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The consequences of the existence of complex poles in scattering amplitudes, corresponding to resonances
or unstable particles, are investigated. Specific examples show that corresponding to such poles are normal
threshold cuts lying near the physical region and which cause "wooly cusps" in scattering cross sections.
The discontinuity across such a cut is expressed by a unitarity-like relation in terms of unphysical amplitudes
with unstable external particles defined by the residues of the complex poles. More generally, it is shown
that the Landau equations for the singularities must be extended to include all unstable as well as stable
particles. The Cutkosky formulas specify the corresponding discontinuities in terms of the physical and
unphysical amplitudes.

I. IIVTRODUCTIOIIt

N the description of scattering phenomena provided
~ - by the theory of the analytically continued 5
matrix, a stable particle appears as a fixed pole in the
scattering amplitude on the positive real axis of the
complex energy plane. Similarly, a resonance corre-
sponds to a fixed pole at a complex value of the energy,
on a second, "unphysical, " sheet at a point near to the
physical value of the energy at which the resonance is
observed. The angular momentum in both cases is
determined by the residue which contributes generally
to only one partial wave in an angular momentum
projection of the amplitude. An investigation is made
of the consequences of the existence of poles on unphys-
ical sheets. It is found quite generally that properties of
scattering amplitudes which are known to hold for
stable particles also hold for unstable particles. The
following two sections are devoted to special cases and
the last section to general results.

In Sec. II the kno'wn properties of complex poles on
the second sheet of elastic two-body scattering ampli-
tudes are first reviewed. In a pair theory it is shown
that there are poles in the amplitude for two particles —+

four particles which is coupled to the elastic amplitude
by unitarity. Unphysical amplitudes in which one or
more external particles have complex masses are defined
in terms of the residue at the complex pole in the
physical 2 ~ 4 amplitude. Such unphysical amplitudes
are shown to be simply proportional to the projection
onto the angular momentum state of the unstable
particle of the physical amplitude, evaluated at an
energy equal to the complex mass of the unstable
particle. Analyticity and unitarity properties of the
unphysical amplitudes follow.

In Sec. III we investigate the amplitude 3 —+3
which is related to the 2 —+4 amplitude by crossing.
We study the analytic continuation across the three-
particle cut from the physical sheet onto the adjacent

* Research supported in part by the U. S. Air Force Office of
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t A preliminary version of this article was prepared and
distributed privately while the author was still at Berkeley,
The present form, containing substantial modifications, was
prepared after his arrival in Rome.
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unphysical sheet. A two-body cut is found there
corresponding to a normal threshold of a stable and an
unstable particle. Such a branch point on an unphysical
sheet was first pointed out by Blankenbecler et at.'
The discontinuity across this cut is expressed by a
unitarity-like relation in terms of the unphysical
amplitudes de6ned earlier. As a simple application we
derive the known formula' ' for the "wooly cusp" which
appears in an elastic scattering cross section at the
onset of unstable particle production. The suggestion
that a prominent known resonance in a scattering cross
section strongly influences the cross section at an energy
corresponding to the appearance of the resonant state
in a competing inelastic channel was first put forward
by Peierls4 and developed by that author and co-
workers' into the isobar model of inelastic processes.
That model is the approximation to the physical three-
body unitarity condition which is obtained by retaining
the resonant pole terms. This approximate physical
unitarity condition closely resembles the exact uni-
tarity-like relation obtained in this section for the
unphysical discontinuity on the second sheet. Ball,
Frazer, and Nauenberg, ' to whom the reader is referred
for an extensive bibliography on production amplitudes
and unstable particles, have also made a detailed study
of the approximation which results from the retention
of resonant terms in the three-body unitarity condition,
and obtained a similar approximate unitarity formula.
The analysis of three-body unitarity leading to Kq.
(21) of this section is modeled on that of these authors
and of Stapp. '

In Sec. IV it is shown that the Landau equations

'R. Blankenbecler, M. L. Goldberger, S. W. MacDowell, and
S. B.Treiman, Phys. Rev. 123, 692 (1961).' M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).' A. Baz', Zh. Eksperim. i Teor. Fiz. 40, 1511 (1961)(translation:
Soviet Phys. —JETP 13, 1058 (1961)j.

4 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961).' S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N. Y.) 18, 198 (1962).

' J. S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128,
478 (1962).

H. Stapp, University of California Lawrence Radiation Labo-
ratory Report, UCRL 10261 (unpublished). I am grateful to Dr.
Stapp for making his work available to me before publication.
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FIG. 1. The dashed line
indicates the boundary of the .

assumed domain of analyticity
of A 2, 4(s1) in the complex s1
plane. The solid line indicates
a cut, the dots indicate the
physical points.

for the singularities of scattering amplitudes must be
extended to include particles of complex mass. The
Cutkosky formula' for the corresponding discontinuities
is shown to hold, provided the set of amplitudes is
extended to include amplitudes in which external
particles are unstable.

s plane
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invariance of unstable particles is discussed in Ref. 7.
The reality property of the amplitude requires that
if a pole of residue yP4(cos8) is present at s„, there will
be a second pole of residue y*Pi(cos8) at s„*.

In the physical region l6m'& s& &36m' a second
channel is energetically allowed and the unitarity
condition couples the elastic-scattering amplitude A 2, 2

to the production amplitude A 2,4 ~ The subscripts
indicate the number of initial and 6nal particles. The
analyticity properties of production amplitudes are not
well understood at present. We suppose that as a
function of square c.m. energy si, A2, 4(si) has a cut
along the elastic interval 4m' &s~ & 16m', that it is
analytic in some neighborhood which surrounds the
cut, as shown in Fig. 1, and that the discontinuity
across this cut is speci6ed by the physical unitarity
condition in which only the elastic intermediate states
are included. This is equivalent to the assumption that
the unitarity condition is valid down to the vanishing
of the phase-space factors. Because of these assumptions,
the discussion of this and the following section must
be regarded as heuristic. The main burden of these two
sections is to show that the existence of normal thresh-
olds on the physical sheet and resonance poles on an
unphysical sheet implies the existence of certain further
singularities on unphysical sheets. The existence of
other singularities on the physical sheet does not alter
this conclusion but only makes the arguments more
lengthy. In the last section the problem is considered
anew from a general point of view which does not
require these unjustified assumptions.

The assumed unitarity relation for the elastic interval
has the form

II. DEFINITION OF UNPHYSICAL AMPLITUDE

Let us consider the interactioris of particles of mass
m and spin zero that are produced in pairs. The ana-
lyticity properties of the amplitude A(si, cos8) for the
elastic scattering, through an angle 8 of a pair of these
particles of center-of-mass square energy s&, has been
discussed by several authors. 9 For cos0 in its physical
range, —1(cos8(1, A (si,cos8) is assumed to be
analytic in the cut s& plane with cuts extending along
the real aXiS frOm Si 4ti42 tO ——Si——+ co and frOm Si ———~
to s~= 0. A is real in the real interval 0&s~&4m'. The
discontinuity across the right hand cut is specif ed by
the elastic unitarity condition" in the elastic interval
4m'& sg& 16m'.

LA($,+,Bf B;) A(si,—Bf B,)]/2i
~ -» 4m2- ~i~2

A(sti, Bf B)A(si,B B,)dB, (1)
8 sy

$A2, 4(Q f&$4+&B&) A2 4(Q f&$ i &Bt')j/2z—

8 sg
A2, 4(Qf&$1 &B)A2,2($1+&O'B4)dB (2a)

~ -»—4m~- ~~2

8 sg
A24(Qf&Si+&B, )A22(si &B B, ,)dB& (2b)

where n specifies the two particle configuration and Qf
represents the set of variables which specify the final
four-particle configuration. Now A2, 2(si+) and A2, 4(si )
possess clockwise continuations A 2,2(si") and A 2,4(si'),
respectively. Consequently, Eq. (2a) provides a clock-
wise continuation of A2, 4(si+) into some domain of the
second sheet where it has the value

A2, 4(Q f&Si &'Bt) —A, , 4(Qf&si &B4)

2i -s)—4m'+—
8 sg

A, 4(Qf&$& &B)A2,2(si', B B;)dB (3). .

where B,, Bf, and B are unit vectors and A(si4.) and
A(si ) are, respectively, the values of A above and
below the cut. As has been shown in detail, ' A possesses
a square-root-type branch point at s& =4m' and a
continuation along the elastic interval onto the adjacent
sheet. We designate the values of A on the original
"physical" sheet and on the adjacent "unphysical"
sheet as A(si', cos8) and A(si",cos8), respectively. In
Ref. 9 it is shown that A(si",cos8) is analytic in
the cut s~ plane with cuts on the real axis from s~= —~
to si ——0 and from si ——4ziz' to si ——+~ (we are keeping
cos8 in its physical range) with the possible exception
of discrete poles at fixed values of s~. Stapp has argued
that, apart from cases of degeneracy which are not
expected to occur, each such pole is simple and appears
in only one partial wave amplitude. Its residue is
consequently proportional to a I egendre polynomial
Ei(cos8). Our considerations shall only apply to poles
of this type. If such a pole at s&

——s„ lies suSciently near
the physical points, it causes a resonance at a center-
of-mass energy 8=Re($„'") of width I'=2 Im(s„'i') in
the /th partial wave. We interpret these poles as
unstable particles of mass zzz, = (s,'") and spin f; The
p meson may be thought of as of this type. The unique-
ness of this definition and the charge conjugation

R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).' See, for example, W. Zimmerman, Nuovo Cimento 21, 249
(1961).

' The normalization is speci6ed by 5=1+2ih (Pf P;)A and-
&he n-particle phase space which is q = II; 1"—'(y'+m') '"d'p
so that for elastic scattering of two scalar particles,

A (s& cosa) = (2/m)Z&(21+1) s{Ls—(m&+m&lsggs —(m& —mslzgl "2

)&exp(ib~) sining~(cos8).
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It is worth noting that Eq. (3) directly expresses
A2, 4(s| ') in terms of A2, 4(s4') and A4, 4(s~"). This is,
in fact, a general feature. Once the continuation of the
two-body amplitude across the two-body cut is known,
the continuation of production amplitudes across the
two-body cut is expressed as a definite integral. If
A2, 2(s|r',8 6,) possesses a pole in this domain with
principal part g'P4(6 n~)(4r(s, —sr)) ' then the right-
hand side of Eq. (3) and, consequently, A2, 4(s&") also
possess a pole at s&=s„. Crossing symmetry implies
that the analytic continuation of A2 4 represents the

amplitude for a crossed channel process in which s~

represents the total square mass of a pair of particles
in a three- or four-particle state. Then the pole at
s~=s„represents the eRect of the resonance between
the pair in the multiparticle initial or final state. The
existence of many of the recently discovered unstable
particles has, in fact, been revealed by the observation
of Breit-Wigner one-pole dependence of production
amplitudes on the mass of a pair of particles in a
multiparticle final state.

From Eq. (3) one also obtains an expression for the
principal part of A2, 4(sq") at s4 ——s„:

2ig2 -s,—4~2-~~2

84I (s —sy) s
A, , ,(Q„s„r,a)p, (a a,)u. (4)

We may write the residue of the pole of A2, 2" in the
form

4~ ~'('

2l+1

X A4, 4(Qf, s.r, l) Vp(8)d8, (7)

where Y~& is the spherical harmonic and V~,„=V~&'.

The factors in the brackets are interpreted as the trivial
amplitudes A& and A„ for the three-particle process
m„~ m+m. Similarly, the residue of the pole term of
A2, 4(s&") given by expression (4) has the form

1 2ig fs„4m')'(' —44r )'('
A2, 4(Qr, s„',n)

8 5 s, i 2l+1i

f 44r

X V4" (4(l)dn g~ ~

I"4,„(8~) . (6)
(2i+1

The factor in the 6rst bracket is now interpreted as the
amplitude A, , 4

" for the process nz„~ 4m occurring in
a state p of s component of angular momentum. We have

2(4(s, 4m' "'( 4 )'"—
A, , 4 (Qr) =

8 k s, (2l+1

so that the principal part of A2, 4" at s~=s„ is

[n.(s,—sg)) ' g A„,4 "(Qf)A„(8;)=L4r(s, —sg)) '

44r )'(2
XP A„,,„(Q ) g ~

V,„(n;) . (8)
2l+1i

Equation (7) defines a nontrivial scattering amplitude
with five external particles, one of which is unstable.
We shall call amplitudes, where one or more external
particles is unstable, "unphysical" scattering ampli-
tudes. Stapp' has given a general discussion of the
factorization of residues at complex poles and the
definition of unphysical amplitudes.

The unphysical amplitude which is de6ned by Eq.
(7) is related to the physical scattering amplitude quite
directly. It is, in fact, apart from a constant factor,
simply the projection, onto the angular momentum
state of the unstable particle, of the physical amplitude
evaluated at an energy equal to the complex mass of
the unstable particle. If the physical amplitude possesses
crossing symmetry so that the unitarity condition
expressed in Eqs. (2) and (3) may be continued in the
external variables to the physical region for a crossed
channel process, then the unphysical amplitude will

also possess this crossing. Consequently, the amplitude
defined by Eq. (7) also describes the processes m„+m ~
3m, m„+2m~ 2m, and m„+3m+-+ m. The unitarity
property across physical cuts in unphysical amplitudes

may also be obtained as a consequence of the direct
relation between physical and unphysical amplitudes.
For consider a general unitarity condition for physical
amplitudes across a physical cut:

LA (Qf)$4+ &
Q,)—A (Qf,s&,Q,)7/2 i

A (Qr, s4+,Q)A (Q,s~,Qf;)dQ. (9)

By setting the mass variable of a pair of external
particles which resonate equal to the complex resonant
value and projecting onto the appropriate relative
angular momentum state, the unitarity condition (9)
is established for the corresponding unphysical ampli-
tube.

Equation (7) which defines the projection is to be
understood as the continuation of the projection from
a physical value of s& to its value s„.This equation may
be further continued in its free variables to the region
of a crossed channel. During these continuations,
singularities may enter the region of integration. The
supposition that the continuations exist means that the
contour of integration may be suitably deformed to
avoid the advancing singularity. In the projection
referred to above, it is the deformed contour which
must be followed. Stated diRerently, the continuation
of the projection may not equal the projection of the
continuation. In such a case, the former must be used.
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2f 2

1f li

Fro. 4. Pole term of the three-body
amplitude A 3, 3 The circles are the two-
body amplitudes A&, 2.

six terms, each of the form

A22(s,fr+)b[(pf2+pf3 p 3)' 22—32'7A2, 2($,3 ), (18)

which is represented in Fig. 4. We have introduced the
indices 3, f to represent the initial and final configu-
rations, suppressed the angular dependence of the two
body amplitudes A2, 2, and made use of the reality
properties of A2, 2 to replace A2, 2 and A2, 2 by A2 2($+)
and A2, 2($ ), the amplitude evaluated, respectively,
above and below the physical cut. Because s is in the
elastic three-body energy range, the three sz lie in the
elastic two-body energy range. The Dirac delta function
which appears in the last expression indicates that A'
has a pole in its physical region in the three-body
invariant momentum transfer variable f,= (P2f+P—sf—P3,)'= (Pl,+P2;—Plf)'. There are, in fact, six such
poles, one for each of the six such invariants.

Our goal is to make use of the unitarity relation,
Eq. (17), to effect a continuation across the normal
threshold three-body cut in the total three-body energy
variable s. However, in contrast to the two-body case,
the imaginary part of the amplitude is not the discon-
tinuity in one variable. Each of the three initial and
three Anal two-body energy variables s& lies above its
two-body normal threshoM, giving an imaginary part,
as do the six pole terms just mentioned. In addition,
we expect that higher order Landau singularities give
further imaginary parts.

We adopt the method of assuming a small number
of singularities in the amplitude —namely, the resonance
poles and the physical threshold cuts—and see what
further singularities are required by unitarity. If it be
objected that we should also assume all the higher
Landau singularities which occur in the absence of
resonance poles, let it be pointed out that those singu-
larities were found without assuming resonance poles
and the singularities generated by them, which of
course change the topological structure of the Riemann
surface. The only method of proceeding, in fact, seems
to be to begin with those singularities that have a direct
physical interpretation and to find the others by
consistency. This is how the higher order Landau
singularities were themselves obtained"" if one dis-
allows perturbative arguments which are not relevant
in the presence of resonance poles. Accordingly, we
shall suppose that A ' is formally a real analytic function
of its external invariants. Its normal threshold singu-
larities lie on the real axes of the corresponding invari-
ants and in the neighborhood of the elastic physical
region these are the poles in the crossed channel vari-
ables, the two-particle normal threshold cuts and the

"J.C. Polkinghorne, Nnovo Cimento 23, 360 (1962); 25, 901
{1962).

n H. Stapp& Phys. Rev. 125) 2139 (1962).

three-particle normal threshold cut in s. The arguments
of the following section indicate that the presence of
other singularities will only complicate the discussion
without altering its conclusions.

Consequently, in Eq. (17) A '. and A '* will be
written, respectively, as A '(Sfz+,s+,h+, f,„+,s;„+) and
A'(sfi, s,h, t„,s,„).The arguments of these functions
do not refer to independent variables, but to the
singularities which contribute imaginary parts in the
physical region; sf& and $;. (X, v= 1, 2, 3) represent the
two-body cuts in the final and initial two-body energy
variables; $ the three-body cut, t„(13=1, , 6) the
cross-channel poles, and h possible higher order Landau
singularities; the subscripts + and —indicate that the
function is evaluated, respectively, above and below
these discontinuities. We conduct our discussion as if
the singularities represented by h were not present.
However, we carry h along an argument of A' to show
that its presence does not cause formal difhculties.

We write Eq. (17), explicitly, as

[A (Sfy)$+)Iifi+)1f,+)S,+)—A (Sf )S )Iif, «ff, )S, )]/23.

A '(Sf+)$+)Iifw) 1fp+&sw)A '($o &s )I3p—i &
—tp' $—)—)d—0'

3

+ Q A (Sf+&S+&kf~&tfp+&$)~)A 2 2 (Sip )

+ Q A2, 2(sf/+)AP($f )$ )&pi )/pi )$) )dlPi

+P A2, 2(Sf+)3(tf;—233')A2, 2($; ), (19)

where the Greek subscripts have been suppressed in
the arguments of A', 3 and f label the initial and final
external variables, and o labels the internal variables
that are integrated over. We note that only the first
term on the right is integrated over the full three-body
phase space, that the middle two terms are integrated
over the two-body phase space, and that the last term
contains no integration. The integrals over the two-body
phase space may be evaluated by using the unitarity
condition across the two-body cut, Eqs. (2a) and (2b),
analytically continued from the 2~4 channel to the
3 —& 3 channel. The middle two terms on the right-hand
side are then given by

Act3A (Sf+&S+)hf)+)1f)+&$&l+&$)2+)$)3+)
Acf

(Sf+�&S+)

kf i+)1fi+&Sit+)Sis+)$&3 )—
Acf

(Sf+&S+)~f)+&1f,+&S,&+&$,2 &$,3+)

(Sf+&S+&Iifi+&1fi+&Si 1 &Si2+&Si3+)j/23—
—[3A'(Sfi )Sf2 )Sfs )S )kfi )1f; )S; )

A cr'A (Sf 1+)Sf2 )Sfs )$ )hfi )ffi—&Si )—— —

( fl ) f2+& f3 ) &~fi—&1fi )) )— — — — '—
—A (Sfi,Sf2,$f 3~,$ ,kf ,tf;,S; )j/2—3'
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The last term on the right-hand side of Eq. (19) is the
only one containing Dirac delta functions. We may
separate from A' the pole term which is required by
the delta function. We set

A'( sf, st,z yt, s)=A "(Sf, sk, s)+A "(sf)ty)s;)) (20)

where A&(t+), represented diagrammatically in Fig. '4,

is the last terin of Eq. (19) with the delta function
8(t—m') replaced by t zr(m2 —trio)) '. Since A)' is
simply a sum of products of the two-body scattering
amplitude divided by zr(m2 —t), it has no three-body
cut in s, and no higher order Landau singularity h
which contributes to the imaginary part. On the other
hand, near the physical region, A" has no cross-channel
poles. The last term on the right-hand side of Eq. (19)
may, thus, be written as

1''(sf+, t+,s; ) A "(sf+—,L,s; ))/2i
= $A'(sf+, s+,Iz+,t+,s; ) A'(sf+, s,h—,t,s, ))/2i

—ttA '(sf+,s+,h+, t~,s; ) A'(sf+—,S,Iz, t+,s, ))/2i

If we make these substitutions into Eq. (19), we obtain

jA'(sf+, s+)hf)+& f)kl ) )—( f+» f) ) f)~& ) ))/2z

'(sf+)sp)hf~)tf~)s. )A'(s~&s &ho, ,t„,s, )dq'

+Lg A'(sf+, s+,hf,+,tf;+,s;").
—p A'(sf', s,hf, ,tf, ,s, ))/2i, (21)

where

g A'( s,")—=2A'(. .s, ~,ls, ~,2, s)3+
cf

—A ( s;lp)s)2+)s, z )—A ( s)i+)s)2—)s)3+)

—A ( s)l—&S)2+)S)3+)+A ('''S)i )S)2 )$)3 ))

p A '(sf" )=2A '(sfl —)Sfz )Sf3 '-~)--'
d

A '(sfl+)Sfz—)Sf3 ~ ') A (Sfl &Sfz+)Sfz ~ ~ —)

A '(sfl )Sfz )Sfz+
' —' ')+A (sf\+)Sfz+)Sf3+ ~

' ~ ).

In Eq. (21) we have reversed the signs of the subscripts
of s., by introducing between the two factors of A'
the identity I

1=E1-2iA2, 2(soz ))L1—22A2, 2(so2 ))E1—2iA2, 2(sol ))
X L1+2iA 2, 2 (sol+))L1+2iA 2,2(so2+))L1+23A 2, 2 (soz+) ),

and by repeatedly making use of the aforementioned
unitarity condition of A' across its two-body cuts.

What we have been doing is transforming the
unitarity condition, which originally gave the imaginary
part and, thus, the sum of all the discontinuities into
an expression for particular discontinuities. This
process could be continued )further transforming the
last terms of Eq. (21) so that the two-body energy

variables always have the same sign), by identifying
the discontinuity across the three-body cut and across
the other higher order Landau singularities. The uni-
tarity condition is, in fact, regarded as a prescription for
constructing the amplitude; if we can find a function
which has such discontinuities that the unitarity condi-
tion is satis6ed, that function is presumably the ampli-
tude.

However, it is not our purpose here to pursue the
analysis of the three-body amplitude, and Eq. (21) is
in a form which is convenient for our purposes. Namely,
we shall assume that this equation may be continued
some distance, however short, clockwise in s. To make
this continuation, it is necessary to make a choice of
the other independent variables. This choice is sorne-
what arbitrary, but we may take, for example,

,c ft clA fi A &~y~fl p~f2p&ily~i2yt filet fi2yt fi3Jy

where s= (pfl+pf2+pf3) Sf1 (pf2+pf3) tf = (pfl
P,l)', and similarly by cyclic permutation and substi-

tution of i for f This 'c. hoice of variables has the
advantage that as far as possible each normal threshold
cut near 'the physical region is associated with one
independent variable which is displayed explicitly.
The first variable has the three-body cut, the next four
each have a corresponding two-body cut. The only
other normal threshold cuts near the physical region
are those associated with sf3 and si3, but they are not
independent since

$—Sfl+Sfz+Sf3 mi —mz —mz; (22a)

s= s;l+s,2+s,z
—mi' —m2' —mz'. (22b)

Consequently, all the normal threshold branch points
of A'—and these are the only branch points we assume
explicitly —near the physical region are in the space of
the five complex energy variables (labeled s) and none
are encountered as the three momentum transfer
variables (labeled t) are varied. If sfl, sfz, s;l, and s,z

are held at 6xed values we will, thus, find three cuts
in the s variable: the three-body normal threshold cut
beginning at s= (ml+m2+mz)', a two-body cut be-
ginning at s= sf i+sf2+ (mz+mz)' —mi' —mz' —mz', and
another at s=s, +l,s2+( mz+m)' z—ml' —m2' —mz'.

Since there are no cuts in the momentum transfer
variables near the physical region, the "continuation
in s" that we are proposing may be regarded as a
continuation on the Riemann surface of the five
independent energy variables. Let us note that our
assumption concerning the location of the singularities
and our choice of independent variables are consistent
with the assumption that A' is a real analytic function
of these independent variables. In Eq. (20), A)' is by
construction a real analytic function. If we set

3 3

s= (P ml)' —P nfl, s, l
——(m, +m,)'—n;l,

1 ' X=1

$f1= (m2+m3) n f1—
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FIG. 5 (a) . Path of integration
over sp1 on the Riemann surface
of A'(sp, s,hp', $p', s;). The elastic
cut in sp1 extends from (m2+m3)'
to 3EI2. (b). Path of integration
over sp1 on Riemann surface of
A'isf s hfoy ttQ+ sQ).

(b)

C'

and cyclic permutation, where the n are small real
positive numbers satisfying Pq=~'atq ——Px=Pn, x, we

obtain points on a portion of the real axis of each of
the independent variables, consistent with the restric-
tions of Eqs. (22) and where A" is evaluated below all
its threshold cuts. On these real points, we take A" to
be real. Consequently, A" is a real analytic function
and by Eq. (20) A ' is also. This consistency is nontrivial
since we have considered 13 poles and cuts distributed
among 8 independent variables. Furthermore, the
existence of the "Symanzik region, " a domain which
lies below all cuts and where A' is real, justifies the
heretofore cavalier way in which we have been indi-
cating the value of the amplitude by writing its deter-
mination with respect to singularities. We take the
Symanzik region to be the original domain of definition
of the amplitude. The plus and minus subscripts
occurring in Eq. (21) now acquire a precise meaning.
They indicate the path along which the amplitude is to
be continued from the Symanzik region to the point,
labeled by values of the independent variables, at
which the value of the amplitude is required. This
path passes above or below a singularity according as
the variable corresponding to the singularity bears a
plus or a minus sign.

For convenience we may define a "physical sheet" in
the space of the five complex variables s, s;&, s,2, sf$ s 2.

It is the surface which may be reached by analytic
continuation from the Symanzik region and which is
bounded by s real, s&~ (m&+m2+m3)', s;& real, s;&

&&(m2+m3)', s;2 real, &~(m~+m3)', s—s, )
—s,2+(m~

+m2+ma)' real, ~&(m&+m2)' and similarly for the st.
The amplitude is single valued on this surface. We, of
course, do not wish to imply that the correct amplitude
has an analytic structure of this sort. However, the
general method is to begin with a simple structure
and see what further singularities are required. In this
paper we are concerned only with the additional
singularities due to resonance poles.

Following these formal remarks, we may now discuss
the analytic continuation of the unitarity condition
expressed by Eq. (21). Our purpose is to discover what
further singularities are required by the presence of
resonance poles and this unitarity condition. Let us
suppose that particles 2 and 3 have a resonance pole

near the physical region at a square mass s„. Then, as
established in the preceding section, there will be a
pole in the sj variable of A' at s~ ——s„.The integral over
the three-particle phase space which is represented in
Eq. (15) contains an integration with respect to s~,
which has as upper limit (s't2 —m&)'. Consequently, as
s varies we may expect an end-point singularity in the
right-hand side of Eq. (21) at (s"'—m )'=s„or s'"
=s„'t2+m&, i.e., at a center-of-mass energy given by
the sum of the masses of the stable particle m~ and the
unstable particle m, =s,'t". This does, in fact, occur.
We shall see in detail how this comes about, determine
on what sheet of the s variable the singularity lies, and
obtain a formula for the corresponding discontinuity.

Heretofore, we have considered the unitarity condi-
tion for real values of the independent variables. We
now propose to continue in s clockwise, that is, to let
s have a negative imaginary part. Then the continuation
from the points s leads onto the physical sheet, whereas
from s+ onto a second sheet adjacent to the physical
points. We reQect this in our notation by relabelling
the paths s' and s" instead of s and s+, respectively.
By Eqs. (22) which also hold for the so, at least one of
the initial, intermediate and final two-body variables
s;, s„st of Eq. (21) also then have negative imaginary
parts. To be definite, we let all of them have negative
imaginary parts, as we may do without violating the
constraints of Eqs. (22), and we likewise relabel the
two-body energy variables. The unitarity condition
then reads

LA (~f )~ )hf)+)tf)k)~) ) (~f )~ )hf) )tf)k)~) )]!2—

(~f )~ )hfo+)tfo+)~o )A (~o )~ )hoi —itoi—p) )~tt'

1$Q A'(st",s",ht, +,tt;~, s,")

—Q A'(st", s',ht, ,tt;, s,')]/2i (23).
d

Since the poles terms represented by t~ and the discon-
tinuity across the two-body cuts are known, this equa-
tion is, in fact, an integral equation for A'( sr' )
if A'( s' ) is given. It is the means for effecting
the continuation across the three-body cut, just as the
two-body unitarity condition studied in the preceding
section e6ects the continuation across the two-body
cut. The phase-space integration, given by Eq. (15)
contains an integration with respect to so~ from so~
= (m2+m3)' to so& ——(s'"—m&)'. When s is physical, as
in Eq. (21), the path of integration lies, respectively, on
the lower and upper lips of the two-body so& cut of
A'( so ) and A'(so+ ~ ~ ), as shown by the path
ABC in Figs. 5(a) and (b). As s is continued clockwise
the upper limit of integration moves continuously from
C to C', and the path of integration becomes ABC'
in Figs. 5(a) and (b). We see that the new path ABC'
retreats away from the so& cut of A'( so), but, as
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But by Eq. (7), the integration with respect to Apl is
the projection which yields the amplitude

A», »(sf &$+ )kf3+)tf 3+) A»»(, sf 1&0f1)nfl)s)Qpl)

and, consequently, expression (26) takes the form

d~ol
{(s—(s,'I'+ ml)'7[s (s,—'" m—l) '5}'t'

Ss

(sf s+ hfpl- tfp+)A (s kp' —tp' —s' ) (27)

where X"(s,hp;, tp,',S,')—:X"(Dpi S Sl 0'l '8'l) is a quantity
which depends on the same variables as the unphysical
amplitude A„ for the process 1+r~ 1+2+3. For if
X is chosen to be the solution of

X&(s,hf;, tf;,s,) A—„p(sr,h f tf'S')'
X"($)kfp)tfp, sp)A (Sp )s,kp&, tp»$& )d&p

+p X(s,kf, ,tf;,s,'), (30)

We abbreviate this by introducing the two-body
unphysical phase space

dQ
d &p„—= —{Ls—(s„'"+mi)'5[s (s,—'" ml—)'7}"'

Ss

When expression (27) is substituted into Eq. (25) we
obtain

disc„A'(sf",s",kf,+)tf,y)$) )

=2z disc„A (sf,s &kfp+&tfp+, Sp )
0—

)(A (sp &$ )kp; &tp»s& )G&p

+p disc„A'(sf &$ &kf&~&ff&+)$; )
d

+ d&p„+A„„(sf &s+, kfp+ fp+)

we find, upon substitution of Eq. (29) into Eq. (28)
that this latter is satisfied identically. We have made
some progress in exchanging the integral equation (28)
for the integral equation (30) since the unknown X has
the variables of a five-legged diagram, instead of six.
Furthermore, upon comparing Eqs. (30) and (23) we
find that Eq. (30) is identical with the equation ob-
tained by equating the pole term at s~&"——s„on left-
and right-hand sides of Eq. (23), taking the minus
subscript on tf; and the contour C there. LThe last
term on the right-hand side of Eq. (23), gq A'(sf~ ),
has no pole at s~&=s,. This quantity is defined just
below Eq. (21) and its continuation is represented by
replacing subscripts + and —by superscripts II and I.
There is no sfl pole in A'(sfl'), so according to its
definition the only pole of p& A'(sf" ) is in

A (Sfl)sfp &Sf3 ' ' '), A (Sf\ )Sfp )Sf3 ' ' ').
But this difference has no pole in sy~ because such a
pole term has no sfp or sfp cut. 7 Consequently, we
conclude that

where
XA„)'(s',hp;, tp;, s ), (28) X"(s,hf tf, ,s;)=A'„"(s ",hf +tf ,s,'), ''

disc A'( s" )
—=LA'(. s " )—A'( .s ". )7/2i

is the discontinuity across the unphysical cut. This
last equation establishes the result to be proved,
namely, disc„A'WO, since the last term on the right is
nonzero.

In the preceding section, unphysical amplitudes were
defined as the factors of the residue at a resonance pole.
In expression (27) the three-body integral has been
reduced to a form which resembles a sum over states
with a two-body intermediate state. However, the
intermediate state is unphysical, being formed of a
stable particle of mass mj and an unstable particle of
mass m„=s,'".The phase space is complex.

Equation (28) constitutes an integral equation for
disc A'. This integral equation may be solved by the
ansatz

disc)&A (sf )s )kf,y)tf, y&s& )

p A„,„(sf",s+",hfp+, tfp+)X (s,hp;, tp, ,s,)d&p„, (29)

and Eq. (29) takes the form

disc~A'(sf &s &kf&+&tf)y)$ )

Q A», )&(sf )s+ &kfp+)tfp+)

&&',A "(s ",hp;+, tp, ,s )d&p„. (31)

This equation gives the main result of this section. It
states that corresponding to a two-body resonance pole
nz, near the physical region, there is a cut in a three-
body amplitude near the physical region beginning at a
normal threshold branch point s= (m„+ml)'. Further-
more, the discontinuity across the cut is expressible in
the form of a unitarity condition with a two-body
intermediate state. However, the phase space is specified
by a complex mass m„and the amplitudes do not
correspond to the scattering of stable particles.

As a simple application of these results we can easily
obtain a two-parameter formula for the effect on an
elastic 5-wave two-body amplitude of the onset of
unstable particle production, i.e., a resonance between
a pair of particles in a competing three-particle final
state. As we have seen, there is a square-root-normal-
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threshold branch point at c.m. energy E=(m+m, ),
if nz and nz, are the masses of the stable and unstable
final particles. (The preceding results are easily general-
ized from a pair theory to coupled two- and three-body
channels. The branch point is then found across the
three-body cut in both the elastic and production
amplitudes. ) Let Ep—=m+Renz, and assume that Imm„
—=—I'/2&0 is very small. In the neighborhood of Ep
we represent the S-matrix element by

S=a+b)E (m+—m„)j'~p, (32)

in which u and b are complex constants, on the assump-
tion that in the neighborhood of the branch point the
variation of the matrix element is due to the singularity.
If the inelastic cross section is small, as it will be if Eo
does not lie too far above the three-body threshold,
then a=exp(2i5), where 5 is the real phase shift at
E=Ep. Since we require ~S~'=1 for E&Ep and ~S('&1
for E)Ep, we must choose b= —rl exp(2ib), where g is
a real positive constant so that

S= e"4 ge"'(E—Ep+i I'—/2)"
S=e"' ge'*'—(X+iF),

1
X—=—(L(E—Ep)'+I'/43'"+ (E—Ep))'" (33)

FIG. 8. Unstable particles are
represented by wavy lines.

surfaces of singularity do not indicate on which Riemann
sheet of the amplitude the singularities lie, nor is it
known, in general, on which sheet of their Riemann
surfaces the amplitudes appearing in the generalized
unitarity relation are to be evaluated.

The methods developed by Polkinghorne" for stable
particles apply equally well to unstable particles and,
consequently, the results he has obtained apply indis-
criminately to stable and unstable particles. Polkirig-
horne has shown that —given the inasses of the stable
interacting particles —in consequence of analyticity
and crossing, and particularly of unitarity conditions,
scattering amp1itudes have, in addition to other possible
singularities, the set of singularities specified by the
Landau equations. Polkinghorne's method consists in
demonstrating that the set of singularities given by
the Landau equations, but no subset, is closed under
the unitarity integration

disc~(p', PJ)=Z ~"(p', qJ)~'(qJ, pp)

I'=-—(I (E-E.)'+I"/41'"—(E-E.)&'".

The S-wave cross section is given by

4x S—1' kr
0'p =— ———fsirP8 —

g sinb (X sin8+ I cosh)]. (34)
2i

Results equivalent to Kq. (34) have been obtained by
Nauenberg and Pais' and by Baz'.'

IV. EXTENSION OF LANDAU EQUATIONS
AND CUTKOSKY FORMULAS TO

UNSTABLE PARTICLES

The discussion of the preceding sections suffers from
two defects, one of them serious. The serious defect is
that assumptions were made about the analyticity
properties of production amplitudes. These assumptions
are not known to be true, and are quite possibly false,
although, as we shall see, only the details of the results
would be invalidated. The other defect is that the
discussion was limited to speci6c reactions, and it is
clear that there are corresponding results which have
general validity.

In this section we suggest how these defects may be
remedied. We obtain the equations of the surface of
singularity of any amplitude and the generalized
unitarity relations without making unjustified assurnp-
tions. On the other hand, the precision of the previous
results are not obtained here. The equations of the

X84(p p —p q)8(q' mp)—d4q; (35.)

The set is "closed" under the unitarity integration
means that if A and A have singularities specified by
the Landau equations, then so will disc A. Let us
suppose that A' and 3' are singular on the Landau
curves corresponding to stable particles and also contain
resonance poles at complex masses m„. Then AI and
A ' will, in general, be singular on the Landau curves
given by perturbation theory and also on the Landau
curves corresponding to diagrams in which groups of
external lines are joined to the graph through only one
internal line, corresponding to a complex mass m„, as
shown in Fig. 8. The argument remains valid, and
disc A will, in general, be singular on the Landau curves
corresponding to the Feynman diagrams obtained by
joining A' and A" as shown in Fig. 9. This argument
does not show that the contour is actually pinched so
that the singularity is, indeed, present in disc A,
although this is expected to occur on some sheet.
However, it does show that a consistent set of singu-
larities is obtained by assuming that A is singular on
the Landau curves corresponding to all possible
Feynman diagrams in which lines represent stable or
unstable particles indiscriminantly. The Landau equa-

FIG. 9. The Feynman graph formed by
joining the two graphs of Fig. 8.
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tions remain unaltered, and yield both first- and second-
type" singularities as solutions, but they are extended
to include all masses, corresponding to stable and
unstable particles. As the number of resonance poles,
or more generally, any poles on unphysical sheets, may
well be infinite, as in the case in potential scattering for
each partial wave, this is a considerable extension.

We should like to call the poles "dynamical" singu-
larities, since the problem of locating them is the
dynamical problem of finding the masses, in contra-
distinction to the singularities specified by the Landau
equations, once the masses are given, and which may
be called "kinematical. " What other dynamical singu-
larities may be present is not known. If there are any—and we may hope that there are none —they pre-
sumably give rise to further sets of kinematical singu-
larities.

The result of the preceding section suggests that the
discontinuities across the first type singularities given
by the extended Landau equations are specified by the
corresponding extension of the generalized unitarity
formulas first derived by Cutkosky' in perturbation
theory. Polkinghorne" has outlined a program for
deriving generalized unitarity, in the case of real
masses, from the physical unitarity relation. The results
of this analysis are applicable to the present case in
which the masses are complex. Consider the physical
unitarity relation

disc, A ($f)Q f,S)$j)Qj)

Fi ($y~Qf, $,$p, Qp)A ($p)Qp, $)$;)Q;)d$pdQp, (36)

in which s represents the c.m. energy variable and s„,
O„represent partial energy and angular variables. Let
us suppose that there is a resonance pole in one of the
partial energies, say s;. By equating residues on left-

'3 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. Polking-
horne, J. Math. Phys. 3, 594 (1962).

and right-hand sides, we obtain a unitarity condition
for the unphysical amplitude.

These considerations raise various questions and
possibilities. If a calculational scheme is possible which
makes use only of quantities defined on the physical
sheet and its boundaries, it is important to ascertain
whether or not any singularities du~ to unstable
particles extend into the physical sheet. On the other
hand, one would like to be able to construct amplitudes
that possess the singularities which lie near the physical
points, even though off the physical sheet. The un-
physical amplitudes and their crossing and pseudo-
unitarity conditions appear to be likely tools for such
a construction. As a practical matter, calculations are,
in fact, performed at present' in which unstable par-
ticles are exchanged and scattered. These calculations
may now be systemized and related to formal S-matrix
theory where they find a natural place. It may even
be worthwhile to reformulate the dynamical problem
in a way that makes no a priori distinction between
stable and unstable particles, rather than as at present,
stating it in terms of stable particles and introducing
the unstable particles as auxiliary devices. This would
be more logical and, in practice, allow greater flexibility,
since it is not known until after the detailed dynamical
problem has been solved whether a given particle,
teetering on the edge of stability, is actually stable or
not. The symmetry that exists between stable and
unstable particles appears to be a fundamental feature
of S-matrix theory, and we may, consequently, expect
that the theory should be stated in a way that makes
this symmetry apparent.
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