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The validity of Siegert's theorem and the isospin selection rule for electric and magnetic dipole transitions
has been established for inelastic electron scattering, thus extending the well-known results obtained for
real photons. Siegert's theorem is obtained with arbitrary electron wave functions for electric multipole
transitions provided: (kpR) «1, where kp is the energy transfer, and finite nuclear size efiects are ignored.
However, the latter assumption follows provided (kR)'«1 (k is the momentum transfer) and this is valid
only for small scattering angles ( 1/ER, E the primary energy). For light elements the isospin selection
rule operates for E1 transitions in the forward cone only (&30'). The M1 selection rule also follows with
(kR) «1 and, therefore, operates in the same angular range. The angular distributions should exhibit an
anomalous depression in the forward cone of half-angle about 1/ER. Coulomb eGects will then be decisive
in determining the magnitude of the small-angle scattering. The same considerations are applicable to
internal pair formation and internal conversion where the retardation assumption is valid in general under
usual conditions.

I. INTRODUCTION

'HE excitation of nuclear energy levels by the
inelastic scattering of electrons from complex

nuclei provides a convenient means of studying dynamic
aspects of nuclear structure. ' Electrons are particularly
useful for this purpose since, in contrast to Coulomb
excitation by nuclear particles, the interaction of
electrons with the nucleus is purely electromagnetic
even at high primary energies.

It is well known that the electroexcitation process
divers from the excitation by p-ray absorption through
the presence of contributions from the longitudinal part
of the virtual photons in the former. Nevertheless, it is
possible to show that some features of the electro-
excitation process are similar to properties exhibited by
the p-ray absorption. This comes about whenever it is
possible to factor the relevant matrix elements for the
electron process into a nuclear matrix element for the
radiative transition and a purely electronic matrix
element. This factorization, when it is valid, imme-
diately permits one to apply the same selection rules to
the two processes. It is to be emphasized that the
conditions for the factorization' are rather restrictive
as will be discussed further in the following.

In this paper we investigate the applicability in
electroexcitation of the isotopic spin selection rule
which operates for photon transitions. ' It will be shown
that this selection rule does indeed operate but under
conditions somewhat more restrictive than those

*This work was supported by the U. S. Atomic Energy Com-
mission.' W. C. Barber, in Annnal Review of Nnclear Science, edited by
E. Segre (Annual Reviews Inc. , Palo Alto, California, 1962), Vol.
12, p. i. This review article gives references to earlier work. .' This is the basis for the factorization of cross sections into a
photon cross section and an equivalent spectrum. See, for instance,
Ref. 1.' D. H. Wilkinson, in Proceedings of the Rehoooth Conference on
Nuclear Structure, edited by H. J.Lipkin (North-Holland Publish-
ing Company, Amsterdam, 1958), p. 175. G. Morpurgo, in Nuclear
Spectroscopy, edited by G. Racah (Academic Press Inc. , New York,
1962), p. 164. These discussions give references to both the
experimental and theoretical work.

pertaining to p-ray emission. As a result it will follow
that for self-charge conjugate nuclei both E1 and M 1
excitations (with AT= 0) should exhibit anomalous
angular distributions and lower total cross sections
than would be expected for normal transitions (ATMO
or 1VAZ).

For electric dipole transitions the validity of Siegert's
theorem4 must be established in order to obtain the
isotopic spin selection rule. In the photon case Siegert's
theorem follows if one can assume that (kpR)'«1
where kp is the energy transfer (in reciprocal length
units) and R is the nuclear radius. For energy transfers
of as much as 5—10 MeV, in the light nuclei we consider,
this assumption is quite reasonable. In the electro-
excitation process this assumption is necessary but not
sufficient A sufficient condition is obtained if (kR)'«1
where k is the momentum transfer. This same condition
(which includes the former one since k&kp) is the basis
for the idea of the equivalent spectrum.

For magnetic dipole transitions' the selection rule is
not an absolute one in the sense that the p-ray transition
probability is small but not zero when the conditions for
the E1 isospin selection rule are fulfilled. As a practical
matter, Coulomb impurity and other eGects' which
break down the selection rule are such that the E1 and
M1 forbidden transitions exhibit about the same
inhibition factor, namely, 10 ' to 10 '. The conditions
for the M1 inhibition in electroexcitation are the same
as for E1~

It will be recognized that the formalism used for the
electroexcitation is completely equivalent to that
employed in the calculation of internal pair formation. '
The fact that here kpR&AR and that (kpR) «1 for
most practical cases implies that the isospin selection
rule for E1 and M1 transitions apply to internal pair

See, for example, M. E. Rose, Multi pole Feelds (John Wi]ey gr
Sons, Inc. , New York, 1955)~' G. Morpurgo, Phys. Rev. 110, 721 (1958).' G. MorPurgo, Nuovo Cimento 12, 60 (1954); Phys. Rev.
114, 1075 (1959).

r M. E. Rose, Phys. Rev. 76, 678 (1949); 78, 184 (1950).
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wave functions by plane waves. We emphasize that our
purpose is not one of precise evaluation of V„but
rather the investigation of the conditions for V,«Vp.
It is expected that the conditions thereby established
for the validity of the strong inequality will not be
altered by the distortion of the wave functions from
plane waves. This Born approximation for the correction
term allows us to write for the electron transition
current in V,

j (x') =be'~'*'=orb P i1j1(kx') F'1 "(9')F (k), (14a)

and the continuity equation for this current then gives

p, (x') = (iko) '9 j (x') = (k b/ko) e'"'*' (14b)
where

limit now taken in6nite. The result for Vp is

Vp=161r'oz+'(k' —ko') '

dxJ(x) TLL+1~(x)b TLL+1~*(k)

( k)L+1
XI I j L+. (1k xo)

—dxJ(x) ~ TLL 1~(x)
&ko& o

. t k~~' (ik.b~
Xb TLL-1 *(k)

I

—
I

jz-1(ko*)+Iski &k, i
„ t'k~L

dxpzz(x) VL~(x) VL~*(k)I —
I jz, (kox), (17)

0 &k,)
b= —e(11'*(p')ng, (p)). (14c)

and adding these two results gives
The integrations for V, indicated in Eq. (8) are easily
carried out by using the orthogonality relation for the V=16or'i~'(k' —ko') '
spherical harmonics and the two radial integrals

dxJ(x) ~ TLL+1~(x)b TLL+1~*(k)jL+1(kx)
x"dx' j),(kx') j),(kpx')

=x'(k' —kp') 'Lkpj1(kx)j1 1(kpx)

—kj1 1(kx)j1,(kpx)7 (15a)

x"dx' j),(kx') h1 (kpx')

(k kp ) t'ko j1(kx)h&, 1(kox) —kj1—1(kx)h1(kox)7

—i(k' —k ') '(k"/k "+'). (15b)

The result for V, can then be written in the form

Vg ——16Ã'i'+'(k' —k ') ' dxJ(x) TLL+1~(x)

k )L+1
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It is convenient for the sake of comparison to evaluate
Vp and V= Vp+V, in the Born approximation. This
requires the same integrals as in Eq. (15) with the upper

dxJ(x) ~ Tz, z, 1 (x)b Tz, z, 1 *(k)jz, 1(kx)

(i ~

+I I
dxp+(x)F'L~(x)VL~*(k) jL(kx) . (18)

I k, ),
This result is just the Mgller potential result, and, in
somewhat altered form, already appears in the litera-
ture. " Thus, Vp is obtained from V by replacing
j1(kx) by (k/kp)"j1(kpx). Clearly, the two are equal
when the Bessel functions can be replaced by their
leading terms. Hence, V,&(Vp when (kR)'&(1. Another
way of putting the matter is to refer to Eq. (16) from
which it is clear that V,«Vp when

j&(kx)—(k/kp)" j&(kpx)(&j&(kx)

or when (kR)'«1. This is just the conclusion which
is reached if we use the Mgller potential from the
beginning.

We are thereby driven back to the stringent condition
(kR)'«1 in order to establish Siegert's theorem. For
incident electron energies, E, of 50 MeV or more, this
inequality is fulfilled only for small angle scattering.
For scattering through angles of about 1/ER (for which
kR 1) we must conclude that Siegert's theorem begins
to break down. For example, for 100-MeV electrons
scattered from 01o, the angle 1/ER is 37'. Below this
angle the angular distribution in inelastic scattering
should be expected to be anomalously small in those
transitions which are forbidden for the radiative process.

"See, for example, K. Alder, A. Bohr, T. Huus, B.Mottelson,
and A. Winther, Rev. Mod. Phys. 28, 432 (1956).
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It, follows u fortiori that (kpR)'«1. In this range of
scattering angles 8,

k'=ks + (k /E)'+28'(1 —cos8),

where E&)1 has also been assumed. We first discuss
electric dipole transitions. Then with I.= 1 we obtain

V=a p~(x)xdx, (19a)

where, with M= ~1 and 0,

~4s ~
'~'

asr =
~

—
~

ikp' dx')sVShp(kss') j (x') TMM(9)
&3) o

—kr (kpx') p, (x') F rM(l') j. (19b)

The integral in the vector a converges and other than
this fact no further interest attaches to it."

The form of Eq. (19) lends itself immediately to the
derivation of the isospin selection rule as it appears in
the literature. ' Without repeating the well-known
derivations we simply recall that the coordinates
relative to the center of mass are introduced whereby
the effective charges for neutron and proton appear.
For this purpose it is convenient to write

pN (x)= e g 8 (x—x~)%f*(xsj)%;(x~)dx~,

where x~ is an abbreviation for the entire set of nucleon
coordinates.

For N=Z nuclei the effective charges of neutron
and proton are, of course, —e/2 and e/2, respectively.
The isoscalar part of V cancels and the isovector is an
odd operator under the charge parity transformation
which converts neutrons into protons and protons into
neutrons. Thus, if the isospin is a good quantum
number, the matrix element V vanishes between states
of the same isotopic spin.

In real nuclei the matrix element is small but non-
vanishing for the following reasons:

(1) Coulomb interactions and the neutron-proton
mass difference make the isotopic spin partially
nonconserved.

'3If we assume that V,(&VO for any realistic electron wave
functions, Eq. (19) applies. Otherwise we are restricted to the
Born approximation for which case a has been evaluated in the
preceding section.

"See G. Morpurgo, Ref. 3.

III. DISCUSSION OF THE ISOSPIN
SELECTION RULES

We assume in the following that the scattering angle
is sufficiently small as to allow the application of the
condition

(kR)'«1.

(2) The isospin selection rule is equivalent to a
statement that the total momentum of the nucleus is
zero in the rest system. Actually, the statement refers
to bare nucleons. The total momentum is zero only
when that of the m-meson field is taken into account.

(3) The nuclear recoil energy is not zero.

(4) Higher order terms in (kx)' are present.

While the first two effects are difficult to evaluate with
any precision they contribute the major portion of the
nonvanishing matrix element. The effect of higher order
terms in the retardation expansion is easy to estimate.
Considering this term alone, it would follow that at
8=0 the matrix elements are smaller than those of the
normal (nonforbidden on isospin grounds) transitions by
a factor of order (kR)'. Taking into account some small
numerical factors one would conclude that the differen-
tial scattering cross section at 8=0 in a light nucleus
(0" or N" say) a.t k&=10 ( 5-MeV excitation) would
be smaller than for normal transitions by a factor of
about 10 '. This is, no doubt, entirely unrealistic.
Instead, one would obtain a far better estimate of the
inhibition factor by using the empirical approach of
estimating nuclear matrix elements from observed
widths of y transitions. As Eq. (19) shows, the matrix
element is now factored into a nuclear matrix element,
which is just that for p rays, times an irrelevant constant
coming from the electronic matrix element. Hence,
under the circumstances that this result applies, the
differential cross section for excitation through the
isospin forbidden transitions is inhibited by the same
factor (10 ' to 10 ' in most cases) as characterizes the
y transitions. In making this statement we use the
almost trivial fact that the matrix element in the y case
is independent of the direction of the p ray.

The consequence of all this is that the angular
distribution of the inelastically scattered electrons for
the transitions in question would be expected to exhibit
a "hole" at small angles. As in the numerical example
quoted at the end of the last section, the scattering
cone in which this anomaly exists is dificult to observe
but seems to be not inaccessible. Certainly, one alterna-
tive procedure would involve the scattering of low

energy electrons (perhaps 10—20 MeV) in which case the
anomalous cone opens up. In this way one may be able
to use inelastic scattering to identify AT=0 electric
dipole transitions in N=Z nuclei as a supplementary
tool to the y-ray emission studies. As far as known
examples are concerned, one obviously 6nds fewer
cases than in 7-ray emission because one is restricted to
ground state transitions and stable nuclei. In Wilkin-
son's survey, ' three AT=0 ground-state transitions are
listed: the 6.23-MeV level in N'4, and two levels at
7.12 and 9.58 MeV in 0" Of these the N' transition
may actually be an M1 transition, but, as we discuss
below, these transitions are similarly inhibited. The
inelastic scattering could distinguish between M1 and
E1 transitions if the large angle scattering is observed



H I GH —EN E RG Y ELECTRON 8 CATHER I N G 853

since the Coulomb matrix elements (arising from the
longitudinal Geld) give an entirely different differential
cross section.

If the scattering at small angles is too dificult
to observe it may be worthwhile to consider total
inelastic cross sections. While these are dificult to
evaluate in view of the fact that one needs to assume a
nuclear model to evaluate even the shape, as well as the
magnitude of the angular distribution, one may
consider energies large enough so that almost all of the
scattering occurs in a narrow cone in the forward
direction. For instance, for 8=200 (100 MeV) 90%%uo of
the cross section is estimated to arise from scattering
events with 8&30'. This refers to a normal transition.
If the transition is forbidden by isospin selection rules
this 90%%uo of the cross section would be largely wiped
out and the total cross section would be anomalously
small. A systematics of total cross sections would
clearly be necessary to establish the identity of the
forbidden transitions.

Turning now to the magnetic dipole transitions the
situation is only slightly different in that the matrix
element does not vanish even when the corrections
(1)—(4) above are ignored. It is, however, anomalously
small under these conditions due to an accidental
cancellation. ~ To establish this we can easily obtain
the magnetic multipole matrix elements. For L= 1 this is

J(x) A,~(m; x)dx.

A

Here D~, „'(k) is an element of the rotation matrix
with arguments given by the unit vector k. If w'e write

J as a sum of convective and spin currents with the
neutrons contributing only to the latter, then in the
usual way we obtain with (kE)'«1 the result

Z
J A&~dx=const @f*g~ L P (L+p„e)~

A

+ Z pa&t5+rrfxx

Here p,„and p,„are the proton and neutron magnetic
moments in nuclear magnetons, and (~ are the spherical
basis unit vectors. 4 In this form Morpurgo's analysis
is directly applicable, and we 6nd that for AT=0
transitions in Ã=Z nuclei

The factor in front of the integral on the right-hand
side of Eq. (20) is 0.19. For a normal transition this
factor would be replaced by 2 (p„—p„)=2.35. Therefore,
the square of the matrix element is inhibited by the
factor (0.19/2.35)'=0.'7)&10 2 just as in the case of
the M1 7 transition. Again this result applies in the
forward directed cone where (kE)'«1. Within the
accuracy of our previous rough approximation, the
peaking of the angular distribution of the M1 differen-
tial cross section" is the same as for E1. The angle
below which a given fraction of the total cross section is
included is then about as before. Consequently, all
the remarks made in connection with the forbidden E1
transitions apply to M1 transitions as well.

"I.
¹ Sneddon and B.F.Touschek, Proc. Roy. Soc. (London)

A193, 344 (1948).


