs. (34). However, if in "U„ I'3 lies lowest
then one always has an anisotropy as may be seen from
Eq. (34). This result is in contradiction with the often
made statement that the (weak field) susceptibility of
paramagnetic ions in cubic crystals is isotropic, and it
seems worthwhile to pause and elaborate on this point.

Suppose the ground state of 'U, is a I'3 doublet, and
consider the effect of an external field in lowering the
energy of the ground state by mixing in, for example, a
I'4 state. Let H ='U,—B J and consider the energy of the
ground state as a function of B for small B. Using the
relation Eq. (34), we easily obtain in second-order per-
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turbation theory

gP
j (~,3 g ~ 4)

j

~ g (45a)

Errr= —8'j (yr', J,yg4) j' —:2D, (45b)

E&~e———38'j (yra, J,y, ') j'—:4D, (45c)

as the lowering of the energy of the ground state for 8
in the L100], L111],and j 110]directions, respectively.
This yields a susceptibility twice as great in the L100 I

direction as in the t 111].
The argument is sometimes given that E(B) is a

quadratic function of B, and since it is also invariant
under the group of the cube it must be of the form
E= C(B,'+—8„'+BP); this, however& follows only in
the case the ground state of 'U,. is nondegenerate. The
energy of the ground state need not be an analytic
function of 8, 8„, 8„ it is also allowed that

if we take D=C/2 we get agreement with Eq. (45).
Rather than further general discussion we turn in the

next section to the problem of understanding the mag-
netic properties of the rare-earth phosphides in terms
of these results.

VI. ANALYSIS OF THE PHOSPHIDES

Our knowledge of the magnetic ordering properties
of the rare-earth nitrides, phosphides, arsenides, and
antimonides, comes mainly from the neutron diffraction
results on powdered crystalline samples of Child et il."
In this paper we shall concentrate primarily on their
1.4'K data for the rare-earth phosphides; however, we
first make some more general remarks.

In the first place, in the compounds of Tb, Dy, and
Ho the ground-state ordered moments are in the direc-
tions predicted on the basis of the results of Sec. III with
E4 and Ke having the (point charge) values of Eq. (31),
i.e., the Tb moment points along the j 111]direction,
whereas the Ho and Dy moments point along L1001
directions. The Er moments are perpendicular to L111]
directions and we shall discuss them subsequently.
These Tm compounds are not found to order at all.

Although the moment directions are correctly given
(for Tb, Dy, and Ho) on the basis of a simple ionic
model these are certainly not simple ionic compounds.
According to Pauling's ideas and electronegativity
values" the single rare-earth —nitrogen bond is expected
to be about 60% ionic, whereas the rare-earth phos-
phide, etc., bonds are expected to be only 20% ionic.
Furthermore, Miller and Hirnes'4 give the room-
temperature resistivity values for ErSb as p=0.5)(10—4

"L.Pauling, The Natlre of the Chemica/ Bond (Cornell Univer-
sity Press, Ithaca, New York, 1960), 3rd ed. , Chap. 3.

3' J. F. Miller and R. C. Hines, Rare Earth Research, edited by
E.V. Kleber iThe Macmillan Company, New York, 1961),p. 232.

Q-cm, whereas p=10 '0-cm for Er metal; p=2.4)&10
0-cm for LaN, whereas P= 62K 10 ' 0-cm for La metal
(in addition, LaN becomes superconducting at low
temperatures). Thus, these substances seem to be as
good conductors at room temperature as the metals.
Whether at low temperatures these materials turn out
to be true conductors or semiconductors it seems quite
likely that the outer electron distribution on a given
rare-earth ion will exhibit an appreciable departure from
spherical symmetry and substantially alter the values
of the crystal-field parameters from those computed on
the basis of the naive, simple ionic model.

We find in this section that the magnitude and direc-
tions of the ground-state moments in the phosphides of
Tb, Ho, and Er can be accounted for on the basis of a
crystal field of cubic symmetry if the ratio of the
strengths of the sixth-order to fourth-order potential is
increased by a factor of 5.5 beyond that predicted by
the naive value. In view of our preceding remarks this
result does not appear unduly surprising and could
probably be accounted for on the basis of a partial
occupation of the I'3 or I'5 5d orbitals. However, in the
next section we mention evidence for the existence of a
noncubic distortion in the phosphides, which until
properly taken into account in the crystal field calcula-
tions, leaves the E6/E4 ratio uncertain.

The rare-earth phosphides (except HoP), antimo-
nides, and arsenides, exhibit a simple antiferromag-
netic ordering" which can be accounted for on the basis
of appreciable exchange interactions among the nearest
and next-nearest neighbors only. The HoN moment
configuration, " on the other hand, seems to involve
blocks of about seven planes with parallel spins alter-
nating between the cubic edge directions. The stability
of this structure would seem to require alternating
exchange integrals of an appreciable magnitude out to
about seven nearest neighbor distances. This provides
some evidence for the existence of a conduction band at
these low temperatures filled up to a Fermi level corre-
sponding to a wavelength of about seven L111]spacings
via which the exchange is affected by a Ruderman-
KitteP' mechanism. Because of the small size of the
nitrogen atoms it is to be expected that the properties
of the nitrides will be considerably different from those
of the phosphides, etc. ; the inter-rare-earth ion distances
in the nitrides are within a few percent of those in the
metal, the small nitrogens fit in the metal lattice inter-
stices, whereas in the phosphides, etc., these distances
have increased some O.SA' and on the basis of the
Hartree-Fock calculation" the direct overlap of 6s
(and 5d) orbitals of neighboring rare earths will be much
less than in the case of the metals or nitrides.

We now proceed to apply the theory of the preceding
sections to the phosphides, neglecting magnetic dipole-
dipole, electric quadrupole-quadrupole forces, and non-
cubic distortions, which effects are discussed in the

M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
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following section. The nitrides will be discussed at a
later date.

TbP. TbP exhibits a simple antiferromagnetic order-
ing, the moments lying along a [111]direction with
ordered moment values

~
(/4111)

~

=6.2+0.3 p, //, as com-
pared to a maximum possible value of gJ=9 p, ~. Putting
g= 2 we get

~
(Jill) j

=4.1&0.2 as the expected value of
the [111]component of J in the ground state. According
to Table I, Tb has a positive 24 pole moment and a
negative 2' pole moment. If we take (2/4) and (2/4)

positive in accordance with the naive model, Eq. (12),
we get [Eqs. (7) and (8)]E4&0, Es(0.From Eqs. (10)
the minima of 'U, are in the [111]direction and according
to the arguments of Sec. II, we expect the ground-state
ordered moments to point in these directions, as they do.

Our procedure now is to find the smallest 8 such that
the ground state of

Hp ——V,—B.J (46)

has the observed moment [compare with Eqs. (29) and
(32)].According to Eqs. (1), (5), and (28)

(47)
where

(48)

and ~; is a unit vector in the direction of spin of the ith
rare-earth ion. Because of the small 2' pole moment of
Tb (Table I), 'Us is negligible, the ratio of E4 to g' is
then determined by the above procedure. By extra-
polating these values to Ho and Er we then determine
E4/IC4.

'

The eigenfunctions and eigenvalues of 'U, are given by
Eq. (15) and Table III.From Table III p'(2) has a 10%
admixture of y (6) in the eigenfun. ctions of 'U„ this is
negligible for our purposes. In arbitrary units the eigen-
values of 'U, are P, (—126), P4 (—96),P, (2) (—59), P2 (62),
I",(6) (99), I', (114).If the admixtures of y'(2) and ys(6)
were taken account of Ps(2) would be lowered to —62,
and the separation of the (I'4, I'1) and (I'4,I'4) levels
would be 30 and 34, respectively (possibly indicating
that the traveling of J among the [111]directions has a
nearly simple harmonic time dependence).

For small B,I'1would be lowered by an admixture with
P4, but since y' is connected only to y4 by J [Eq. (34)]
and since there is only one F4 here the maximum
moment of such a state would be (J(J+1)/3)'"= (14)'/'
=3.7, which is too small, and furthermore with F~ and
F4 the Inoment value is independent of the direction of
B. 8 must be suKciently large then to cause I"4 to be
admixed into the ground state, which takes place via
the coupling of I'4 to Ps [Eq. (34)]. From Eq. (34)
we easily obtain that (y', Jllly') = (2/K3) (yl', Jsys'),
whereas in the [110] and [100] directions the 2/v3
factor is replaced by one (for the [100]direction the p'
states having the same symmetry as p' are not coupled
to y4 by Jpooi = J'2). Thus, it is the admixture of y' which
makes [111]the easy direction. p' has the same sym-

metry around. the [111]directions as the state 6i»li, the
ground state of Tb for 8=0 then goes over continuously
into the ground state for 8= ee if 8 is in the [111]
direction. If 8 is the [100] direction the ground state
for B=O is of different symmetry than that for 8= ~
and is crossed twice by other levels as 8 becomes large
[y'(8=0) —+ 4, (8= ee)]. This expected behavior is
confirmed by the results of White and Andelin. "

We set jl= (&',Jlln") = (14)' ', j2= (y',Jill+ )
= (5/2)'", and the secular equation of the 3&&3 sub-
matrix of Tb corresponding to y', p4, and y'(2) becomes

y(y ~ ~.) 8'U'+—j')
+8 ~~"~. ~"~.)~~. y)- =o, (4-9)

where 61——E(I'4)—E(1',), 62——E(I'4) —E(I'4), and
y= E—E(F1).The last term in Eq. (48) is negligible for
the ground state y, and we obtain

2y=61+/12 [(/11++2)2+482( j12+j22)]1/2 (50)

8y
(J )

—(j2+j 2)1/2 (1+@2) 1/2

BB

where s= (/4/d 2) —:28[jl'+j2']"'. Puttillg [jl'+j2']'"
=5.4 and (Jill)=4.1&0.2 Eq. (50) gives x=0.9&0.1.
The contribution of the other levels may be estimated
by perturbation methods and are still negligible for
x='1. From Eq. (47) we obtain for these values of x

g'= (0 10+0 01)[E(I'4)—E(1'1)] (Tb) (52)

IJOI'. HoP exhibits a peculiar magnetic order in its
ground state" in which the moments in. (111)planes are
in, say, the +s or +x directions, and the moment
directions in adjacent (111) planes are mutually per-
pendicular (the moment direction "flops" from +s to
+x to +s, etc., hence, "holmium flopside"). The spin
arrangement may be thought of as a superposition of a
ferromagnetic pattern with moments along [101]
directions and an antiferromagnetic pattern with mo-
ments along [101]directions. Since it is clear that, on
the assumption of isotropic exchange interactions,
the exchange energy for the configuration is the
average of the ferromagnetic and the antiferro-
magnetic (of the TbP type) exchange energies, this
actual ground state can only be understood as due to
effects so far neglected. In the next section we shall
argue that magnetic interactions are responsible for this
peculiar ordered arrangement, but since even in these
cases the magnetic interactions are small compared to
exchange interactions, we shall argue that the difference
in the exchange energies for the ferromagnetic, anti-
ferromagnetic, or the "Aopside" configurations are
relatively small. We then assume that g', Eq. (48), for
HoP is negligibly different from that of TbP, Eq. (52).
We also assume that (2|4) and (2/4) are reduced in going
from Tb to Ho in approximately the ratios indicated by

"R.L. White and J. P. Andeline, Phys. Rev. 115, 1435 (1959).
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TABLE IX.Estimated parameters for Hop based on extrapolations
from Tbp results. C is an adjustable parameter.

X4 Ee &&zoo) 8
0 84—E . —0.04CE (0.027&0.003}E 7&0.25 (0.012&0.001}E

Eqs. (13), although our conclusions are not very sensi-
tive to the assumption. We then find that (eo)—:(no)
must be appreciably increased over that given by Eq.
(13) in order to obtain the observed expected moment
value for Ho.

If we let Eo(Tbp)—=E then, with the assumptions
stated, the HoP parameters are given in Table IX.

In the table C is an adjustable parameter which has
the value one if Eo/K4 is given by the naive model
Eq. (13).The uncertainty indicated in the value of g'
(and 8) is just that coming from the uncertainty of the
TbP moment, there is an additional uncertainty not in-
dicated arising from the extrapolation from TbP to HoP.

For convenience we shall take E= 100 then in Table
X we give the crystalline splittings obtained from Table
IV and Eqs. (16) and (19) t it is desirable to use yo(8)
and y'j. As mentioned in Sec. IV the six states I'i and
the lowest I'4 and I'o states are split very little (for C of
the order of one) relative to the over-all splitting;
furthermore, I'4 and I'& are almost purely y4(8) and
y'(8), these states constitute the semiclassical ground
multiplet. In Table XI we give the energy levels for
these states.

From Table XI it is seen that as C increases F4 and F3
remain low and close together but Fi moves up. Prom
Table IX, (J,)= 84—90% of J and 8= 1.2. Now
(v'(8) J*v'(8))=J/~3, (v'(8),J*v'(8))= (2/3)'"J Tak-
ing 8=1.2 and C=1 we obtain (J,)='97%J, it is
necessary to increase C to 5—7 in order to account for
(J,)=7+0.25. The results are given in Table XII. In
the last column of the table we give the result of includ-
ing the y4(4) and y' admixtures in the wave functions.
We think it unlikely that oi' for Ho is much less than
that for Tb, a crude estimate based on their critical
temperatures would indicate that it might be 20% less
(see Sec. VII). We then estimate that C= (Ko/X4) must
be some 5—7 times the naive estimate. If (J,) actually is
as low as 6.75, C would have to be increased to about
10 to account for that value.

ErI'. The ground state exhibits the TbP-type anti-
ferromagnetic order. The neutron diGraction results
determine that the moment direction is perpendicular
to L111j.Making the same type of extrapolations from
TbP as were made for HoP we obtain the results of
Table XIII. Again letting V=100 and inserting the
values of E4 and Eo from Table XIII into Eq. (14)
and making use of Table V, we obtain the results of
Table XIV for the matrix elements of 'U, among the
various states indicated )see Eqs. (20) and (22)j.

Ke see from Table XIV that for C=1, the states
arising from N2 LEq. (22)$ are lowest, and there is a
considerable admixture of N3. From the semiclassical
considerations of Sec. III we might expect that the
largest moment would be attained along the (111j
direction. The calculation is rather tedious because of
the admixture of N3,' if that admixture is neglected then
the largest moment (for state N2) is along L1001 and of
magnitude (11/2) . (493/543) =5.0, with the moment
along L110j and $111$being 10%smaller. u2 alone then
gives a nearly isotropic moment but with t 100' direc-
tion largest, whether the admixture of N3 will make the
maximum moment along L111j, or whether the semi-
classical considerations are a completely unreliable
guide in this case, is unknown.

From the considerations of Sec. III the lowest
bottoms in 'U, switch from the f111]directions to the
$110jdirections as E6 becomes larger than (1/6)K4, i.e.
(Table XIII) when C)4. From Table XIV we see that
F& falls rapidly with increasing C, crossing the lowest F8
level at C='5. For C='5 the admixture of u3 and u~ into
the lowest F8 level may be neglected and since @2 is
nearly pure y'(11/2) $Eq. (22)j the six lowest states
r,+r, are the six states (11/2);. From a crude
geometrical argument one might expect these states to
give the largest moment along L110). In fact this is
found to be the case, the maximum moment becoming
5.9g in the L110$ direction compared to 5.5g in the
L1007 direction.

In the region of interest here, C in the range 4-8 say,
8=0.5, only I'o and the y'(11/2) states are of ap-
preciable importance in making up the ground state. Let
E(1'&)—Z(1'8) =6; we can now say that if d,)0 then
for suKciently large 8 (58&)A) the ground state will
have a L110i moment direction and its value will be
greater than Sg (which is the value attainable from

Thats, z X.The crystalline splittings for Ho'+.

~1

~ss

—36.1+0.71C —33.6—1.15C

F4

V44

+15.5—1.42C

&48

—3.94+2.83C —32.2—2.1C

V

27.1+0.154C —4.3+3.1C 25.1+0.86C 8.4+2.8C —11.3+2.7C
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TABLE XI. Ho +. Vss for the low levels and various C's,
the values 6' are the correct levels for c=6.

TABLE XIII. Estimated parameters for KrP based on extra-
polations from TbP, C is an adjustable parameter.

I'1 —36.1 —35.4 —34.7
F4 —33.6 —34.7 —36
rs —32.2 —34.3 —36.4

—33.3—38.2—40.6

—31.8—40.5—44.8

6'

—31.8—44—47.2

p'(11/2), alone, in the [1001 direction). For smaller
values of B/6 the moment will be in the L100]direction
(and have a value greater than 5g).

When F7 lies below F8, 6&0, the ground-state
moment is always in the $110) direction. This is made
plausible by the fact that for the state of maximum
moment the fraction of I'7 is 1/17 for the $100$ moment
direction, and 1/(2.8) for the L110$ moment direction;
thus, aside from the effect of the larger moment the
L110) state will lie 2A/3 below the L100i state in this
case. This effect persists for smaller (B/ikey) values. If
then 5(0 the ground-state moment will be in the $110]
direction and have a value lying between 2.9g (I'7 alone)
and 5.9g.

TABLE XII. (J,) for the ground state of HoP for two values of
8 and various values of C. The column 6' refers to C= 6 with p'(4)
and f' admixtures included.

1.2
0.9

~ ~ ~

7.6
~ ~ ~

7.25
7.3
7.0

7.05

6/

7.2
6.9

F,=pP (11/2),

e.= —v '(11/2),

(53a)

(53b)

where its(11/2) is given in Eq. (21) and Q, is the mate

The experimental facts so far known are consistent
with the moment being in a t 110j direction, but not
with a L1001 or L111j direction. Furthermore, the
moment value is likely a little less than Sg and with our
assumptions this indicates that F7 is a little lower than
F8. We get in this way a rather close estimate of C.

We give in Table XV the matrix elements of J which
are relevant here (the ones not given explicitly follow
from symmetry considerations).

In the table

E4 EB (~') B
0.79V 0.035CV (0.027 &0.003) V 4.75 &0.25 (0.005+0.001)V

of the function given in Eq. (20), obtained by replacing
(11/2), by (11/2)„and —3s/4 by +3m/4 in Eq. (20)."
F, and F, are obtained by rotating F, by s/2 and w,

respectively, around the y axis. '4

The ground state for the moment in the s direction is
a linear combination of P, and F, and is easily obtained
from the table. If the moment is in the $1011direction
the ground state is a linear combination of

Nt= (2+1/V2) Us(F,+F,),
Ns ——(2—1/V2) 'i'(F g iF .)7—
Ns=(2 —~2) "'(4+4 )

(54a)

(54b)

(54c)

all of which are of the same symmetry type relative to
rotations about the [101jaxis. ms = (6/5)'i'(Ns —6 'I'Ni)

is orthogonal to N~.

The secular equation for the ground state in the
$101$ direction is obtained from Eqs. (54) with the
aid of Table XV and is a cubic. In Table XVI we
give the energy value and the ground-state moment
value for various values of 5.0B/2, where 5.0
=(y (11/2),J,y (11/2)) and E=Z(1'g) —E(1'7) is the
amount Fy is below F8 in the absence of the exchange
forces (B=O).

Since (Jist) =4.5—5 (Table XIII), we see from Table
XVI that x=5—6, or 6=' B=0.5 (Table XIII), and this
gives (Table XIV) C=5.5—5.7. The moment value is
very sensitive to variations of C here; hence, the close
estimate.

This value of C is consistent with that determined
above from the Hop data.

VII. NONCUBIC DISTORTIONS AND ELECTRO-
MAGNETIC INTERACTIONS AMONG THE

RARE EARTHS

Distortion

In the preceding section we have neglected the
sects of noncubic crystalline distortions and the mag-
netic dipole-dipole and electric quadrupole-quadrupole
interactions among the rare earths.

An x-ray diffraction study of HoN revealed that there
was less than about 10 4 noncubic distortion in these

TABLE XIV. The crystalline splittings for Er'+.

Vss VIs V2s

34.2 —0.62C —3.0—4.8C 30.4+1.8C —28.6+0.12C —17,2+0.753C 3.2—2.1C 3.5—2.4C 4.4—0.58C
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TABLE XV. Matrix elements of J for Er'+ or Dy'+ for the states
of Eqs. (53). The entries should be multiplied by (11/2).

(f'*,~.f".) (4.,&.4 *) (f".,~.4.) (f".,J*~-*) (f'*Af'.)

493/543 —17/33 50L99)& 181$ 'i' 117/543 f2—59/(1086@2)

so far. ' The need for further experimental observations
should be clear.

Magnetic EGects

The magnetic energy per dipole is

where q is the charge on the adjacent anions, a is the
lattice spacing, and we have included the effect of only
the six nearest anions. Taking a=5.7A', (r')4r=0. 7as'
(Freems, n and Watson" ), and (P I's)g -', (Tab——le I) we
obtain a contribution to the energy

(56)

In (56) we have used wave-number units (multiplv by
kc to get energy). For 8='10 ' Eq. (56) gives a contribu-
tion to the energy which is less than about 1%%u~ of
the over-all crystalline splitting but of the same
order as the dipole-dipole and quadrupole-quadrupole
contributions.

According to Eq. (56) the distortion will cause a
lowering of the energy per unit volume by an amount
—4&&10"8 ergs cm ' but to this must be added the in-
crease in the elastic energy —,'VP where V is the Young's
modulus. The energy minimum requirement then gives
for equilibrium 8=4X10"V ' or I =4)&10" dyn/cm'
for 8=10 4. This value of the Young's modulus is surely
one or two orders magnitude too high. Therefore, (55)
and (56) give too great a lowering of the energy under
distortion by one or two orders of magnitude, according
to our assumptions. If this is true, then the distortion
effects are completely negligible. It is dificult to under-
stand why Es should be so much less than (55) would
indicate; however, in the preceding section we already
found that ascribing the crystalline Geld to charge
distributions centered on the neighboring anions led to
too large a ratio of E4/Es by about a factor of 6, so any
estimate of E2 based on the same model is very un-
certain. We then neglect distortion and find that we can
find a satisfactory explanation of the observations made

TABLE XVI. The energy and moment values for the L101$
ground state of Er'+ for various assumed values of (5.0B/rt) —=x
where E=E(I'8)—E(I'7). The erst entry is the depression of the
energy below E(I'8) in units of 6, the second is the expected
moment value in units A.

—1.8, 3.2 —5.0, 4.3 —7.4, 4.9

10

—12.1, 5.8

37 See, however, the discussion at the end of this section concern-
ing evidence for the existence of noncubic distortion in the
phosphides.

substances in the magnetically ordered state. If we
consider a strain along the s axis then there will be
introduced into the potential of Eq. (2) a term Vs,

(55)

In the ferromagnetic case we have the well-known
result, Es D tscVp'( ——4rr/3+—K), where X is the number
of dipoles per unit volume, and X, the demagnetization
factor, may be neglected for an unmagnetized sample.
Ke are interested in E for antiferromagnetic patterns
of the dipoles wherein all the dipole moments of atoms in
a given (111) plane are parallel, but are antiparallel to
those in the two adjacent (111) planes. For these
patterns we see from symmetry that if & (k,l,m) are the
direction cosines of the moments then E~ is given by

Ezn(k, l,nz) = 3p'(k)+—km+ltts)Q;ax;;s, ,r,; ', (58)

where the plus or minus sign is chosen depending on
whether the moment of atom "j"is parallel or anti-
parallel to that of atom "s".The lattice sum in Eq. (58)
has been given by Cohen and Kefferss (along with
many more lattice sums) who give its value as

XS"(444) =Q&xgs;, r;;—'= —1.20Ã.

Therefore Eq. (58) becomes

EgD(k, l,m) =3.6(kl+km+ltts)Xp'

(59)

(60)

and for comparison purposes we give the ferromagnetic
energy

EI = —2.1l7p (61)

E() ———1.95Ep' (62)

For the second-half rare-earth phosphides we may
neglect the small differences in lattice spacings and we
have

Jt/p'= 10—'(1r/yn)' cm—', (63)

where p~ is the Bohr magneton, and we have expressed
energy in (63) in wave-number units (multiply by kc for
other units).

It is convenient for our discussion to write the ex-
change energy per particle as

(64a)

=——'.(~.g.'+asgs')(&;)', (64b)
'8 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1.955).

According to (60), Ego attains its maximum value of
3.6'' when the dipoles are in the +L1111direction,
and its minimum value of —1.8'~ when the dipoles are
perpendicular to the L111jdirection.

It is clear for the "topside" arrangement in which the
moments are alternately in the +Z and +X direction
that E~ is the mean of the ferromagnetic value and
Ega(1/v2, 0, —1/K2),
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where g.' is the sum of g, over all atoms "j"lying in
even numbered (111)planes (the plane containing "i"
being zero, adjacent planes, &1, etc.) and go' is the
corresponding sum over the odd planes. We now write
E' +E~ for HoP having the flopside pattern, E~~, the
antiferromagnetic pattern, Eg, and the ferromagnetic
pattern, Ep,

Eg) ————,'g, '(S,&'—1.95$p' (65a)

E~= —
~ g.'(S;)'+-', go'(S, &' (65b)

EF —-,'g, '(——S,&'—-'go'(S, &'—2.1'' (65c)

We shall show later that the quadrupole-quadrupole
interaction will not substantially aGect our results. The
condition that (65a) be less than (65b) or (65c) now
gives

0.15''( ——',go'(S;)'(1.95$p,'. (66)

Thus $0'(0 (antiferromagnetic coupling), and from
(63) using @=8.8p~,"

0.1 crn—'( —-'go'(S, )'(1.5 cm—'. (HoP) (66)

Now using the rough estimate —',g,'(S,)'='-,'kT, =6 cm ',
we see that it is only necessary to assume that go' is
negative and less than about a fourth of g,' to under-
stand the topside pattern of the HoP ground state. It is
easy to see that the antiferromagnetic pattern of ErP
would still lie lowest since its magnetic energy already
has the low value —1.8',' and so it can only lower by
0.3',' in going to the ferromagnetic state.

TbP is in the state with maximum magnetic energy,
+3.6''. If its spins were aligned &f1, 1, —1], the
magnetic energy (60) would be lowered to —1.21''.
The crystalline energy (preceding section) and its
quadrupole-quadrupole energy would be unaffected by
such a transition. Hence, except possibly for a crystalline
distortion effect which we have argued is probably very
smalP~ the observed alignment along L111]must be due
to anisotropic exchange integrals. With this assumption
we have

—',(S;)'Lg.'(111)—go'(111)—g.(11—1)+ go'(11—1)])4.81''. (67)

Inserting p, =6.2p~ the right-hand side of (67) is 2 cm ',
as compared with the estimate

-.'(S;)'Lg, '(111)—go'(111)]=9.5 cm '.

Thus, (67) would imply possibly about 20/o anisotropy
in g' for Tb.

From the failure of TbP to be ferromagnetic we have

—gp'(111)(S,&') 5.71'' (TbP). (68)

Equation (68) gives —$0'(111))0.5 cm ' (TbP) when
we insert p= 6.2@~ and

~
(S,) ~

=' 2; whereas (66) gives—$0'(100)(1.0 cm ' (HoP). Thus, the same value of
go' could account for the TbP and HoP patterns.

In terms of the simple model in which we assume that

appreciable interactions exist only between nearest
neighbors, g„', and next-nearest neighbors, g„„',we have
g.'=6/„', $0'=6/ '+6/ „'. It is only necessary to
assume that g„' is ferromagnetic, g „'antiferromagnetic
and slightly larger in magnitude than g

' to account for
our results. The estimates above lead to —1.0 cm '
(6(g „'+g ')(—0.5 cm ', 6g„'='4 cm ', g„'='0.8$„„'.

It is of interest to see how large an external magnetic
field is required to stabilize the ferromagnetic state. If
S is the component of the field in the moment direction
then for the ferromagnetic state to lie lowest for TbP
S must be larger than the value determined by

—go'(111)= L3.6''+ Sp]—: (S;)', (TbP) (69a)

= (0.33+0.7$) cm ' (TbP) (69b)

where in (69b) S is in units of 10' G, and in (69) we have
assumed that the crystallites are of roughly spherical
shape. Similarly, for HoP and ErP we obtain

—g, '(100)= 2 (Sp—1.95Xp') —: (S )' (HoP) (70a)

= (2.6$—1.0) cm ' (HoP) (70b)

—go'(110)= ((ap —1.81'') —: (S,&' (ErP) (71a)

= (2.9$—0.65) cm '. (ErP) (71b)

If —go' ——'1 cm ' then according to (71b) it would
require a magnetic field only of the order of 6 kG applied
along a L110] axis to bring about the ferromagnetic
state in ErP, and fields of the order of 8 and 20 kG to
make HoP and TbP ferromagnetic. Since the quad-
rupole energy of the "fiopside" pattern is somewhat
higher than that of the ferromagnetic pattern there is a
small correction to (70b).

The electric quadrupole-quadrupole contribution to
the energy is not completely negligible relative to that
of the magnetic dipole-dipole. It is sufficient for our
purposes to consider the interaction of quadrupoles
having common symmetry axes or perpendicular sym-
metry axes. From elementary electrostatics the inter-
action energy per quadrupole in the former case is

E '= (1/8) Q' 2, 3r,"L35(s',/r', )'
—30(s,"/r ")'+3], (72a)

and in the latter case

E"=(1/8)Q'2 3 ' 'L35(' '/ ")'
—5(s,g+x;P)/r;/+1] (72b)

where Z and X indicate the symmetry axes of the
quadrupoles and

is the expected value of the quadrupole moment of a
given rare earth in the crystal. The expected value
indicated in Eq. (57) refers to the actual state of the ion
in the crystal, not that for MJ-= J given in Table I.
Summing the contributions of (72a) or (72b) gives

E'= (Q'/8) Y&i )'E, (74)
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where a is the lattice spacing. Summation over the sets
of three nearest neighbors gives an estimate of F for
quadrupoles along the (100j, $111),and t 110$ axes of
—31, +20, and +19, respectively, and for the "flop-
side" pattern I'g~ ———18.5. The neglect of further
neighbors introduces about a 10% error in the value of
E. We see that the Qopside pattern has a higher quad-
rupole energy than the (100) parallel quadrupoles.
Freeman and Watson" give (r')4r=0. 75, 0.70, 0.67 for
the tripositive ions of Tb, Ho, and Er, respectively.
Inserting these values and the lattice constant for the
phosphides yield

(e/g)(~2/ ) =0.«Z P.(e)"=. (75)

Inserting (P P2(0))'= (2/15)' as an overestimate for Ho
(Table I) we obtain for the difference of the "flopside"
and the antiferromagnetic (or ferromagnetic) quadru-
pole energies for HoP, Eq~@—E~~@(100)=0.24 cm ',
which is small in comparison with the dipole contribu-
tion Ern E&n=1.5—cm ', Eq. (66), justifying our
neglect of E in our previous discussion.

Finally, we come back to the question of distortion.
A careful examination of the data by Wilkinson et al.
yielded an indication that the moments in HoP may not
be strictly along the s or x axes, say, but rather that the
angle between the spin directions in adjacent (111)
planes has been decreased to about 87'. lt is easy to
show that with the assumption of cubic symmetry and
isotropic exchange interactions this angle should be
slightly increased beyond 90' in HoP. If we assume
the reality of this decreased angle then it provides
rather clear-cut evidence for not inappreciable non-
cubic distortion in these substances. "

The powder data does not indicate in which direction
the moments are tipped with respect to the cube edge.
However, the assumption that in the phosphides there
is a distortion along the L111"direction is attractive for
several reasons. Such a distortion (a) will yield a tip
of the HoP moments away from the cube edges towards
the L111j direction, (b) in accord with observation,
will leave the moments of TbP and ErP in the f111)
direction and the (111) plane, respectively, (c) will

lower the crystalline energy in the $111$ direction

"Nonisotropic exchange could also lead to such a result; how-
ever, such effects are probably not sufficiently large to yield a tip
angle of the order of 2'.

relative to that of the $111)direction in TbP, making it
unnecessary to invoke a sizable nonisotropic exchange
as in Eq. (67), and (d) it is very likely to reduce the
anomalously large Vs/V4 ratio which was found neces-
sary in the preceding section to account for the moment
values and directions of the phosphides when distortion
was neglected.

If we assume such a distortion then we must add a
term U2 ——P v2(r)P2(0&i&) to the right-hand side of Eq.
(2), where 8~~~ is the angle between the radius vector of
a 4f electron and the D11jdirection. In Eq. (10) there
will be added a term E2(xy+xs+ys), where E2= (v2(r))
X (Q P2(0))z. E2 must be taken to be negative in HoP,
and since according to Table I the quadrupole moment
of Ho'+ is negative we conclude that (w2(r)) is positive.
If we assume that the sign of the quadrupole potential is
correctly given by considering only the nearest neighbor
anions then the distortion is an elongation along the
L111j direction. With the addition of the V2 term to
Eq. (10) the bottom (in the case of HoP) will be shifted
away from the L001j direction an angle 8=E2—.'(2v21C4),
where we have neglected V6. For 9='v2/40 we get
K~——' (1/10) V4, and an over-all V2 splitting roughly 20%%uo

of that due to V4.
A recomputation of the crystalline field parameters

along the lines of Sec. VII but including V2 is now being
carried out in collaboration with F. Specht, and we
expect to report on the results in the near future.

VIII. CONCLUSION

We have presented a theory of the effect of strong
crystalline fields of cubic symmetry on the magnetic
ordering properties of rare-earth compounds. In the
last two sections we have applied the theory to the rare-
earth phosphide data, obtaining satisfactory agreement
except for an indication that noncubic terms in the
crystalline potential, which we discuss briefly, may be
of importance.
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