
PH YSI CAL REVIEW VOLUME 131, NUM B ER 1 1 JULY 196 3

Thomas-Fermi Approach to impure Semiconductor Band Structure
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The density of states in highly impure semiconductors is studied using a semiclassical or Thomas-Fermi
type approximation. The "local" density of states is assumed proportional to (8—V)~1, where V is the local
potential. The problem then reduces to the calculation of the distribution function for the potential, which
is found to be a Gaussian in the high-density limit. It is clear that this approach predicts tails on both band
edges which are identical except for a multiplying factor of (m )'~', the density-of-states mass. The important
contributions to the potential variation near the average potential are shown to arise from Quctuations in
impurity clusters whose volume is of the order of the cube of the screening length. For energies far below
the average potential the important cluster sizes are much smaller than the screening length cubed. Their
size is determined by the kinetic energy of localization, an effect which is not accounted for by the (E—u)'~'
assumption. The Thomas-Fermi method involves a number of approximations, all of which are valid in the
limit of high density. The most serious approximation results from the improper treatment of the kinetic
energy of locahzation which requires (zoo*')'~"))1 for validity. Because of this requirement, the method is
never highly accurate in any attainable concentration range. The effect of potential Quctuations on tunnel
diode I-V characteristics is also studied. The results agree satisfactorily with experimental studies of silicon
junctions by Logan et al.

I. INTRODUCTION AND CONCLUSIONS

HE problem of the band structure of impure semi-
conductors has been most extensively studied in

one dimension. Quantitative three-dimensional cal-
culations have been performed by Parmenter' using
perturbation theory and assuming a screened Coulomb
model for the impurities. More recently Wolffa has used
a more rigorous perturbation-type approach. He treats
electron-electron effects ab Azitio and justifies the
screened Coulomb model for the impurities in the high-
concentration limit. In this limit electron-electron
effects introduce a relatively small change in effective
mass from the pure crystal value. Electron-electron
correlation also introduces an additive energy constant,
not correctly given by taking the screened Coulomb
model literally. A treatment similar to Wolff's has also
been given independently by Bonch-Bruevich. 4

More recent work by Bonch-Bruevich' and Keldysh'
has been presented at the Exeter Conference. Bonch-
Bruevich makes a semiclassical or Thomas-Fermi type
of approximation so that his approach has a good deal
of overlap with the present paper. An outline of our
approach was also given at Exeter. ~ A different ap-

' M. Lax and J.C. Phillips, Phys. Rev. 110,41 (1958);H. Frisch
and S. Lloyd, ibM. 120, 1175 (1960); J. R. Klauder, Ann. Phys.
(N.Y.) 14, 43 (1961). For a closely related problem see also
F. J. Dyson, Phys. Rev. 92, 1331 (1953).' R. H. Parmenter, Phys. Rev. 97, 587 (1955); 104, 22 (1956).' P. A. Wolff, Phys. Rev. 126, 405 (1962).

4 V. L. Bonch-Bruevich and A. G. Mironov, Fiz. Tverd.
Tela, 3, 3009 Ltranslation: Soviet Phys. —Solid State 3, 2194
(1962)j.

'V. L. Bonch-Bruevich, in'-Proceedings of the International
(Conference on the Physics of Semiconductors at Exeter, July, 296Z
'(The Institute of Physics and the Physical Society, London,
1962), p. 216.

6L. V. Keldysh, paper presented at the Exeter Conference
but not in the Proceedings.

7E. O. Kane, in Proceedings of the International Conference
on the Physics of Semiconductors at Exeter, July, 196Z (The
Institute of Physics and the Physical Society, London, 1962),
p. 252.

proach using spectral moments calculated by pertur-
bation theory was also outlined by the author at Exeter~
and will be treated more fully in a forthcoming
publication.

In the present paper we make the screened Coulomb
approximation at the outset. We further make a semi-
classical or Thomas-Fermi type approximation wherein
we assume that the local potential is sufficiently slowly
varying that a local density of states can be defined just
as if the potential were constant. The calculation of the
over-all density of states then reduces to the calculation
of the distribution function for the potential. We find
that with suitable further approximations the distribu-
tion function for the potential has a Gaussian form.
Keldysh' also finds a Gaussian dependence similar to
ours but with different numerical factors for the half-
width.

In Sec. II we describe our model Hamiltonian. In
Sec. III we make the "uniform cluster" approximation.
The probability of finding m atoms in a sphere of
volume m is computed rigorously but the potential is
approximated by taking the uniform average over the
sphere. We show that the most important fluctuations
occur for a sphere size

Wg&~47rxD /3,

where I~D is the reciprocal screening length. Fluctuations
of m with m fixed lead to a Gaussian distribution for
the potential. The kinetic energy of localization is also
treated on this model. For energies very far below the
average potential, cluster sizes m«re~ become im-
portant. The kinetic energy of localization is essential
in determining the optimum value of m.

In Sec. III we treat the Thomas-Fermi approximation
less crudely than in Sec. II. The potential distribution
function is rigorously represented as an integral follow-

.ing a suggestion of Klauder. The integral is approxi-
s J. R. Klauder (private communication).
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II. MODEI HAND TONIAN

We assume the following model Hamiltonian:

&=&p+K,

H, =P v(r —r~) —up,

(1)

(2)

e2

mated by the method of stationary phase plus an addi-
tional expansion of the exponent as a power series in
the potential. To lowest order, the distribution is also
Gaussian about the average potential with a half-width
2.1 times greater than that obtained by the uniform
cluster approximation. The eRect of the kinetic energy
of localization, which is ignored in the Thomas-Fermi
method, is to cause an averaging or "motional narrow-
ing" effect to occur which will reduce the half-width to
a value closer to that given by the uniform cluster
method.

In Sec. IV the effect of density-of-state tails on the
I-V characteristic of tunnel junctions is discussed. The
semiclassical approach is also used here so that tunnel-
ing in the "band tails" is viewed as ordinary tunneling
from localized regions of abnormally low-potential
energy. A number of further approximations are re-
quired to obtain numerical results. Comparison with
experimental results on silicon obtained by Logan et ul. '
is made. The agreement is quite satisfactory.

purity density rather than only the average density but
we have not considered this possibility. The model
Hamiltonian of Eqs. (1) through (4) has been justified
by Wolff' in the high density or large v limit. Our defi-

nition of 'Uo, which corresponds to zero average po-
tential, is a mathematical convenience. The constant
C, in Eq. (4), depends on the correlation energy of the
electron gas as shown by Wolff. ' In what follows we
set C=O.

III. "UNIFORM CI USTER" APPROXIMATION

In this section we study the model Hamitonian of
Eqs. (1) through (4) from a very simple point of view.
Although the assumptions made are rather crude, they
retain the essential features of the problem. In the next
section a more quantitative approach is attempted,
using the results of this section as a guide.

Our point of view is that some cluster of m atoms in
a volume m is most important in producing any Quc-

tuations of interest. We consider this cluster embedded
in a uniform background of average density. The devi-
ation from the average potential Ltaken as zero accord-
ing to Eq. (2)] is taken to be the uniform average of the
potential over the volume, I, multiplied by the excess
of the number m over the average number em

'0 = (n2 —nw) v (ri—r2)dridr2/w'.

v(r) =— exp( —~i)r),

Pp= (P2/2n2*)+C.

(3) The kinetic energy, Ej, of the lowest state of an elec-
tron in a spherical box of radius r„ is

E).. (2r2/2r ') (h2/n2*)——.
We treat the perfect solid by an effective mass m*

and dielectric constant eg. The impurities are repre-
sented by screened Coulomb potentials, Eq. (3), which
are randomly distributed over lattice sites, r;, with
average density m. 'Uo is a constant chosen so that the
average perturbing potential is zero. The reciprocal
screening length, ~&, is given by the Thomas-Fermi
modeP '0 as

~D= 2n"'(3/2r) "Pap* '/',

ap*——

each'/n2*e'

The number of particles, v, in a Debye sphere
(42r/3)~& ', is given by

p —(2r/3) 3/2n1/2a 82/2/2 (6)

The range of validity of Eq. (5) is 2))1. For values of
v much smaller than 1, screening is due to electrons in
localized orbitals. Although we use Eqs. (5) and (6)
down to v &1 it should be emphasized that the formula
is quantitatively accurate only for large v. It would be
desirable to allow rc~ to be a function of the local im-

9R. A. Logan and A. G. Chynoweth, following paper, Phys.
Rev. 131, 89 (1963).

iP R. 3.Dingle, Phil. Nag. 46, 831 (1955).

We take the formula for the density of states for a large
volume

(2)'/2n2*2/2

/ (~)=

0i)

(8'—'0)' "w. E '0 &0.84Ei„, —
(9)

8—'U (0.84Eg„.

With this rather arbitrary cutoff choice,

@toe

d(~ U)p(+)= (1/2)2=1

In Eq. (9) we include a factor 2 for spin.
The probability of finding m atoms in the volume m

is given by the Poisson distribution formula

(nw)"
I'(np, w) = e-" .

m]
(10)

In all our calculations we will assume that the im-

purity ions are randomly distributed. A better approxi-
mation would be to compute the total electrostatic
energy of a given cluster, Efi g(T ff), and multiply the
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probability, P(rn, w), computed on the random hypothe-
sis by a factor exp{—E&i„,&(T,«)/kT, «} where T,« is
an effective temperature at which the ions become
"frozen in."This factor is probably significant in many
cases of practical interest. An experimental test of its
signi6cance would be a dependence of any phenomena
associated with band tailing on the rate of annealing.
P(np, w) satisfies the normalization condition

g P(np, w) =1.
m=o

The over-all density of states is then given by

%2rn*P('

p(E) = V $E—'U (()n,w)5'i'P(tn, w)dnp.
2jP

E—'U) 0.84Ei„. (12)

We have converted the sum in Eq. (11) to an integral,
treating rn as a continuous variable. A factor V/w for
the number of clusters in the volume, V, has been in-
cluded. We choose m to maximize the number of states
below the average potential

This expansion is valid for m —mm((em. If we substitute
(17) in (14) and ignore the localization energy Ei„,
Eq. (14) may be written

2'i41" y/4)m*P('V
Mp(0) = (nw) p(4Ep('(~Dr„)) (18)

E=——'v (rl r2)drldr2/w (19)

E= (9e /2pq)((n(((ar„) {p (((nr„)'

—(((~r„)P+1—(1+pi,r )Pe P"D" } (20)

w=—(4pr/3)r ', (21)

D gd2'U2

P((n,w) = exp
(2z-nw)'" 2 8ne4.

(22)

where (20) has been evaluated for the screened Coulomb
potential. The function on the right of Eq. (20) has a
broad maximum whose peak is at ~Dr„=0.7. Using this
optimum value, together with Eq. (7), we may write
Eq. (17) as

0

()()(0) fp (E))(E= (13)

Substituting ((Dr„=0.7 in Eq. (8) gives

Ei., 1.0((Dph'/m*. ——

Defining an energy scale factor it' by Eq. (22),

(23)

By considering Quctuations over a given volume, m,
we are clearly underestimating the total effect since
Quctuations over all possible volumes actually occur.
We attempt to minimize our error by selecting the single
volume, m, for which density fluctuations contribute
most strongly to the density of states. The method for
choosing m is somewhat arbitrary but we feel that maxi-
mizing Mp(0) as a function of w is a reasonable criterion.
Inserting (12) in (13) we have,

Mp(0) =
3x'A'

—(0 84E )'ii.'5P(rn, w)dna;

—'U) 0.84Ei„. (14)

With the use of Stirling's approximation for m'. , we may
write Eq. (10) in the form

P(rn, w) e~,
(2n.np)'I'

P(rn, w) g
—(~—~tti) ~/2nttr,

(2prnu)(('
(17)

C =np —nw+rn(ln nw —ln m),

where C has its maximal value, 0, at the point m=em.
Expanding about this point we may write

g'—= (2.8n/((g))(('(e'/ed),

we find, using Eqs. (5) and (23)

(24)

g'/0. 84E(.,——n'"'ap*'"/2. 8. (2S)

According to Eqs. (25) and (12), the kinetic energy of
localization has a signi6cant effect on the density-of-
states problem for the concentration range of interest,

0.01 to 104. It could be included as suggested in
Eq. (14), determining a new optimum w. The optimum
m would naturally increase to reduce the localization
energy. The increase in cluster size would then reduce
the Quctuations and narrow the distribution. No drastic
changes are expected in view of the fact that Mp(0) has
a broad maximum as a function of m.

For states far below the average potential,
rn —nw)&nw, and the expansion of (() leading to Eq. (17)
is invalid. In this range p depends principally on m so
that, for maximum q, m should be as small as possible,
consistent with Eq. (7). This evidently demands w

small so that E in Eqs. (19) and (20) is large. However,
m cannot become arbitrarily small on account of the
kinetic energy of localization.

We now pick w to maximize p(E). We could have
used this procedure in place of maximizing Mp(0) in
Eq. (14).However, we would then have no guarantee of
a properly normalized P(rn, w). States far below the
average potential contribute so little to the probability
normalization that no problem arises.
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In the limit K))r„«1, Eq. (20) reduces to

E=1 2e'/. egr„, )(r)r„«1. (26)

then simply
42m*i)'V

p(E)=— (E—~)') F(~)d~. (32)

The most important factor determining p(E) in Eq. (12)
for large ~E~ is P(m, w). To find the optimum w we
maximize C in Eq. (16), neglecting the average number
ex compared to m. m is evaluated at E—'0=0.84Ei„.
The maximum in 4 then occurs for dm/dr„=O F('U)= lim

m

fI{'U+'Uo —P i)(r;)}

We can write the distribution function F('U) as a,n

integral using a method due to Klauder. ' From the
definition

r~ = 2.0i'i/ (m*'(i
~

E
~

'(i)

m=3 4[E("e )'i/(e'm*'")

(27)

(28) Xdridr, . dr /V", (33)

Substituting (27) and (28) in Eq. (16), expanding C to
first order in Am about the maximum and taking the
square root in Eq. (12) as a constant= (0.84E).,)')', we
find the approximate result

where e is the average impurity density. Expanding the
8 function in a Fourier series gives

1 m

F(Z) = lim —dn exp{in['U+'Up —Q v(r,)]}
m ~ i=1

m*')'(~E(y" U nwey e ""
p(E)=

))i' 5 irm ) ir' m 3 ln(m/iiw) (29) We then write
ydr, dr„/U". (34)

w = 1.3)&10'ao*'/m',

with m given by Eq. (28).
In summary, we have estimated the effects of fluc-

tuations for two energy regions. Near the average po-
tential the important fluctuations take place in a
volume of the order of a Debye sphere, (4i)./3)K)) '.
The density of states is approximated by Eqs. (12) and
(22). At very low energies, the important fluctuations
occur for very much smaller volumes. The density of
states is then given by Eq. (29). The fluctuations repre-
sented by Eq. (22) involve only the potential and,
hence, produce "tails" on both band edges. On the other
hand, the highly localized clusters represented by
Eq. (29) are important only for majority carriers which
are bound to such regions, whereas minority carriers
are repelled.

IV. THOMAS-FERMI METHOD

In this section we refine the treatment of the previous
section to take more accurate account of the fluctua-
tions in the potential. We still treat the kinetic energy
in the approximate manner characteristic of the
Thomas-Fermi method. The assumption is made that
the potential is sufficiently slowly varying that one can
define a "local" density of states using the formula ap-
propriate to a large volume.

e jvo(r—)d /rU —1 + (e
—iav (r) 1)dr/ U. (35)

00

F('U) =— do. exp i ('oU+'U )o
27r—

+ri [e '~"(') —1jdr . (36)

Equation (36) is Klauder's result.
Equation (36) is only well defined for well-behaved

potentials i)(r). In order to make the screened Coulomb
potential well behaved, we can introduce a cutoff
parameter, ro, and replace the divergent r ' factor by
(r+ro) '. We discuss this point more fully later on.

In the limit of large ri, the integral in Eq. (36) may be
evaluated using the method of stationary phase. "

q
—=in('U+'Uo)+e [e ' "'"'—1]dr, (37)

If i)(r) tends to zero suKciently rapidly, the integral on
the right of Eq. (35) becomes infinitesimal for large V.
Using

lim (1+a/U)nv ean

we obtain

Dp (E)=%2m~' "6V(E 'U) "/ir'0'. —(30) —=i('U+'Uo) —ie i)(r)e ' "(')dr, (38)

dp=F('U)ZU, (31)

where Ap is the probability of finding the potential
between 'U and 'U+6'U. The total density of states is

Equation (25) of Sec. III shows that this approximation
is never well satisfied.

We define the potential distribution function, F('U),
by

d2 p
i)~ (r)e

—iau (r) dr
dQ

(39)

If n; are the solutions of d(p/do. =O and p, =—y(o~),
y,"=(d'p/dn'), , the method of stationary phase gives

"The author thanks D. Arnush for assistance in the evaluation
of Eq. (36).
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0,28p(g) in Eq (36)
I/ 1/2( ) p e&r/( —2v pr, 0.24—

gPO—
si}. found, assuminghase is easl yOne p»n

.
nt of stationary p
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of other possible poin
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(The contribution o
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( in)—"oo

0.16—

0.12—

0.08—

(—in) (ns —1)

v"+'(r) dr, (41)

v (r)dr,

0.04—

I

-1.4 -1.2 -1.0-2.0 -l,8 -1.6 -06 -OA -0,2-0.8

(—in)"
n—P vm+2 (r)dr (43)

2.4

We have used
?.0—

Vs ——n v(r)dr, (44)

' '
n that the perturbing po-p g

t' 1h o- g

The series e pa sio
ri

,43) to
'

stituted in (42) and
series in 'U.

v'(r)dr

0.8—

0.4—

3
!

p;= —e&

2s

(b)

om —
'

nsit of states versus energy
d' sio less ariab

'U4 1

(r)dr n6n' v'(r)dr

i e
'

y f t tesis then found ye 'y f t tesis b
32). U i di

, )d

t}1 lt

!

variables, we can express e

v'(r)dr! 8 v r

v4(r)dr

(48a)

;"=—n v'(r)dr+ . .. (46) y(x) =7r—'" (x—i)'~' exp( —i s)di, (48b)

e
'

rn in (45) and (46), wethe leading term inTaking just e
obtain from (40)

=( /(-) ")-p(-~ ~,
'g:—= (e'/eg) (4v.n/KD)'",

w ere wh we have used

v'(r)dr = 2rre'/eg'sD

eened Coulomb potential.for the screene

(7) and ( ),

F ('U) =E(ns, w)/E.

m ~g)r„=0.7For the optimum w, ~n „——

m — v'" ) expL —(2.1'U/ri)' .I'(m, w)/E= (2.1 v ri e

(49)

E . 48b) thatFi . 1. It is clear from Eq.(*)
'

p g'" at high energies an p

3) d()of Sec.. III. Comparing Eqs. 32 an
19 we find
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vp(r)dr

324 //

v2(r)dr
~i

@.(4)
v4(r)dr

'02 9 .())+-
I

~

12m // ) 4 4 ~(2)i
v2(r)dr

(52)

The superscript on q denotes the power of 'U.

If the screened Coulomb interaction is substituted
in fv' and fv4 the integrals are seen to diverge. We
therefore introduce a cutoff" parameter ro and write

g2

v(r) =- exp( —a2)r).
pg(r+rp)

(53)

This device obviously de-emphasizes the contribution
to the distribution function from very close impurities.
These small distance contributions are, in fact, im-
portant for energy states very far below the average
potential, as we have seen in Sec. III. In determining
these contributions it is essential to take proper account
of the kinetic energy of localization. We have no way
here of improving on the estimate made in Sec. III.
Equation (47) is only useful for computing the Quctua-
tions due to clusters of the size of the Debye volume.
Hence, we take ro as large as possible but still suS-

The similarity of Eqs. (50) and (47) demonstrates that
(47) results from clusters whose size is of the order of
the Debye sphere, 42r/(3/(Dp). The more accurate result,
Eq. (47), is seen to give a distribution broader by a
factor 2.1 than the crude estimate of Eq. (50). One
would expect Eq. (47) to give a broader distribution
than Eq. (50) due to the effect of "fluctuations within
fluctuations" which are ignored in deriving Eq. (50).

We have seen in Eq. (25) that the energy of localiza-
tion is a significant effect, not properly accounted for
by the Thomas-Fermi method. The nonlocalizability
results in an averaging over the smaller scale Quctua-
tions and a consequent narrowing of the density of
states distribution. Hence, the best e6'ective distribution
probably lies somewhere between those of Eqs. (47)
and (50). Kinetic energy (motional) narrowing of the
distribution function will also affect Eq. (50), though
to a lesser degree. This could be estimated in the manner
suggested in Sec. III. A further narrowing effect which
we have not considered is that z& should really be a
function of the local rather than the average density.
This should not be a large effect, however.

We may also estimate the range of validity of Eq. (47)
by considering the ratio of the neglected terms in (45).

ciently less than /(& ' so that Eq. (48) is not seriously
altered.

We then get the rough estimates

v'(r)dr ~4m. (e2/pp)2)

v4(r)dr (42r/3rp) (e2/p4)',

(54)

(/2("/ p2(') —('U/(g)'/32r22) (pg/e')

p2( )/22(»~(U2/(D /1442222r rp) (pg g */g').

(55)

(56)

For all densities of interest, Eq. (55) is the more strin-
gent condition. Using 'U=2/ as suggested by Eq. (47),
we have

(3)/ p (2)~ 4/ (3~1/2221/2(2 0) (57)

Although Eq. (57) is not well satisf(ed in the range
m=0.01 to 104, it is evidently better satisfied at large e
than the localization condition of Eq. (25); hence, the
latter remains the most serious limitation on the accu-
racy of these results for large e.

We should also inquire how accurate the approxima-
tion of stationary phase itself may be. In the Appendix,
the method of stationary phase applied to a simple
soluble problem is found to be equivalent to using
Stirling's approximation for m.' in the exact solution
where 2/2 is the number of atoms (square wells) con-
tributing to the potential. Since Stirling s approxima-
tion is only 8% in error for 2)2= 1 and less for 222) 1, this
is not serious by our standards. The number of atoms
in a Debye sphere is given by Eq. (6).

V. BAND-TAIL TUNNELING IN THE SEMI-
CLASSICAL APPROXIMATION

In calculating the effect of density of states tails on
the I-V characteristic of a tunnel junction, we use a
semiclassical approach. We assume, as in Sec. III, that
electrons can be localized within a volume m, and that
their distribution in energy is given by the usual treat-
ment for a box with periodic boundary conditions. We
take the box to be a cube for simplicity.

We then divide all space into cubes of volume m,
which we take to be the "correlation" volume for the
potential. We oversimplify the correlation problem by
assuming the potential constant within a given cube
and uncorrelated between diferent cubes. We also con-
sider a division of all space into one-dimensional arrays
of cubes along the direction of the junction field. We
consider the tunneling electrons to progress along this
array and we assume that different arrays make in-
dependent parallel contributions to the tunneling
current. Hereafter we focus our attention on the con-
tribution of a single array.

We will assume a constant field model for the junction
and ignore all fluctuation effects in the junction itself.
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The integrals over dx; and d'U; in Eqs. (59) and (60)
are easily performed

2.7,

2.4—

Si(E,—Ei) =

S2(E2—E)=
Eg—E

Erfc(—ei/21 i)e
—"i

2 (ir)'"/r 222/2'/2+ Erfc (—ei/i) 2)
(68)

ErfC( —e2/g2) e-"'
d62

2 (2r)'"/rsw2'/'+ Erfc (—e2/2/2)

201—

1.8—

1,5—

dESi(E—Ei)S2(E2—E)e "'. (69)
112—

In evaluating (68) we have used

F ('U) = (1/2r'"2)) exp (—'U'/2P) (70)

0.9—

0.6—

s(x) =
Erfc(—x') exp(bx'2/2+ex')

dx
ax"/2+ Erfc (—x')

(71)

J=&2)12/2 exp( —)io(V)+ (eV pl f'2—)/K}
V+f,

dE s, is, i, (72)
g, i'

in agreement with Eq. (47). We have also made a
change of the variable of integration from dE~ to de
u»ng Eq. (61). When e is positive in the integrands of
Eq. (68) the fractional factors become unity because
/r=o according to Eqs. (62) and (63). The second term
on the right of Eq. (66) is also zero. The contribution
to the tunnel current is just that of the perfect crystal
band structure for the case of indirect tunneling. The
sharp division at a=0 between contributions from
"band tails" and contributions from "perfect bands"
is, of course, an oversimplification which results from
taking an average ~ rather than averaging over e '"*.
The function S is easily computed but it is a function
of too many parameters to tabulate. We define a new'

function closely related to S

0.3—

I I I-1.4 -1.1 -0.8 -0,5 -0.2 00.1 00,& 40.7 1.0
X

FIG. 3. 8i(x), 82(x) as defined in Eqs. (71) and (73) for silicon
with 22J=2.3X10 /cc, 22=n4. X81 0/cc.

phase, I(: 1
——a ~, occurs at the same point as the maxi-

mum field. This requires the condition m2, */2/si, "
=mz/Ni&, which is nearly satisfied for the above doping.

The appropriate tunneling masses are taken as the
ellipsoidal mass in the I 111)direction for the electrons
and the light hole mass for the holes. This gives
m1*——0.26mo, m~,*=0.16mo. We have assumed the
junction plane to have a

i
111jorientation. We calculate

Eg= 0.047 eV.
We allow for the voltage dependence of )to(V) to

first order
&o(V)—&o(0)+ (&&o/ci V) V.

Using Eq. (6'/) together with c)F/r) V= —F/2Vo for an

2.8—

j=J/(ge —xoto))

~;=2~,'"(2~v, [~'.*I)"'/»

4(2 i
2/2. a

i
)2/2r/ 3/2/3FI2.

C;=2/;/Ei.

(73)
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C THEORY - PERFECT
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EXPERIMENT

In deriving Eq. (72) we have used E/ 2
=Et+ t 2

=Ess+eV where eV is positive for forward bias. We
have also chosen an energy zero E/ 2=E2—t 2=0.

In Figs. 3 and 4 we show Si(x), S2(x), and j(V) for
a choice of parameters appropriate to silicon doped
with e~ ——2.3)(10' acceptors and eD ——4.8)&10' donors
forming an abrupt junction. The 6eld is taken as 3
times the maximum field. The value ~~ is appropriate
for an abrupt junction where the point of stationary

0 I I

0 20 40
I ~~ I

BO 80 100 1?0 140 160 180 200
VOLTAGE IN MILLI VOLTS

Fro. 4. (a) Theoretical j(U) for silicon with N&=2.3X10"/cc,
22n=4. 8X10"/cc with i/ given by Eq. (47). (b) Theoretical j(U)
for the same parameters as in (a) except that q's are taken as -',

the value given by Eq. (4/). (c) Theoretical j{V)with the'same
doping as in {a) for the perfect crystal band structure, lim y —+ 0.
(d) Experimentally determined j(V) for silicon with n&=2.3
X 10'%c, isa=4.8X10"/cc.
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Fio. 5. Theoretical characteristic for a range of donor
concentrations. Tails given by Eq. (47).
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abrupt junction, we calculate e))ip/BV=6. 5 volts '. Vp

is the total potential change across the junction,
Vp +0+I 1+i 2

We compute the Gaussian width g, using Eq. (47).
The appropriate mass in these formulas is the density-
of-states mass mi ——1.04mp, ms ——0.58mp. Equation (5)
for KD does not apply to low density. At very low
density we know that screening is accomplished by
binding an electron in a 1s state which gives a screening
length aPE/2, comparing exponential tails. (apBE is
the Bohr radius as determined from the binding energy. )
Ke take crude account of this fact by using either KD

from Eq. (5) or 2/aPE, whichever is larger. We find

K~]= 1.5&10 cm ', K~2= 1.1&(10 cm '. K~~ was found
from Eq. (5) while ~»=2/aPE, although ~» is only
10% larger than Eq. (5) would predict. The appropriate
ao was determined by fj.tting the simple hydrogenic
formula to the experimental binding energy. Note
that this uo E used in estimating KD is not the same as
the Bohr radius, op*, defined in Eq. (5). The latter
requires the use of a density-of-states mass. The length
w, & in Eq. (73) is taken equal to ~D; '.

Using the above values of zn in Eq. (47) we compute
g~=0.077 eV, F2=0.063 eV. The constants a,b,c then
have the values a~= a2= 1.7, b~=0.46, b2=0.36, c~= 1.6,
cs 1.3. The Fermi levels are |r

——0.041 eV, I s
——0.05 1

eV. The correction to the Fermi level due to the band
tails is negligible.

In Fig. 4 we show the theoretical curve for the I-V
characteristic using the band tails given by Eq. (47).
Also shown for comparison are the characteristic for the
perfect crystal (no tails), the characteristic with tails
half as large as given by Eq. (47), and the experimental
curve of Logan and Chynoweth. ' The general agreement
between theory and experiment appears satisfactory in
view of the roughness of the theoretical approximations.
The normalization of the experimental curve is arbi-
trary but the relative normalization of the three theo-
retical curves is meaningful. For the same tunneling
exponent, ) 0, more current Rows when "tails" are

2
0

t

40
t

80 $20
MILLIVOLTS

160 200

Fio. 6. Theoretical characteristic of Fig. 5(c) plotted
as log(j/V) versus V.
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present even at very small biases because E~ can be
larger than the perfect crystal limit, i. Since Ei
the effect is signi6. cant.

Experiment appears to favor the curves for which
the tails have been computed by Eq. (47) rather than
those half as large. This result was not expected since
we have argued that a proper treatment of the kinetic
energy of localization, neglected in deriving Eq. (47),
would have the effect of averaging over the potential
variations and, hence, narrowing the tails. However,
so many approximations have been made in arriving at
the experimental results that no strong conclusions
should be based on this point.

In Fig. 5 we show' the theoretical curves as a function
of donor concentration, eL. The peak voltages in order
of increasing concentration are 36, 42, and 56 rnV as
compared to 33, 36, and 52 mV as given by Logan and
Chynoweth. Again, agreement is as good as we have
any right to expect.

Because of the many factors entering the theoretical
analysis, one would hardly expect the results to display
any simple analytic form such as the empirical relation-
ship j Uet'~ used by Logan and Chynoweth. ' Never-
theless, Fig. 6 shows that this law is not too badly
obeyed, especially for U&60 mV. A noticeable devia-
tion occurs at lower voltages.
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'U=vo r&ro
=0, r) ro.

(A1)

The exact solution is easily found to be

APPENDIX: TEST OF STATIONARY
PHASE METHOD

We test the method of stationary phase used in

Sec. IV by applying it to the calculation of the potential
distribution function for randomly spaced square wells.

The distribution function is given by Eq. (40).

00

F('U) = t Q exp( —2oris'U/vp) j
S=—00 (2orvp'U)'I'

(Bvpwp)
X] [ exp( —Nwp+'0/vo),

EU&
s—='U/vp.

The sum over s is easily evaluated:

(A9)

00 1
F('U)= g 8('U —mvp) —(gawp) e

—""o,
m=0 mt

wp=4rl'fp /3,

(A2)

+8 sin(S+-', ) p
e%sP—

s=—S sin& p

lirn Pe""=2or g 8(p 2n—.m)

(A10)

(A11)

00 1
F('U)= P 8('U mvo)—

fS—00 (2v'U/vp)'"

where we have used Eq. (10), the probability of finding Using (A11), we find for (A9)
exactly m atoms within the interaction volume xo about
the origin. e is the average density.

The equations analogous to Eqs. (37) through (39)
become

y = iaV+Nwo (e '"o —1)— (A3)
(Rvpwp) *

X~
~

exp( two+—U/vo)kU) (A12)

=i'U —ieeozooe ' ", (A4)

d2p
= —~po~~oe (AS)

The stationary phase points are

—in, vo ——ln ('U/n vowp)+ 2m.is, (A6)

Ps = &o. (AS)

y = ('U/vp)(1 —2oris —ln(U/nvpwo)) —swp, (A7)

Equation (A12) agrees with (A2) upon substituting
Stirling's approximation for m.' and discarding the
spurious solutions with m negative. The solution s=0
is the only point of stationary phase which could be
found by expanding the exponential in (A3) as was done
in Sec. IV. Keeping only s=0 in Eq. (A9), the result is
the same as (A2) if we average the 5 function peak over
the interval eo between peaks. We have been unable to
determine what importance other points of stationary
phase, if they exist, might have in the problem of
Sec. IV. For e 1, F(U) could be evaluated numerically,
but in view of the limitations on the whole approach
imposed by the treatment of the kinetic energy Lsee
Eq. (25)) it does not seem worthwhile.


