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Three-Particle Unitarity in Potential Scattering*
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A three-particle wave function arising out of a Schrodinger equation with two-body potentials is con-
sidered. For simplicity in analysis, the potentials are taken to be of the nonlocal separable type. It is found
that at bound-state energies of a three-particle system, the "phase" of the three-particle amplitude is not
equal to that of a pair of its members whose relative energy allows them to be in a physical scattering state.
This result disagrees with the prediction of a "multiplicative" three-particle structure suggested by Blanken-
becler, according to which these two phases are necessarily equal.

ECENTLY, Blankenbecler' developed a scheme
for construction of scattering and production

amplitudes so as to satisfy crossing symmetry and
unitarity. Such a scheme was applied by Blankenbecler
and Tarski' to study the isoscalar form factor of the
nucleon. The basic amplitude Ii which enters the
process y —+3m has the representation given by Eqs.
(2.4) and (2.5) of BT, viz. ,

F($12 $28 $31,t) =PsD '(f) exp(612+62s+631),

6,j——s —' 8$' 8 ($') ($'—$.„—le)

h($) being the s.-~ phase shift in T=j=1.The other
quantities are as defined in BT.

An important feature of this structure is that it
shows explicitly how the phase of Ii is identical with
that of any two-pion pair (ij) which has a relative
energy s;,)4p, '—a manifestation of the unitarity
requirement. BT have noted that such "multiplicative
forms" are almost realized in the Lee model. ' Since
such structures are extremely attractive, conceptually
as well as in practice, it may be of some interest to see
if they arise also in potential scattering. As has been
noted by BT, such structures are quite familiar in
nuclear physics, but it would be more interesting if
they could arise out of solutions of formal Schrodinger
equations with two-particle potentials, instead of being
"put in by hand" as trial functions for calculational
purposes. Therefore, an explicit solution, if available,
of a three-particle system within the Schrodinger
framework using two-particle potentials, may be worth
comparing with the conjecture of BT.

The author had recently proposed a simplified
two-pion interaction in momentum space, 4 with the
help of which a three-pion amplitude could be obtained
explicitly through the solution of a formal Schrodinger
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A ($,;)=1V($;,)/D ($;,), (3)

where $,;/p=P;, /fr, is the energy of the ij pair in their
own c.m. frame and

X($;;)=2~9 u'L($;;)'~'j (4)

D($,;)=1—s ' d$'$' '*cV($')($'—$„) '.

v(p, ,) is a function of $,, whose singularities are suffici-
ently far out in the left-hand s;, plane so as not to
enter into our discussion.

The three-pion "wave function" for a total energy
E satisfies the equation

X4'(—-', Ps+y', ;, —-', Ps —p', ;, Pp), (6)
where

h(E) = s (I'ts+Pss+I'ss) Efj,. —
As in A, the structure of 4 is deduced as
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equation. The purpose of this note is to examine
whether or not the mathematical structure of such a
three-particle amplitude, obtained from a "potential"
model, conforms to the product representation envis-
aged in BT.

To simplify the discussion, several assumptions
which in no way impair the basic mathematical struc-
ture, will be made. Thus, we consider three identical
"pions" (nmnMnta Pt, Ps, Ps) which are nonrelativistic,
spinless, isoscalar, and interacting in s-state pairs only.
Let the interaction Hamiltonian between the ij pair be'

(P'P~ I
l'I P''P'f) = —() /f )u(p*')n(p''f)~'(P. —P'~), (1)

where

2p;, =P,—P;, Ps ———P,—P; etc. (2)

The free two-pion scattering amplitude with "potential"
(1) is given bys
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where the total symmetry of + in the momenta has
been incorporated in (8) and F(P2) is given by the
integral equation

1V (s')ds'
F(P&)

(s')&(s'+ ,'PP F-I2)—

~(31+-,'P&) ~(p&+-,'31)F(q)
=2X dq . (9)

Pl'+q +PI' q

The structure of Eq. (8) has the following interpre-
tation. v(p23)/A(E) is the wave function of the pair
(2,3) with energy (E PP/2y)—, and the function F(P&)
multiplying it is the relative wave function between"1"and the (2,3) pair. The three terms in Eq. (8)
correspond to the three ways in which such groupings
can be made. Further, the function multiplying F(P&)
on the left of Eq. (9) is just the denominator function
of (5) corresponding to

s~3——Ep ——,'Pj', (10)

so that it represents the scattering of particles 2 and 3,
with particle 1 playing the role of a "spectator, "except
for momentum conservation. The simultaneous three-
body effects are represented by the right-hand side
of Eq. (9) whose denominator is essentially a sum of all
the particle energies corresponding to the momenta P~,

q, and (—P2 —q). Neglecting the P& dependence of
the right-hand side of Eq. (9) amounts to the so-called
independent-pair approximation, in which case

C being a normalization constant. Indeed, in this
approximation, it is seen from (3), (8), and (11) that

where

~'2= I'P, ~= ~'2+4P"= 2 (»'+P2'+P3'), (13)

and C' is another constant.
To study the analytic properties of 0' in the total

energy variable t, it is simplest to start from the
bound-state problem by setting

EI2= —n2 (e2) 0),

and to consider the region

sy2 ~& 0~ ssj ~& 0~ $23~ 0,

(14)

which corresponds to "physical scattering" only
between the (2,3) pair. Using the inequalities (15), it
is easy to deduce that

P1 +P2 +P3 ~~ 01 4P1 +P2 +P3

Now a denominator like D(—n2 —t+s, ,) in Eq. (12)
acquires a phase factor when s,,—t —cP~&0, so that from
(15) and (16) it is immediately seen that only the s23

term in Eq. (12) has a cut in t corresponding to the
region

0 &~ t ~& min (-3,s23, s23 —a'),

and that this region exists only if o.'~&s». However,
the other two terms in Eq. (12) have no cuts in t, since
the inequalities s» —t —n') 0, or s» —t—o.') 0 are
incompatible with (15) and (16).

As for the possibility of a "cut" arising from the
three-particle term in Eq. (9), it could come about only
through the zeros of the quantity

P'+q'+P q+cx2, (»)
where P is any one of the momenta I';, and q, the
integration variable, is a positive quantity. However,
a sufhcient condition for such a zero to develop is

(P2+q2+~2) 2 P2q2

which does not lead to any real value for I".Thus, for
rea/ values of t and s;;, the three-particle denominators
in F(P) do not give any additional singularities. The
only other three-particle denominator in 0', viz. ,
(t—Ey) ' has a simple pole at t=EI2= n2 an—d, of
course, corresponds to the bound state.

The essential result of this investigation is that the
function 4' does rot have the phase of the scattering
amplitude for the (2,3) pair. This fact owes its origin
to the appearance of the denominators D '(Ep, f+s,,)—
as a sum, rather than as a product, in Eq. (8) or (12).
This "additive structure, " in turn, is traceable directly
to the appearance of the total interaction in Eq. (6)
as V23+ V3i+ Vi2.

A comparison of this result with BT's conjecture
(based on 6eld-theoretical models' ') shows that a
"potential picture" is inherently incapable of repro-
ducing the "product structure" envisaged by BT. This
fact does not seem to depend critically on the special
kind of "potential" chosen here. Of course, if the
interaction is weak, the "sum" and "product" forms
would, no doubt, agree, as a result of the approximation

D" '=—(1—f") '=1+f"
However, for strong pair interactions the structures are
entirely different. The "sum structure" in Eq. (12)
can be roughly interpreted by saying that an inde-
pendent-pair approximation can be visualized in a
potential picture only by o2M pair interacting at a time.
A field-theoretical model, on the other hand, can
apparently handle al/ pairs of interactions at the same
time (at least two, as shown by the Lee modei3), even
though there may be no direct three-body forces
present. '

so that, in terms of t and s23, we have

0~& t &&3S23 (16)

'It may be emphasized that it is the angular correlation
between the various momenta, through the requirement of
over-all momentum conservation, that prevents a "cut" from
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We would like to make two final comments. A
unitarity condition so stringent as to require the phase
of a three-particle wave function under the condition
(15) to be equal to that of the (2,3) pair, is obviously
not satisfied by our potential model. Rather, we have
the much weaker result that the phase of + is governed
entirely by the phase of the (2,3) pair, but that the
former is not equal to the latter. On the other hand,
unitarity in the ordinary quantum-mechanical sense of
conservation of probability had never seemed to pose a
problem for a many-particle wave function satisfying a
Schrodinger equation in which only Hermitian oper-

developing along the real axis of the t plane, due to the three-
particle denominator on the right of Eq. (9). On the other hand,
if the "recoil eRect" due to momentum conservation could be
neglected by making one of the particles infinitely massive (which
incidentally would be more closely related to the Lee-model),
then it is easy to see that the "three-particle denominator" on the
right of Eq. (9) would give a cut in the same region of the t plane
as the "two-particle denominator" appearing on the left-hand
side of that equation. Indeed, in this limit, the two independent
moments could be taken simply as P& and P2 (no correlation) and
the "energy variable" t as

t=s (Pi2+Ps')

so that the common condition for both the denominators to
exhibit "cuts,"viz. , P22 —2EIJ, ~&0, Pjn&~0, would now be expres-
sible as

t &~~2PP —~', PP &~ o,

replacing (17) and (18) of the text. In this case, therefore, the
three-particle amplitude would acquire two phase factors, as is
also the case with the Lee-model (Ref. 3). Thus, it appears that
the inability of our potential model to produce an extra phase
factor stems essentially from a consideration of the recoil eRects
due to momentum conservation.

ators entered. (This condition is, of course, satisfied in
our problem. )

The second corriment concerns the requirement of a
symmetric or antisymmetric wave function. It appears
that the "potential model" can handle this aspect of
the problem in a very simple way. This is shown indeed
by Eq. (8) where the three terms of 4' have identical
structures. While the case considered here is rather
idealized (spinless, isoscalar particles), the case of
actual pions (spinless, isovector) does not present any
fresh problem in this regard. This has been shown in
A for an isoscalar three-pion system whose spatial wave
function must necessarily exhibit total antisyrnmetry.
Indeed, in the potential model, antisylrimetrization is
just as easy, or as dificult, as symmetrization. On the
other hand, the product representation (2.4) of BT,
which satisfies the unitarity condition in the sense
described above, has a naturally symmetric structure
in the pion momenta. To obtain a correspondingly
antisymmetric structure (necessary for an isoscalar
three-pion state) some sort of a linear combination of
such functions would presumably be required, which

might necessitate a fresh examination of the "phase
problem. "
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