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The partition function method proposed by Feynman for pure liquid He4 and previously extended to
treat pure liquid He' by Kikuchi is here applied to liquid mixtures of He'-He . The variation of the A, point
with mole fraction He, the isotopic phase separation curve, and the excess functions of mixing are discussed.
The theoretical X line is interpreted as a cooperative boson transition an3 follows the experimental results
closely up to X3——0.5 irrespective of the effective mass of the He' atoms while above X3——0.5 the ) tempera-
tures are too high. An asymmetric isotopic phase separation is found in the mixtures at temperatures below
a critical temperature that depends slightly on further assumptions in the model but which is of the correct
order of magnitude (1'K). The phase separation is due to the quantum dynamical effects as opposed to the
purely statistical effects arising out of the different inherent symmetries of the wave functions for He' and
He4. The calculated excess Gibbs free energies of mixing become positive in "time" to effect the phase
separation but are less positive than the experimental values and are in fact of the wrong sign above 1'K.
The calculated excess entropies of mixing are much too positive. The model used assumes zero excess volumes
of mixing.

INTRODUCTION
' 'N 1953 Feynman' applied his path-integral method
~ - of quantum mechanics' to a system of He4 atoms
and essentially factored the partition function for the
system into two parts, one dependent on the quantum
statistics of the atoms, assumed to move in fictitious
motion through various permutations as free particles
with an effective mass, and the other factor dependent
on the actual interatomic potential and in particular on
the energy of the system at absolute zero. Assuming
the second factor to be a continuous function of
temperature, Feynman neglected it and, making a
random-walk estimate for the fictitious motions during
the permutations, showed that the Bose statistics of
He' atoms led to a third-order transition in the thermo-
dynamic functions, a result characteristic of an ideal
Bose gas.

One of us' improved the treatment of Feynman's
statistical factor for pure He4 by using a lattice model
for the permutations. The lattice served as a structure
on which permutation paths could be followed by the
quasifree atoms without excessive overlap of their
force fields and, thus, repulsive effects of the actual
potential were implicitly introduced. A second-order
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State University, 1960 and at the Seventh International Con-
ference on Low Temperature Physics, held at the University of
Toronto, 1960.
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' R. P. Feynman, Phys. Rev. 91, 1291 (1953).' R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).' R. Kikuchi, Phys. Rev. 96, 563 (1954); to be referred to as I.
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transition in the thermodynamic functions was obtained
which is in accord with experiment on the 'A transition
in He'. With the same approximations it was further
shown4 that pure He' atoms, treated as fermions, do
not exhibit a X transition.

The permutation types used in I needed extension in
order to discuss systems with bosons at temperatures
less than 1'K and this extension has recently been
developed' and used to treat the problem of pure He4 in
more detail.

In the present work the complete formalism of I,
II, and III has been applied to liquid He'-He' mixtures
in order to calculate the variation of the X point with
mole fraction He' and to determine the curve of isotopic
phase separation and to obtain the excess functions of
mixing.

THE PARTITION FUNCTION AND ITS
PARAMETRIZATION

We treat a mixture of E3 He' atoms and E4 He4
atoms with 1Vs+Ã4 E.The He' atom——s differ from He4
atoms by virtue of their statistics and differ among
themselves by having their nuclear spin 'up' or 'down. '

He4 atoms can only be permuted with other He4 atoms
as bosons and only He' atoms of like nuclear spin can
be permuted among themselves as fermions. The total
partition function of the system is

4 R. Kikuchi, Phys. Rev. 99, 1684 (1955); to be referred to as II.
It is worth noting that Professor Feynman's comment recorded in
Ref. 4 of this reference is equally valid for the present work.' R. Kikuchi, H. H. Denman, and C, L. Schreiber, Phys. Rev.
119. 1823 (1960); to be referred to as III.
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with Qp, the dynamical factor, incorporating an
unknown function of temperature Ep, being

Point Configuration Probability Weight (a. )ij
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In the above equations, Po denotes a permutation
among the bosons; I'~ denotes a permutation among
the fermions with spin +sr; Pe denotes a permutation
among the fermions with spin —~; m3'= effective mass
of a He' atom; m4'=effective mass of a He' atom;
Xs Xs/E, X4————1V4/X=1 —Xs. In obtaining Eq. (2)
we have combined the methods of II and III which
follow from Eq. (7) of Ref. 1. In this, the following
approximations have been made. The actual interatomic
potential which depends on z; has been replaced by a
modulating one, independent of z;, and absorbed into
the factor Ee in a form proportional to exp( —Up/ZT),
where Uo is the energy of the system at absolute
zero. Thus, we have electively free particles but with
masses greater than the actual masses of He' and He'
atoms. No lattice-model approximation has yet been
made but the partition function has been factored into
two parts: Qp, dependent on the dynamics of the
interatomic interaction and on the zero-point energies
but independent of statistics, and q, independent of the
dynamics but dependent on the quantum statistics.
Qp as function of T has been assumed to be continuous
and to have no eGect on the temperature of the X

transition in our mixtures. As we shall see, it is necessary
to consider it when calculating the isotopic phase
separation but for the moment we will concentrate our
attention on g.

The density function p(z& z&) is assumed to be
zero everywhere except for z's located on the sites of a
lattice with coordination number c, nearest-neighbor
distance d, and total number of sites E. It is then
possible to express q as the sum of the product of a
combinatorial factor times Boltzmann factors over all
possible distributions of polygons in space arising from
closed chains of permutations among permutable types

FzG. I. Point probability parameters. A represents He' atoms
with nuclear spin +$, B represents those with spin —-', . All
other single sites are occupied by He4 atoms taken up in various
kinds of permutation cycles. ~ represents a short side of length
equal to the nearest-neighbor distance. ——~ or --—represents a
long side. b, connects a long side with a short side. o is a lattice
point between two long sides. The weights are expressed in terms
of c, the number of nearest neighbors on the permutation lattice.

21 = ppg pps, — (3 1)

so as to be proportional to the excess of He'+s' spins
over the opposite type. In addition to Eq. (3.1) we

(i.e., He' only with other He' atoms, etc.) that lead to
different Boltzmann factors. The combinatorial factor
and the arguments of the exponentials of the Boltzmann
factors can be shown, as in II and III, to depend in
good approximation on parameters representing all
single-site and pair con6gurations that are possible
on the lattice on which the permutations are carried
out. The most important single term contributing to
the sum is then found and used in place of the entire
sum itself as is usually done in statistical mechanics by
minimizing an appropriate free-energy expression with
respect to the independent parameters.

The total number of point and bond con6gurations
are given in Figs. 1 and 2, respectively. The weights
assigned to the various con6gurations in terms of c,
the number of nearest neighbors, are the numbers of
different ways of obtaining a given configuration due
to the symmetry of the lattice. Ppp, for example, is
found by multiplying the number of ways of selecting
2 directions out of (c—1), i.e., (c—1)!/2!(c—3)!by a
factor 2 for possible interchange of left and right, and
by another factor 2 for the two directions of cylical
permutation possible. In the figures we distinguish
between short sides of polygons which are equal in
length to a nearest-neighbor distance d, and 'long' sides
which are of length equal to any lattice displacement
greater than d. An arrow indicates the direction of
permutation. At a triangle lattice point 6 a long side
meets a short side. An open circle O is a lattice point
where two long sides meet. In counting P,; in Fig. 2 the
two different directions for a long side (when there is no
arrow attached to it) are not counted.

We have a total of 39 parameters and de6ne a 40th f,
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have the following requirements:

xsr+cxss+c(c —1)xss+2cx34+xss= 1—Xs, (3.2)

xt+xs= Xs) (3.3)

xt y&+ys+y43+ (c—1)y43+ (c—1)(c—2)y43

+2 (c—1)y44+y46, (3.4)

xs= ys+ys+y»+ (c—1)yss+ (c—1)(c—2)y»
+2 (c—1)y64+yss (3.5)

x3$ y4&+y»+yet+ (c—1)yss+ (c—1)(c—2)yss

+2(c—1)yss+ysto, (3 6)

x» ——y43+yss+yss+ (c—1)yss+ (c—1)(c—2)yss

+2 (c—1)ysr 3+ysts (3.2)

(3.8)&32 $64 p

xss —y43+yss+yss+ (c—1)yss+ (c—1)(c—2)ysv

+2(c—1)ysrs+ysr4, (3.9)

xss= (c—1)yss+ystv, (3.10)

x34——y44+y64+yss+ (c—1)ysr &+ (c—1)(c—2)yst3

+2(c—1)ysls+ysls (3.11)

xs4= (c—1)ysrv+ysrs &
(3.12)

x»= y46+y»+ysrs+ (c—1)ys»+ (c—1)(c—2)ys]4

+2(c—1)ysrs+ys&3. (3.13)

Equations (3.2) and (3.3) represent the correct counting
up of He' and He' atoms, respectively, and their sum
gives the proper normalization of single-site probabil-
ities. Equations (3.4) through (3.13) are consistency
requirements derived in each case by equating the
number of lattice sites of given type to the total number
of such sites involved in the pairs. The normalization of
pair probabilities follows from Eqs. (3) and is not an
independent requirement. Because of the 13 Eqs. (3),
only 27 of our 40 parameters are independent.

We approximate the total combinatorial factor Gz in
the pair approximation of Kikuchi, '

Pafr Confteurotlon

4-A

A-S

S-S

Ay

AQ(

S ~

B ~
3 f'

~ 0

o

l

C(

Probabt11ty

Y2

~43

~45

Q5

~61

&63

~65

41O

~613

"616

~618

~619

W636ht Q }

2(c-1)

2 (c-1) (c-2)

4 (c-1)

2H)
2(c-1) (c-y

4 (c-1)

2 (c-1)

(c-1)2

2 (c-1) (c-2)

2{c-1) (c-2)
2

(c-1) (c-2)
2 2

2 (c-1)2

4 (c 1)

2f -1)

4(-1) (.-2)2

2(c-1) (c-2)

4 (c-I)2

4 {c-1)

4(.-1)

where

Gr =GGls, (4) FIG. 2. Pair probability parameters. Conventions as in Fig. I.

boson permutations and reads as (see III):
lnG= N(c —1)g x, lnx;+N(c —1)P rrs, xs; lnxs,

/max

lnG&, =N 1nN —N+ p N3(lnN3 —lnN3), (5.2)
Xc 3 Xc 5——P P,y; Iny; ——P P4;y4; lny4,

i=1 2 i 1

with
lmaz

l)d

Q Nr= N(cx34+xss)N—
l)d

(6.1)Sc ~ 19——Z Ps'ys'»ys' ZP6'ys'—ln—ys' (5 1) and
2 i=1 2

Nr= (Cx34+xss)N3(0) (6 2)
and Gl, is the factor coming from long side jumps in ~

h h g d t th t t l Q fin w ic l enotes the total number of sides in a
configuration having length / between two He4 atoms

' R. Kiknchi, Phys. Rev. 81, 988 (}951). and El&'& is a purely geometrical number giving the
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number of sites which lie at a distance / from a certain
lattice point.

THE FREE ENERGY AND ITS MINIMIZATION

The Helrnholtz free energy F is given by

F= kT ln—Q.

sums expressible in terms of theta functions~ and
dependent also on the lattice used for the permutations
and a3=mg'kT/2A', with k the general vector of the
lattice reciprocal to the space lattice used for permuta-
tions. We will replace P), lnB(kk) with

+1/2

As shown in (I—II—III), when the sum that is Q is re-
placed by its maximum term, the minimum free-energy
expression has virtual potential energy terms corning
from permutations along polygon sides for the bosons
of the form

(c/Vr4)kT/y64+ (c—1)'y68+y()&8+2 (c—1)y())7$

where

—&/2

dxdyds lnB (kk),

0.= 1 for a simple cubic space lattice,
= 2 for a face-centered cubic lattice,
= 4 for a body-centered cubic lattice.

7o
lmax

+ P kT r4/V(, —
l)d

an energy term coming from fermion permutations

kT P ln—B(k,k),

a magnetic energy contribution

2//(IZJ)/f, —

In addition, there are, of course, terms from the log-
arithm of the complete combinatorial factor.

The symbols in the term arising from fermion
permutations will now be explained using further
notation defined explicitly in II. In considering the
formulation of the determinant that enters into the
sum over He' permutations it seems that we should
always take the origin to be at one of the He' atoms so
that (in the notation of II) p (origin) = 1 always, even
in the limit that X3~ 0 because then, as will be seen
below, the equations reduce consistently to those for
pure He4. In any case the difference between an assem-
bly of pure He4 and one with He4 atoms plus one He'
atom should be of no significance. YVe, thus, use

p(origin) = 1, (9.1)

p(nearest neighbor) =y&+yz=—p(d), (9.2)

p(further neighbor)=p„= x)2+xm'. (9.3)

We then express the B(kk) of II after an appropriate
unitary transformation as

B(kk) =P{expl —(a3l xl'+2mik x)g)

X{P(l*l)—P.}+P„B(kk), (10)

in which B'(kk) is the value of B(kk) when all spins
are aligned in one direction and is a function of certain

with H the external magnetic field and p the nuclear

magnetic moment of He', and z4, a dimensionless ratio,

r4= ( r/d/4'kT/2A') .

The reason for division by the integer 0- is that 0- is the
number of sites per unit cell of the lattice reciprocal
to the space lattice used. In Eq. (11) and in the equa-
tions below for the B'(kk), x, y, s, are variables of
integration equal to /(/L, 7/L, p/L, respectively, where
g, A. , p are integers relating to the components of the
general reciprocal lattice vector and L= (1V)'/'.

Selecting 27 independent variables out of our 40
parameters and using Eqs. (3) and (9) in Eq. (10),
we find

B(kk) = (1——,'X32—2p)+ (-'X '+2p)B'(kk)
+2e—"(Q cos) {X,—AX,'—2P—2y, —y„—y»
—(c—1)y42 —(c—1)y52 —(c—1)(c—2)y43
—(c—1) (c—2)y» —2(c—1)y44
—2 (c—1)y54 —y45 —y»), (12)

in which
ra—=uad'= ma'd'kT/2h' (13)

a,nd (P cos) is a factor which is a sum over cosines
dependent on the lattice used.

Recalling that x, y, s, without subscripts are integra-
tion variables and not probability parameters, it is
convenient to collect here the forms assumed by
(Q cos) and B'(kk) for different lattices:

Square lattice (c=4)

(P cos) = cos2~x+cos2vry, (14.1)
B'(kk) =83(x,e ")(73(y,e "). (14.2)

Simple cubic lattice (c=6)

(Q cos) = cos2m.x+cos2~y+ cos2~s, (14.3)
B'(kk) =83(x,e—' )83(y,e ' )63(s,e—' ) . (14.4)

Body-centered cubic lattice (c=g)

(Q cos) = cos2vr(x+y+s)+cos2x( —x+y+s)
+cos2n. (x+y—s)+cos2s (x—y+s), (14.5)

B'(kk) =83(2x,e ('/3)")83(2y&e ("')'8)8&(2s&e ('/"'&)

+(7s(2x e—(4/3)~3)y2(2y e—(4/&) a)t)2(2s e
—(4/3)~3)

(14.6)
7 See, for example, E. T. Whittaker and G. N. Watson, Modern

Analysis (Cambridge University Press, New York, 1927), 4th ed. ,
Chap. 21.
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Face-centered cubic lattice (c= 12) The meaning of E~&') defined in connection with Eq.
(6.2) permits us to express B in terms of more theta
functions this time with arguments depending on r4
(see III). We have for the simple cubic lattice (c=6)

(Q cos) =cos27r(x+y)+cos2pr(y+s)+ cos2m (z+x)
+cos2m (x—y)+cos2ir(y —s)+cos2n. (s—x),

(14.7)
(19.1)B=[8s(0,e—'4)]'—1—6e—'4,B'(kk) =Ps(2x, e '")8s(2y, e '")6s(2s,e "')

++s(2x,e "')~ s(2y, e '")&s(»,e '")
+Ps(2x, e "')sos(2y, e "s)s)s(2s,e "s)

+s)s(2x e "')es(2y e "')s)s(2s,e "')
The final expression for Ii' isTwo different types of theta functions appear in Eqs.

(14) and the different arguments should also be noted
carefully. Equation (14.7) is a corrected form of Eq.
(5.7) of II in which some terms were omitted by the
printer.

Ke will not be able to combine the face-centered
cubic lattice form with our counting of boson permuta-
tions since the boson counting is not valid for lattices g&T
in which there are pairs of nearest neighbors among the
nearest neighbors of a given site. Nevertheless, the fcc
equations are included for completeness with regard to
the case of pure He'.

We may finally write down the free-energy expression

F'/kT=Ã(cxss+xss) (1—lnB —ln(cxs, +x„)). (20)

Then using Eqs. (15) and (5.1), the total free energy is

+1/2—lrsgp 2pH 1

E kT
dxdydz lnB (kk)

—1/2

2 5—(c—1)P x, Inx,—(c—1)g ns,x„lnx„.

C c
+—Q p;y, lny~+ —g p4,y4, 1ny4;

2 i=1 2 i=1as

and for the body-centered cubic lattice (c= 8)

(1 )
B=[ys(0 e

—(&/s)~4) js+[gs(0 e
—(4ls)~4) js 1—8e—~4 (19 2)

= —inQp—
2pNH1 N

+1/2

—1/2

dxdyds lnB (kk)

c C 19

+- Z ps,ys, lnys, +- 2 ps,ys; »ys;
2 i=1 2 i=1

+cr4[ys4+ (c—1)'yss+2(c —1)ys17+ysls]

where

lnG+Ncrs[—ys4+ (c—1)'yss+ysis

p/

+2 (e—1)y sly)+, (15)
kT

F' &-- P
= P r4 Ni+N N—lnN—

kT t&& d'

Lmax lmax

—g Ni(lnNi —lnNi) —X[N—2 N&3, (16)

&z=Es exp (17)

Summing both sides of Eq. (17) over all /)d and
using Eq. (6.2), the multiplier X is determined by

lmax

B=Ne&"+') = ( Q Ni—")e ""t"')—1—ce ", (18)
Z&0

in which a new quantity 8 has been defined. The 8 in

Eq. (18) is not to be confused with B(kk) from Eq. (12).

and Ii in the last term of (16) is a Lagrangian multiplier
for the condition (6.1). The only dependence of F on

Ni is in F' so that we first minimize P (i.e., F') with
respect to X&. The process is precisely the same as in
III. We find

t2

+[cx34+xss][1—lnB —ln (cxs4+ x»)] . (21)

This is a function of the parameters given in Figs. 1
and 2 and 1' defined by Eq. (3.1). The 27 independent
parameters were chosen to be I", x», ys, y4i, y42 yss, ys4,

y45 y51 y52 y53 y54 y55 y63 y64 y66 y67 y68 y69 y611

y6», y6]3 y6]4 y6]5 y616) y617 and y6». The 13 dependent
variables are expressed in terms of the independent
ones and this substitution is made in Eq. (21) for the
free energy which is then minimized with respect to
each of the 27 independent variables in turn leading to
27 higher order algebraic equations which must be
solved simultaneously.

Minimizing first with respect to 1 it is easily seen
that, for vanishing external magnetic field (II=0), 1 = 0
is a possible solution. Ke have chosen this case as
appropriate, thus, ruling out any ferromagnetic possibil-
ity. This is in accord with all the known data on pure
He' and its mixtures with He'. We will take t =0
throughout the rest of this paper and write B(kk)p to
indicate that )=0 in Eq. (12).

Next, minimizing with respect to y4i and y5i there
results the 5 relations

ys" = ys" (yi/ys),

which when substituted into Eqs. (3) requires that
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as is the case in pure He'. This, in turn, leads to

n = (c—1)+(ssio/sss)'",
in which

Further details of the algebraic manipulations will be
omitted and only the 6nal results given. They appear
in terms of two new variables n and y, whereo. is defined

Minimizing with respect to y2 we are led to the
relation

9"»'It 4
—1nI
2 &ygg i

+1/2
dXASydZ

e-'g (Zcos) .
B(kk)o

ss;=ys, /ysy for s=2, 3) ' ' '~ 19
~

and y is deined as

v = 1+2(yg/ysi)'ig.

(24)

(25)

The minimization with respect to the remaining 15
variables follows closely the procedure used in III.

The 6nal results are the following two simultaneous
equations for e and y.

En (c——1)){Eug —(c—1))(n+1)'e "—uEng (y —1)+2'—(c—1)(y —1))}8—
(1—Xs)n(n+1) En' —(c—1))

(26)

c t'yi) 2
-ln
2 Kygi

+/
dhdydse 'g(icos)

B(kk)g—j./2

(27)

with B given by Eqs. (19) and (y&/yg) and B(kk)o given explicitly in terms of n and y by

(yz) 2Xse "Eng (c—1)]—(n+1)g—4Xse "png —2(p —1)ne '4En' —(c—1))+(p—1)'(1—Xg)En' —(c—1))
(28)

ky, ) (1—Xs)Eu' —(c—1)](v—1)'

and

B(kk)o ——(1——,'Xsg)+-,'XggB'(kk)+2e —'gXs(g cos) (1——,'X,)
(2e "(Q cos) (y —1)En——,'(y —1)e'4)(1—Xs)En —(c—1)7}

(29)
{Eng (c 1)7(n+1)'e " uEug(y 1)+2' (c 1)(y 1))}

Upon solution of these equations, the probability yss=yss=yslsslo(y —1)/2,
parameters may be found as follows:

e'4(1 —Xs)En' —(c—1)]

(30.14)

$$—$2—2~ 3 )
lM

*sr=ysi(e ")u,

&ss=ysissg(e ")u,

*ss=ysisss(e ")u,

&84 yslssg (e )u

&ss=ysissio(e ")u
&

X3 y2
E2ue "—(v—1))

(v-1)

yg = (v—1)'ys~/4,

ysg
——ysg ——ysg(y —1)/2,

ysg —y4g —ysgssg (y —1)/2,

yss ——y4s ——ys, ess(y —1)/2,

yss= y44=ysissg(v —1)/2,

(30.1)

(30.2)

(30.3)

(3o.4)

(30.5)

(3o.6)

(30.7)

(30.8)

(30.9)

(30.10)

(30.11)

Z62= 8

Z63 Z62 )

Z64= t,' '4

e "En'—(c—1))—nv

nEn' —(c—1))

Z66 Z62Z65 )

Z67= Z6

Zss= Zas& ",
ssg =En (c—1)]sos,

(30.12) &slo Eu (c—1)7'&os,

(30.13) soya =zsgssg,

y„={En'—(c—1))(u+ 1)'e-

—nEng (y —1)+2yn —(c—1)(7—1))}—'
(30.15)

(30.16)

(30.17)

(30.18)

(30.19)

(30.20)

(30.21)

(30.22)

(30.23)

(30.24)

(30.25)
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Z612 Z62Z610 )

Z613 Z65Z69 )

Z814= Z85Z610 )

Z615 Z89 Z814 )

Z616=Z89Z610 )

(30.26)

(30.27)

(30.28)

(30.29)

(30.30)

sp yr ——[n—(c—1)]e-'4sp p,

sp~p=[n —(c—1)]'e '4spp,

Z819 Z610 ~

(30.31)

(30.32)

(30.33)

When these results are substituted into Eq. (21)
we have

+1/2—lngp 1

—1/2

Xp) c
dxdyds lnB(kk)p —(c—1)X& ln ~+— Xp —(p—1)yp& ne "—

2)
(y —1)-

2

Xln
Xp (y —1)

0'.8
2 2

(v- 1) c (v —1)' C

+—(p —1)'yp& ln yp&
—(c—1)(1—Xp) lnx»+ —(1—X&) lnyp&

2 4 2

(v—1)
+cx34+xpp+c[e "n—(p—1)](y —1)yp& ln —

yp&
—-(y—1)yp&[e "n—(p —1)) 1nyp& ~ (31)

2 2

g+(&4)x—
n' (c—1)—

(32)

THE X, POINT AND ABOVE

As T and, thus, v4 is increased from zero it can be
seen from Eq. (30) that a T is reached at which ypp

and, thus, also x» through x», y43 through y45, y53

through y55, and y88 through y6» all become zero. Any
further increase in T would result in negative values for
these probability parameters which is not possible.
Hence, this point is associated with the X transition.
Note that the only polygons describing He4 permuta-
tions that can be used above the ) point are the double-
sided ones. The condition for the X point is obtained
from Eq. (30.19) and is

Thus, Eqs. (32)—(34) serve as three simultaneous
equations for the three unknowns Tq, nq, yq in a mixture
of given X3.

For temperatures above the X point for a given
mixture, we must set all probability parameters equal
to zero except x1 x2 x31 x32 yl y2 y3 y41 y42 y51 y52

y„, y„, y„, yp4, and f. Then, of course, many of the
Eqs. (3) and many of the 27 equations found by
minimizing Ii in Eq. (21) become trivial identities and
another set of solutions can be found for the 16 remain-
ing parameters enumerated above. These solutions
are given in terms of y defined by Eq. (25) and
a new parameter r, where r is the positive square root of

r'= y'+4(c —1)e-"4 (35)

Using Eq. (32) in Eqs. (26) and (27), the n and y at
the ), point are found from

[n—(c—1)][n'+1+ c(v—1)]
(B)~=

(1—Xp) (n+ 1)Ln' —(c—1)]
—(V+r)e+'4-

(36)

It should be noted that the parameter 0. used in the
equations below the X point does not enter the equations
above X point although at the X point itself it is easy to
show that

(33)

c (yy) 2
-ln] —

[
=-

&y2&, ~ —1/2

+1/2
dxd dze—&'»&~~ cos Above T& the single equation that must be solved

B(kk)
. (34) for p is still Eq. (27) but now its component parts have

changed. Namely,

and

(yq) 2Xp[2(c—1)+c(r—y)]—(y —1)(r+1) (r—y) (1—Xp)e"4

Ey, & (y—1)'(1—Xp) (r—y)e"4
(37)

e "(P cos) (y —1)(r+ 1)(r—y) (1—Xp)e"4
B(kk)p ——(1—-,'X ')+-'Xp'B'(kk)+2e "Xp(g cos)(1—-', Xp)—

[2(c—1)+c(r—y)7
(38)

Using Eq. (32) it is not difficult to show that at the 'A point Eqs. (37) and (38) are identical with Eqs, (28)
and (29), respectively, so that y and, thus, all the probability parameters are continuous at Tq.
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The probability parameters above Tq are then given mixture equal to
by

=0
v =Xsvs+Xtvt,

lmF1=/2= 2~3)

2(c—1)y, ie
—"4

(r —V)

~32 $61e )

y, =y, = -',X,——,'y61(y —1)(r+1),

y =lh —1)'ysi,

y41 y51 y61(7—1)/2,

y42 y52 y61262(Y 1)/2

(39.2)

(39.3)

(39.4)

(39.5)

(39.6)

(39.7)

(39.8)

Lvt+X, (v,—v4) jsts,
2/3

(42)

with P=1.0 for a simple cubic lattice and p=46X22ts
=1.19055 for a body-centered cubic lattice and where

vt is the molar volume of pure isotope j and S is
Avogardo's number. We have further chosen char-
acteristic values for the molar volumes of the pure
components appropriate to the pressure of their
saturated vapors at the X point of pure He4 and below
and assumed them temperature-independent for
simplicity. Our values are

e'"(1—Xs) (r y)—
$61=

2(c—1)+c(r—y)
(39.9)

v3=37.7 cm' mole '

v4=27.5 cm3 mole '
(43.1)

(43.2)

From Eq. (13) we see that
39,10262= (»—7)/2(c —1)

~63 ~622
j3—7@3 7S4 'T4 ~

(39.11)

(39.12)S =e 2'4.64

When these results are substituted into Eq. (21) we

have an expression for the free energy above T~ ..

It is, thus, also necessary to specify m3' and m4'. The
latter, which is the effective mass of He' atoms, is
chosen so that the experimental X point in pure He'
under its saturated vapor pressure (2.172'K) is obtained
in the limit of X3=0. This effective mass is

lnQ6 m4' = (1.648)m4 for simple cubic lattice (45.1)

XkT .V = (1.671)m4 for body-centered cubic lattice. (45.2)

+1/2
1

—1/2

X3
dgdydz lnB (kk) 6

—(c—1)Xs ln
2

Two choices were made for m3' ..

ms' ——(5.25)ms,

ms' ——(2.00)m, .
(46.1)

(46.2)

—(c—1) (1—Xs)lnxs 1+c
X3 $61

(7—1)(r+1)
2 4

Xln
X3 $61

h —1)(r+1) +c
2 4

h —1)'
$61

(v-1)' c (V—1)
Xln y„+—ysi(y —1)(r+2 —V)ln

4 2 2

C

+—ysit 4e "4+»2+2»y+8y —3y2 —4) lnysi. (40)
8

SOLUTION OF THE EQUATIONS

All the necessary equations given in the preceding
sections of this paper have been solved numerically
by the electronic digital computer, mANIAc II, at the
Los Alamos Scientific Laboratory. Certain parameters
had first to be selected. From Eq. (8) we see that d',
the square of the nearest-neighbor distance enters the
calculation. In expressing this we have neglected any
vohrne changes on mixing and set the volume of the

Equation (46.1) was found necessary by Kikuchi in lI
to best 6t the nuclear magnetic susceptibility data of
Fairbank, Ard, and Walters' in the case of permutation
counting in pure He' on a simple cubic lattice. Equation
(46.2) has been suggested by the specific heat measure-
ments of Brewer, Daunt, and Sreedhar. '

The results for the X temperatures as a function of
X3, still not considering a possible phase separation, are
tabulated in Table I. It is gratifying to note that these
temperatures do not essentially depend on the arbitrary
permutation lattice chosen nor even on the choice of
the He' effective mass. These results are more in accord
with the experimental results of Zinov'eva and Peshkov"
than with that of Elliott and Fairbank" or Roberts and

W. M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev.
95, 566 (1954).

'D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev.
115, 836 (1959)."K. N. Zinov'eva and V. P. Peshkov, Zh. Eksperim. i Teor.
Fiz. 37, 33 (1959) /translation: Soviet Phys. —JETP 10,22 (1960)g."S.D. Klliott, Jr., and H. A. Fairbank, in EroceeChngs of the
Fifth Internrttt'onal Conference on Low Ternperrctttre Physt'cs, 1957-,
edited by J.R. Dillinger (University of Wisconsin Press, Madison, .
1958), p. 180.
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TABLE I. Theoretical ) temperatures in He'-He liquid mixtures
as function of X3 neglecting possible phase separation. ~ Zinov'eva and Peshkov f959)

oElliott and Fait bank(1957)

Permutation
lattice

1
m4
m3 I

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0,35
0.40
0.45
0.50
0.55
0.60
0.65
0,70
0.75
0.80
0.85
0.90
0.95
1.00

sc
1.65 m4
5.25 m3

2'('K)

2.172
2.099
2.026
1.954
1.880
1.806
1.731
1.655
1.577
1.497
1.415
1.329
1.240
1.147
1.047
0.941
0.824
0.695
0.545
0.359
0.000

sc
1.65 m4
2.00 m3

T('I)
2.172
2.099
2.026
1.954
1.880
1.806
1.731
1.655
1.577
1.497
1.414
1.328
1.239
1.144
1.044
0.937
0.821
0.691
0.543
0.358
0.000

bcc
1.67 m4
2.00 m3

2.172
2.101
2.030
1.958
1.886
1.813
1.739
1.663
1.585
1.504
1.421
1.334
1.242
1.146
1.044
0.934
0.815
0.684
0.534
0.350
0.000

2.0

1.6

T( K)

1.2

0.8

0A

0
0 .2 .4 .6 .8 1.0

Sydoriak. " Since, however, the first mentioned results
are believed to be too high" our theoretical results
are certainly too high for X3)0.5. A graphic comparison
is given in Fig. 3.

The X line is seen to go to zero only when X3——1.
Hecht's" prediction that the X line could go to zero
with a finite fraction of He4 atoms present is seen to be
incorrect since it was based on the limited type of
permutation cycles used in I and neglected cycles
involving jumps of a long-range nature on the permuta-
tion lattice. It is just these long-range cycles that are
of importance when the temperature is less than 1'K as
shown in III. The situation is analogous to the case of
Curie points for dilute ferromagnetic materials for which
it is known'5 that only if the interaction is strictly
nearest-neighbor can the Curie point vanish with a
nonzero mole fraction of ferromagnetic centers.

In order to look for an isotopic phase separation at a
fixed temperature, it is necessary to consider the second
derivatives with respect to X3 of 6, the Gibbs free
energy, which for a condensed phase is essentially
equal to F given by Eq. (7). If this second derivative
is always positive as X3 varies from 0 to 1, there is no
phase separation. If in part of the range the second

'2 T. R. Roberts and S. G. Sydoriak, in Proceedings of the Fifth
International Conference on Low-TemPerature Physi cs, 1957,
edited by J.R. Dillinger (University of Wisconsin Press, Madison,
1958), p. 170.

"T.R. Roberts and S. F. Sydoriak, in Proceedings of the 5econd
Symposium on Liquid and Solid Helium Three, Columbus, Ohio,
1960, edited by J. G. Daunt (Ohio State University Press,
Columbus, 1960), p. 173.

' C. E. Hecht, Physica 24, 584 (1958)."R.Brout, Phys. Rev. 115, 824 (1959).

FIG. 3. The theoretical X line in He'-He4 liquid mixtures as
function of X3 for the simple cubic permutation lattice with
effective mass ratio (ma'/er4')=2. 40. Various experimental X

temperatures and phase-separation temperatures are also shown.

derivative is negative, a phase separation has occurred
and the separated mixtures that are in equilibrium are
determined by the two X3 values outside of the negative
second-derivative region for which the first derivatives
of G with respect to X3 are equal, i.e., by the points of a
common tangent. "

Tabulated quantities related to the free energy were
produced in terms of the quantity E,

F lnQs
E~= +

EAT ~V

m3'—-', X3 1n
S$4

+Xs lnXs+X4 lnX4. (47)

where E. is the gas constant. At any fixed temperature
T as we vary Xs, we compute E from Eq. (31),as long as
X3 is such that the fixed T is below the X point of the
mixture. When the X3 is large enough and if our fixed T
is below the Ty of pure He4, we will reach a range of X~
values for which the fixed T is above the P point of
the mixtures and Eq. (40) must be used to compute E.

' I. Prigogine and R. Defay, Chemical Thermodynamics,
translated by D. H. Everett (Longmans Green and Company,
London, 1954), Chap. 16.

For one total mole of mixture, using the tilde to indicate
molar quantities, identifying F of a condensed phase
with G, and using Eq. (2.1), we obtain

G —pm4'kT s~'

+ln (
Ep'~~

RT k 2x-h'
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If we neglect the possible X3-dependence of the dynam-
ical quantity Ev in Eq. (48), the second derivative of
E with respect to X3 will be the second derivative of 6
with respect to X3 at any constant temperature.
Analysis of our results shows clearly that this neglect
gives second derivatives which are always positive no
matter what the temperature. This indicates no
isotopic phase separation due to quantum statistical
effects alone and in fact shows that these effects favor
an ordered mixture of the isotopic species as the
temperature approaches absolute zero, since the molar
excess Gibbs function (see below), neglecting the Xs
dependence of Ep, is negative.

and yields

where
Es ~exp (—c&Xs/T) exp (csXs'/T),

cr= s(eo4—e44)/k,

cs——sW(0)/2k,

(52)

(53.1)

(53.2)

and k is Boltzmann's constant. Furthermore, using
a Lennard-Jones form for the e;, and the helium
parameters"

(e/k) = 10.22'I, Eo'= 1'0.06 cm'/mole, (54)

the lattice energy per like pair is

ISOTOPIC PHASE SEPARATION CURVE AND
EXCESS FUNCTIONS OF MIXING Gii 46

y4(v;*)4 y'(v a)
(55)

ys4 ——Xs(1—Xs) (51)
'7 I. Prigogine, R. Bingen, and A. Bellemans, Physica 20, 633

(1954).
' I. Prigogine, Molecular Theory of Solutions (North-Holland

Publishing Company, Amsterdam, 1957), Chap. 19.

In view of our result that the quantum statistical
effects do not lead to isotopic phase separation, we
assume the inherent cause of the experimentally
observed separation to be due to the difference in
zero-point motion of the two isotopes which is empir-
ically manifested by the difference in molar volumes
given by Eq. (43). In this we follow the interpretation
of Prigogine et a/. ,

""in principle, but not in detail.
It is necessary to make a crude estimate of the func-
tional form of Ep. Without committing ourselves
on the complete temperature dependence of Ep, we
follow Feynman' in assuming Ep proportional to
exp( —Uo/RT), where Uo is the energy of the system
at absolute zero. The dependence of Ep on X3 may be
estimated by expressing Uo as a sum of nearest neighbor
pair energies on a formal space lattice (not to be con-
fused with the formal lattice used earlier for counting
permutations). The result is

Uo=-,'E's((1—X3)C44+ W(0)y34+Xse33) (49)
where

W(0) = 52es4 —e» —e«3, (50)

z is the number of nearest neighbors, and y34 is the
probability of a He'-He4 pair. Effective pair potentials
e;; have been introduced because of the diferent molar
volumes of the pure components and of the mixtures
as determined by Eqs. (41) and (43). This part of our
theory is clearly semiphenomenological. We proceed
as if we had no phase separation until we note in a
certain region of the T-X3 plane that we obtain
unphysical results, i.e., (O'G/BXos)v less than zero and
then conclude that a phase separation has occurred.
Hence, as the simplest approximation we can assume
that the distribution of the isotopic species prior to
phase separation is completely random. This means
making a Bragg-Williams approximation for Y34

such that

with

and
v;*=v 03 (56.1)

(56.2)

where v is the volume per atom and c is the nearest
neighbor distance on the space lattice. The average
pair energy in a random mixture may be denoted by
ex„where

eg, ——4e
-y'(v )' 7'(v )'-

=2X3(1 Xs)e34+X3 e33+(1 X3) e—44. (57)

From Eq. (57) es4 and, thus, W(0) and, thus, cs can be
estimated for any simple space lattice. There is some
ambiguity in this estimate depending on the X3
value chosen and, hence, the average of the limits as
X3—+ 0 and as X3~ 1 was chosen as the appropriate
value. The results for cubic space lattices are

fcc c2= 3.1 K)

sc c2= 2.4'K,

bcc c2= 2.3'K.

Equations (48) and (52) lead to

/8'(C/RT) ( O'E i 2cs

rlX ' v trlXs'jv T

(58.1)

(58.2)

(58.3)

(59)

'9 J. de Boer, in Progress As Low-Temperature Phys&cs II, edited
by C.J.Gorter lNorth-Holland Publishing Company, Amsterdam,
1957), Chap. 1.

so that with c2 positive phase separation is possible if
T is low enough, even though the first term on the
right of Eq. (59) is always positive. It is of interest to
write down an expression for the molar excess Gibbs
function of mixing. This is defined as

C~ G Gso X4G4o—Xs lnXs —X4 lnX4 —Xs —,(60)
ET RT ET ET
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TABLE II. Theoretical critical He mole fractions X3, and TABLE III. Comparison of experimental results with rough
critical temperatures T, for isotopic phase separation as function theoretical X& values for coexisting liquid phases below T, using
of permutation and space lattice model combinations. a simple cubic permutation lattice with eBective mass ratio

(ms'/m4') =0.914 and a body-centered cubic space lattice.

Permutation lattice sc
Effective mass ratio 2.40

Tc X3c

sc
0.914

Tc X3c

bcc
0.902

Tc X3c
7'('K)

Coexisting X3 values

Theory Experiment

Space lattice
fcc
sc or bcc

1.3
1.0

0.57
0.57

1.2
0.9

0.56
0.56

1.2
1.0

0.56
0.56

0.8
0.7
0.6

0.40—0.80
0.30—0.88

0.472 —0./40
0.365—0.805
0.290—0.860

where G,' is the molar Gibbs function of pure species i.
From our previous expressions we have

t'G ~ c
l +—Xs(1—Xs), (61)

I ZT) &ZT) T
where

l

=E Xs lnXs ——X4 1nXs XsEs —XsEs —(62)
(
t ZT)

and
Es lim (E)——,

X3—+1

E4——lim (E).
X3~0

(63.1)

(63.2)

The primed quantity arises from the quantum statis-
tical effects and is always negative. We note that
assuming the proportionality in Eq. (52) we can
obtain C~ without any ambiguity from Eq. (61) since
the natural logarithm of the unknown proportionality
function which spay depend on T is cancelled in the
subtractions of Eq. (62). The molar excess entropy of
Inixing is given by

or

(BCs~=—
E aT )z,x,

(64.1)

H~ GE+TS (65)

A numerical analysis of the results of the machine
calculation for the E function of Eq. (47) using the
methods of Ref. 16 was carried out to obtain critical
He' mole fractions X3, and temperatures T,. The
experimental results for phase separation, based on the
work of Zinov'eva and Peshkov" and Sydoriak and
Roberts'0 and also shown in Fig. 3, show a critical
point of 0.88'K at X3,=0.64. Our results are given in

"S.G. Sydoriak and T. R. Roberts, Phys. Rev. 118,901 (1960).

(BE) (BE,)
+XsTI

t BT)I,x, E aT)J*

t'BE l f G 'i'
+(1—X,)Tl

l

—
l

—l, (64.2)
t aT)r ERT)

'

and the molar excess enthalpy of mixing is obtained
from

Table II and depend on which combination of permuta-
tion and space lattices were chosen for the calculations.
We cannot really differentiate between use of an sc
or a bcc space lattice since their cs values from Eq. (58)
are so close. The fcc space lattice leads to T, values that
are too high. Perhaps this is connected with the
fact that the eight nearest neighbors on a bcc
lattice are more in accord with the actual spatial
arrangements in liquid helium as revealed by neutron
scattering work, " which indicate that on the average
there are 8.5 nearest neighbors, than are the twelve
nearest neighbors bn a fcc lattice. It is satisfying to
note that our calculations predict an asymmetric phase
separation curve and in the right direction (Xs,&s).
This asymmetric effect arises in these calculations only
from the quantum statistical terms but this is probably
an artifact of our crude treatment of the dynamical
terms and as we shall see below a better treatment of
these dynamical terms is certainly required to arrive
at correct excess entropies of mixing. In the Prigogine"
theory of isotopic mixtures, which neglects the effects
of quantum statistics, the simplest expression for the
excess Gibbs function (Eq. (19.3.7) of Ref. 18] leads to
an asymmetrical phase separation but shifted to the
wrong side, i.e., X3,&—,. This result of the Prigogine
theory has only become calculable since the publication
of compressibility data"" on the pure isotopes.

It is extremely dificult to estimate numerically by
the method of common tangents the X3 values for the
two liquid mixtures that are in equilibrium at any
given T below T,. Hence, we shall not attempt to plot a
theoretical phase-separation curve. We were premature
in doing so in our report to the Toronto Conference'4
and, in fact, the Evalues on which that phase separation
curve was based have since been revised. Taking the case
of sc permutation lattice with effective mass ratio, '4'

(ms'/m4') =0.914 and bcc space lattice for which the T,
is 0.9 K, we compare in Table III some rough estimates

s' D. G. Hurst and D. G. Henshaw, Phys. Rev. 91, 1222 (1953);
100, 994 (1955).

2' H. L. Laquer, S. G. Sydoriak, and T. R. Roberts, Phys. Rev.
113, 417 (1959)."R.H. Sherman and F. J. Edeskuty, Ann. Phys. (N. Y.) 9,
522 (1960).

s' C. E. Hecht, R. Kukuchi, and P. R. Stein, in Proeeedswgs of
the Seventh International Conference on I.ou-Temperatlre Phd cs,
edited by G. M. Graham and A. C. Hollis Hallett (The University
of Toronto Press, Toronto, 1961),p. 637.

I'Note added sss proof This mass rati.o corresponds to ms'=
2.00 ms in (46.2) together with ms' in (45).
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of the coexisting X3 values with the experimental
results. Both our calculations and the experimental
results show that the phase separation line for He'-rich
mixtures approaches the temperature axis, as T —& 0,
more rapidly than does the line for He4-rich mixtures.
This is in qualitative accord with the deductions drawn
by Edwards and Daunt" from the theories of Zharkov
and Silin" and Pomeranchuk. '~ In fact, the former
theory indicates that the phase separation line for
He'-rich mixtures is asymptotic to the temperature
axis as T —+0, while the latter indicates the possibility
of the phase separation line for He'-rich mixtures not
passing through the origin of the phase diagram thus
leading to a stable isotopic mixture at the absolute
zero. Our numerical results are not extensive enough to
enable us to draw conclusions about an asymptotic
approach to the temperature axis on the He'-rich side
but from Eq. (59) the second derivatives of the molar
Gibbs function at fixed T tends to niinus infinity as
T~ 0 and this means phase separation. Intuitively we
would expect from the Third Law of Thermodynamics
that this phase separation would be into two pure
phases at the absolute zero. However, on a purely
phenomenological basis the suggestion of De Bruyn
Ouboter and Beenakker" that the excess entropy of
mixing due to nonideal effects could tend to RLXs lnXs
+(1—X,)ln(1 —Xs)] (negative) at the absolute zero
such that the total entropy of mixing still goes to zero
would also be in accord with the Third Law.

Turning to the excess functions of mixing we can
compare our calculated results with the values derived
by Taconis et a/." from an extensive series of specific
heat and vapor pressure measurements. Experimen-
tally the molar excess enthalpy of mixing H~ is always
positive and increases with increase of temperature.
The molar excess entropy of mixing S~ is much more
complicated being positive always above 1.5'K but
negative in the He4-rich mixtures at temperatures less
than 1.5'K and finally being everywhere negative for
temperatures less than 1'K. The molar excess Gibbs
function is found always to be positive but measure-
ments have not extended above 1.7'K. Theoretically
our excess Gibbs functions are not positive enough and
in fact are negative above 1'K if we use the bcc space
lattice. They become positive in 'time' to effect the
phase separation predicted in Table II. The theoretical
S~ values are always much too positive and never
negative and thus finally the theoretical H~ values are
much too positive. We should recall that we have
neglected any volume change on mixing whereas experi-

"D.O. Edwards and J, G. Daunt, Phys. Rev. 124, 640 (1961).
26 V. N. Zharkov and V. P. Silin, Zh. Eksperim. i Teor. Fiz. 37,

143 (1959) Ltranslation: Soviet Phys. —JETP 10, 102 (1960)].
2~ I. J. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 19, 42 (1949).
'8 R. De Bruyn Ouboter and J. J. M. Beenakker, Physica 27,

219 (1961).
'9 R. De Bruyn Ouboter, K. W. Taconis, C. Le Pair, and J.J. M.

Beenakker, Physica 26, 853 (1960).

T= 0.9'K

tLl

0
X
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:2

.75
.)

100

Fio. 4. Excess Gibbs free energies of mixing in He'-He' liquid
mixtures at 0.9'K from theory (circles) and experiment (solid
curve) using model combination of a simple cubic permutation
lattice with effective mass ratio (nsq'/ra4') =0.914 and a simple
cubic- or body-centered cubic space lattice.

mentally" the excess volumes are negative and increas-
ing in absolute magnitude with increase of temperature.
This neglect could tend to make our SE values too
positive. Nevertheless, it is clear that our theory cannot
give a correct description of the behavior of S~ which
depends so sensitively on the details of both statistical
and dynamical effects. It should be noted that from
Eq. (64.2) our calculated 5~ depends only on the
statistical effects since our simple way of treating the
dynamical effects adds in a regular solution term in the
expression for the excess Gibbs function and the excess
entropy of mixing for regular solutions is zero.

We have chosen to display our theoretical results for
the model combination of sc permutation lattice with
effective mass ratio 0.914 and bcc or sc space lattice.
The results are not qualitatively different for other
model combinations. For fixed temperature of 0.9'K
we give in Fig. 4 the experimental G~ curve and various
calculated points while in Fig. 5 we give the experi-
mental S~ curve and various calculated points.

"E. C. Kerr, in Proceedings of the Fifth International Conference
on Low-Temperature Physics, edited by J. R. Dillinger (The Uni-
versity of Wisconsin Press, Madison, 1958), p. 158.

SUMMARY

In this paper the fruitful Feynman treatment of the
statistical thermodynamic properties of a system of
interacting bosons has been extended to treat semi-
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phenomenologically a system of interacting bosons and
fermions. This has been applied to liquid He3-He4

mixtures and the X transition characteristic of a
cooperative interaction between bosons has been seen
to persist in these mixtures as long as any He' atoms
are present. The X line follows the experimental results
closely up to X3=0.5 irrespective of the effective mass
of the He' atoms while above X3=0.5 the theoretical P

temperatures are too high. An asymmetric phase
separation has been predicted in these mixtures below
0.9'K and the phase-separation curve is estimated to
run outside the X line at suKciently high He' concentra-
tions (Xs)0.85) so that in this region the experimental
) line will appear to coincide with the phase-separation
curve. Experimentally" this apparent coincidence of 'A

line and phase-separation curve occurs for X3&0.73.
We have not attempted to calculate the heat capac-

ities of the mixtures and so cannot directly say what our
models predict for the nature of the mixture heat
capacity at the mixture X temperature. From the
theoretical results in III for pure He', however, we

expect that our theory gives a second-order transition
at the mixture X temperatures. Taconis et al." suggest
that the experimental transition in the mixtures may be
strictly second-order whereas experiment on pure He4

indicates" a transition of a more complicated nature,
i.e., a second-order transition combined with a log-
arithmic singularity in the heat capacity.

Chester" first pointed out that the quantum dynam-
ical or diffraction" effects and the statistical effects
might be considered as two competing mechanisms in
settling the properties of He'-He' liquid mixtures.
As a result of the present work we may cite two points
supporting this concept. First, the statistical effects
alone do not lead to isotopic phase separation but the
dynamical effects alone would do so. This has received
independent experimental verification from the work of
Edwards et a/. 33 who report isotopic phase separation
in solid mixtures of He'-He' at pressures in excess of

3' M. J. Buckingham and W. M. Fairbanks, in

Progressive

LovfLt-

Temperature Physics III, edited by C. J. Gorter {North-Holland
Publishing Company, Amsterdam, 1961), p. 80.

"G. V. Chester, in Proceedings of the Second Symport'nnt on
Liquid and Solid IIelium Three, edited by J. G. Daunt (Ohio
State University Press, Columbus, 1957), p. 170.

"D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys.
Rev. Letters 9, 195 (1962).
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30 atm. In such solid mixtures the atoms are localized
and should obey Boltzmann statistics and not exhibit
nonideal behavior due to statistical effects. Secondly,
the excess entropy at 0.9'K as calculated by our theory
depends only on the statistical effects and is Inuch too
positive while the excess entropy at 1.4'K as calculated
with the neglect of statistical effects from the theory
of P11gogine by Simon and Bellemans" is much too
negative. It does not, however, seem that the statistical
effects should dominate at lowest temperatures.
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FIG. 5. Excess entropies of mixing in He'-He' liquid mixtures
at 0.9'K from theory (circles) and experiment. Conventions as
in Fig. 4.


