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The relation between the form of the energy-gap function A(e) and experimental results for the super-
conductors with stronger coupling, Pb and Hg, is discussed. It is shown that the critical Geld curve is af-
fected rather strongly by the form of h(s) near the Fermi surface, but that the form of n(s) at distances of a
Debye energy or more has little effect. The positive deviation of the critical field from a parabolic indicates
that 6 is Qat or slightly increasing on moving away from the Fermi surface. Solutions of the BCS integral
equation are given for the Bogoliubov, Bardeen-Pines, and Eliashberg interactions. When a screened
Coulomb interaction is included, all of these solutions have the necessary form at the Debye energy to
explain the anomalous tunneling behavior of Pb. The critical field data eliminate both the Bogoliubov and
Bardeen-Pines interactions, and favors the Eliashberg interaction, However, the Pb and Hg critical fields
can not be reproduced with these solutions since the ratio n(0)/kT, is much too small.

INTRODUCTION

'UNTIL recently, much of the experimental work in
the field of superconductivity has either been

directly concerned with the measurement of the gap in
the single-particle excitation spectrum of the super-
conductor, or at least the results are interpretable in
terms of such an energy gap. ' In the BCS theory, ' as
well as in the version of Bogoliubov, ' the energy gap is
the value of a function d(k) at the Fermi surface

~
k~ =ks. (Actually the gap is 26(k&).] In the original

treatments" of the theory, the effective electron-elec-
tron interaction was treated as a constant and. this led
to a constant value of h(k) —denoted by es in BCS.

Numerical calculations, 4' as well as an approximate
analytic solution, ' using more complicated (and pre-
sumably more accurate) interactions have led to energy-

gap functions which depend on the energy, e(k), in a
rather complicated way. ~ However, in the weak coupling
limit the predictions for measurable quantities are
identical to those obtained by BCS with their simple
interaction, showing that the theory does give a law of
corresponding states. Part of the reason that the results
are independent of the interaction is due to the fact that
d(e) has a vanishing first derivative at the Fermi sur-
face. Furthermore, the distance one must go away from

'For a review and references, see J. Bardeen and J. R.
Schrieffer, in Progressin Lom Temperature Physics, edited by C. J.
Gorter (North-Holland Publishing Company, Amsterdam, 1961)
Vol. 3, p. 170. The most recent method of determining the gap
is in the tunneling experiments of I. Giaever and K. Megerle,
Phys. Rev. 122, 1101 (1961) and of S. Shapiro, P. H. Smith, J.
Nicol, J. L. Miles, and P. F. Strong, IBM J. Res. Develop. 6,
34 (1962). See also reference 8.' J. Bardeen L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (195 ); referred to as BCS.' N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958); N. N.
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New 3fethod
in the Theory of Superconductivity (Consultants Bureau Enter-
prises Inc. , New York, 1959).

4 J. C. Swihart, IBM J. Research Develop. 6, 14 (1962).' G. J. Culler, B. D. Fried, R. W. Huff, and J. R. SchrieGer,
Phys. Rev. Letters 8, 399 (1962).

6 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
7 In references 4—6 as well as in this paper, only the spherically

symmetric part of 6 is considered; that is, b, is taken as a function
of ( h( or of the normal-state single-electron energy, e.

the Fermi surface in order to have an order of magnitude
change in 6 is of the order of k8&, the Debye energy. On
the other hand, the calculations of the physically meas-
urable quantities involve integrals over regions of the
order of kT, or hs (the value of 5 at the Fermi surface
and at T=0') in width about the Fermi surface. In the
weak coupling limit for which &p((kOD the energy-gap
function does not vary much in the interesting region
and can thus be treated as constant.

On the other hand, if the coupling is not weak so that
the energy gap is not very small compared to kOD, it is
possible that the energy dependence of 6 may manifest
itself in the physical behavior of the superconductor. If
this were the case, then the results would depend on the
form of the interaction, and one would expect deviations
from the law of correspondent states. Two supercon-
ductors with relatively large ratios of As/ROD are Pb and
Hg; these are also the superconductors with the largest
experimental deviations from the law of corresponding
states.

Recently Giaever, Hart, and Megerle' have obtained
anomalous results for the tunneling from superconduct-
ing lead through an insulator into a normal metal. They
interpret the anomaly in terms of the eGect of the varia-
tion of A(e) in the Pb on the density of states in the
region of the Debye energy. This seems to be the 6rst
fairly direct experimental information about the nature
of the energy-gap function away from the Fermi surface.

Another interesting result is that of Finnemore and
Mapother' in which they found they could fit their
experimental critical held curves for Hg by assuming a
constant energy-gap function and treating 2hs/kT, as
an adjustable parameter. The energy gap they obtain is
in reasonable agreement with that from infrared ab-
sorption. Their calculated results are in contrast to those
of the author' in which a solution was found using a
Bardeen-Pines type of interaction" of strong enough

I. Giaever, H. R. Hart, Jr., and K. Megerle, Phys. Rev. 126,
941 (1962). See also reference 18.

9 D. K. Finnemore and D. E. Mapother, Bull. Am. Phys. Soc.
7, 175 (1962); referred to as FM.

'0 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955); H.
Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).
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coupling to simulate Pb or Hg. In this calculation the
energy gap was nearly as large as that of Pb or Hg, but
the critical field was much closer to that of a weak

coupling superconductor. The difference between these
two calculations must be due to the different functional
forms for A(e). To test this we report here the effect on

the critical field of using several simple forms for h(e).
The results are given in the first section.

In Sec. II, we give numerical solutions for A(e) using
four different interactions for comparison with the re-
quirements of the tunneling experiments and of the
critical field.

I. THE CRITICAL FIELD

The most dramatic way of pointing out the peculiarity
of the temperature dependence of the critical 6eld of Pb
or Hg in comparison to the weak coupling supercon-
ductors is by plotting the deviation from a parabolic
form. The deviations are small, being less than 5 or 6%;
however, Pb and Hg have positive deviations while

the weak coupling superconductors have negative
deviations.

In Finnemore and Mapother's' calculation of the
critical field deviation, which they compared with their

Hg results, they made the following three assumptions:
First, that D(e, T) is a constant independent of e for each
temperature. Second, that the temperature dependence
of D(T)/A(0) is the same as for the weak coupling limit

of BCS. Third, that the energy gap to critical tempera-
ture, 2A(0)/k T„is an adjustable parameter. We discuss

these assumptions below in the light of the solutions for
various interactions. They then found that they ob-

tained roughly the experimental maximum deviation'"
of +0.015 and at roughly the experimental reduced
temperature of 0.5 if they chose the energy gap to be
4.1 kT, . This is in fair agreement with the value of
4.6k', found by infrared absorption'2 and 4.1kT, found

by tunneling. "
The result above is in sharp contrast to the critical

field calculation of the author' in which an actual solu-

tion of the BCS integral equation was used for the

energy-gap function. The interaction used was a square-
well in ~e

—e'i and was modeled after the Bardeen-
Pines'P type of interaction. The strength of the inter-
action was adjusted to give a gap of 4.0kT, and the
resulting critical field had a maximum deviation from a
parabolic form of —0.026 and this occurred at a reduced
temperature of about 0.7. Thus, the critical field was

very similar to the weak coupling result of BCS even

though the energy gap to kT, was almost as large as
that used by FM.

There are two possible reasons for the disagreement
between these calculations. First, in the expression used

' J. K. Schirber and C. A. Swenson, Phys. Rev. 123, 111S
(1961).

rs P. L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960).
'3 J. M. Rowell and A. G. Chynoweth, Bull. Am. Phys. Soc.

7, 473 (1962).

by FM the integration is taken to infinite energy with
the energy-gap function a nonvanishing constant over
the entire range, whereas, in our calculation, the energy-
gap function rapidly approached zero a few times the
Debye energy from the Fermi surface. " We are not
dealing with the weak coupling limit, since with Hg the
Debye energy is roughly only 7.5 times D(0); hence, it
would seem appropriate to repeat the calculation of
FM, but with the integration cut off at about eight
times A(0).

The second difference between the two energy-gap
functions is in their behavior near the Fermi surface—
that of FM is constant while ours is of the form

with C)0 and of the order of (1/k8ii)'.
To see the eBect of a variation in the functional form

of A(e) in the energy region near or larger than k8&, we
have computed the critical field using a constant A(e)
out to an energy e and then zero beyond. Otherwise,
we have retained the same three assumptions of FM.
We have considered three cases with e =166p 8kp and
4Ap all with 2Ap/kT, =4.1. The critical field was ob-
tained by numerically integrating the expressions in
Eqs. (24), (25), and (26) of reference 4. The constant
solid curves that are cut off at 4 and at 8 in Fig. 1
represent two of the three functional forms for A(e).
There was very little difference between the deviation
functions of these three examples, the maximum devia-
tions being+0. 0203, +0.0198, and +0.0185 for e =16,
8 and 46p, respectively, with this maximum occurring
at very nearly the same reduced temperature for all
three. The deviation function for the one case with

=86p is plotted in Fig. 2 and labeled "constant A."
We conclude that the critical field curve for Pb or Hg

is rather insensitive to the functional form of A(e) for
energies in the region of or larger than the experimental
value of koD. It should be stressed that the constant 6
used here and by FM is not a solution of the BCS
integral equation using a constant interaction, V. With
a constant V it is impossible to have a solution with
2Ap/kT, larger than 4.0, and the value of four occurs
only in the strong coupling limit. For the constant V of
a value such that 2Ap/kT, equals 3.9, e is only
0.7657hp' and the critical 6eld deviation function is
negative with the largest deviation being —0.063. Such
a critical field curve is quite different from that found
by FM for the case 26p=3.9kT,. The reason for the
large difference is that A(e) has been changed near e= 0.

To check further the effect of changes in A(e) near
the Fermi surface, we have considered energy-gap func-
tions of the form of Eq. (1) for various values of the

The energy-gap functions we consider in this paper are sym-
Inetrical with respect to the Fermi surface; so we need consider
only energies larger than the Fermi energy, When we speak of an
energy e smaller than the Dehye energy, we mean )p)(k&n,
where e is with respect to the Fermi surface."P.M. Marcus (private communication).
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in the critical held calculations of Fig. 2.
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constant C. For all our cases, we have taken h(e) =—0 for
$&86p. The different examples considered are plotted
with the dashed lines in Fig. 1.The cases with C&0, we
denote as "negative parabolic" (since the quadratic
term is negative), while those with C(0, we denote as
"positive parabolic. "Although Eq. (1) is a very simple
functional form, it should represent any analytic h(e)
near the Fermi surface since it is the first two terms of
a,n expansion in powers of e. As we mentioned above,
there is no linear term in the expansion. Equation (1)
would not be a good representation of an arbitrary A(e)
far from the Fermi surface, but we have already found
that values at large e do not have much effect on the
critical field.

In order to calculate the critical field, we take over the
second and third assumptions of FM. We change the
first to assuming that A(e, T)/6(e=0, T) is independent
of temperature. That is, the form of 6 as a function of e

is independent of T. This was found to be very nearly
true for actual solutions of the integral equation. 4 '

Figure 2 gives the deviation function for the different

pa, rabolic forms for the case 2~p= 4.1kT.. The negative
parabolic A(e) of Fig. 1 that deviates the least from the
constant 6 has very nearly the same critica, l field as the
constant 6 cut off at 4hp. Thus, adding this small

amount of a parabolic factor has the same effect as
eliminating the nonvanishing D(e) from 4 to 8. The trend
of the deviation function on adding more of a negative
parabolic part to A(e) is in the right direction to explain
the different critical field curves of FM arid of the
author. 4 In the latter calculation, A(e) had a large nega-
tive parabolic part that would take h(e) to zero at
about 2.46p.

If the three assumptions used here are correct, then
the positive critical field deviation functions of Pb and

Hg indicate that A(e) has very little negative parabolic
part. That is, A(e) is either very nearly a constant or
has a positive parabolic part near the Fermi surface. A
similar conclusion had previously been arrived at by the
author4 on considering the jump in the specific heat in
Pb at T,. However, at that time, it was incorrectly
conjectured that solutions of the integral equation could

FIG. 2. Calculated temperature dependence of the critical held
deviation function using the energy-gap functions of Fig. 1.

(2)

for the various effective electron-electron interactions
V(e, s'). Here V is the usual Vkk averaged over angles
and multiplied by the density of states (in the normal
state), while

s+g ( ') sjt/s (2a)

is the quasiparticle excitation energy. We have carried
out the calculation on an IBM 7090 by a "quasilinear-
ization" process described earlier. 4

In Bogoliubov's deriva, tion' of the superconductivity
theory by cancellation of dangerous graphs, he arrives at
an integral equation of the form (2) with Vkk given by

7

Irres++k++k'

where 3f~ is the matrix element for the scattering of an
electron from k to k' with emission or absorption of a
phonon of wave vector q and energy Lr, ."

'6 In the Bogoliubov theory the excitation energies are given
by Eq. (2a) only in the weak coupling limit and then only for
excitations near the Fermi surface. The more complete expression
for the energy [see Bogoliubov, Tolmachev, and Shirkov, refer-
ence 3. Eq. (3.gl j involves integrals with singularities near the
Debye energy. These singularities will have an effect on the
density of states and possibly also on the critical held. Our calcu-
lation is of a simplihed version of the Bogoliubov theory which
ignores these singularities. The same simplihcation was made by
Bogoliubov in reference 3. A better treatment of the Bogoliubov
theory at the coupling strengths corresponding to Pb and Hg
should also take into account higher order terms in the perturba-
tion expansion as pointed out by G. Rickayzen, Phys. Rev. 111,
817 (1958).

not have a positive parabolic part. Subsequently, it was
shown' ' that the Eliashberg type of interaction does
give such a solution.

II. SOLUTIONS OF THE INTEGRAL EQUATION

Now we consider actual spherically symmetrical solu-
tions of the BCS integral equation
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For our calculation we have assumed an Einstein
phonon spectrum so that co, is independent of q. Inte-
grating over angles and adding a positive constant term
for the screened Coulomb interaction, we have

TABLE I. The ratio of the critical temperature to Debye tem-
perature and of the energy gap to critical temperature for diferent
coupling strengths and diferent interactions. The ratio T,/Hn
increases with increasing coupling.

2np/kT, Z (k8o)/ap

V(e,e') =- +B,
1+E+E'

.for the Bogoliubov interaction in energy units of
fsco=kOD. Here A and 8 are constants representing the
strength of the two interactions and we have treated
them as parameters. %e have cut off the interaction at
e' equal to about four times k|ID. In Fig. 3 is plotted the
solution A(e) at T=O for this interaction with A =0.6
and 8=0.3; because of the symmetry, we need integrate
Eq. (2) only over positive e' if we drop the ts factor. For
this example T./8D=0. 0074, while 6(e,T)/D(O, T) for
any particular e changed by less than 2% over the entire
temperature range. Table I gives the results for three
coupling strengths.

For comparison, we give in Table I and Fig. 3 results
previously reported' for the Bardeen-Pines interaction"
with a Debye phonon spectrum. The interaction used
for this case is not the square well in

I
e—e'I, but is that

given in Eq. (12) of reference 4. The singularity in the
potential was arbitrarily cut off for convenience since
lifetime effects wouM cut it oG anyway.

Eliashberg" has obtained an effective electron-elec-
tron interaction starting with the assumption that the
electrons are in a BCS state. Using this interaction, we
have obtained numerical solutions of the integral equa-

Bogoliubov interaction,
5.76 10 5

0.00740
0.167

Einstein phonon spectrum
3.52 —66.5
3.39 —31.4
2.70 —1.22

Bardeen-Pines interaction, Debye phonon spectrum
0.00720 3,48 —9.17

Eliashberg interaction, Einstein phonon spectrum
0.00068 3.52 + 3.13
0.0148 3.43 + 2.48
0.0366 3.33 + 2.25

Eliashberg interaction,
0.000855
0.00898
0.07

Debye phonon spectrum
3.51
3.40

+16.9
+11.0
+ 5.8

V(e, c') = ——,'A
,+ +B (4)1+E+E' 1 E+E'—

Kith the Debye spectrum the integration over angles
gives

V(e, e') = —A (F(E'+E)+F(E' E))+B, (5)—
with

tion (2) for both the Einstein phonon spectrum and the
Debye spectrum. For the former, the interaction is (the
integration over angles is trivial)

2.0

t.o

ELlASHSERG - DEBYE
T=O where

~,—~»+*' lnI1+ 1/*I
F(*)=

u'+x'

at ——t g' ln(1+ 1/a')

a2=a cot 'c,

(6)

O

CI

CI

-LO

0.5 I.O l.5

Fxc. 3. Numerical solutions of the BCS integral equation for
various interactions and at T=O. These curves show the energy
dependence near the Fermi surface. The functions h(p, T)/h(O, T)
were found to be nearly identical to these.

» G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
Ltranslation: Soviet Phys. —JETP 11, 696 (1960)g.

while u' is proportional to the interelectron spacing and
is of the order of 0.4 for most superconductors. Ke used
a'=0.4 for our calculations. In Eqs. (4) and (5), the
constants A and 8 are the strengths of the electron-
phonon interaction and the electron-electron Coulomb
interaction, respectively. In obtaining (5), we have used
the "jellium" model for the electron-phonon interaction.

Morel and Anderson' found approximate analytic
solutions at T=O for the interaction (4), while Culler
et al. ' have used an interaction that is very similar to
(5) to find numerical solutions over the temperature
range up to T,. Our results, which are shown near the
Fermi surface in Fig. 3 and over a larger energy range
in Figs. 4 and 5, are nearly identical to these previous
calculations. The solutions for the two diGerent phonon
spectra are also quite similar to each other.

In these calculations we cut off the interaction for e'

larger than ~ where we used e =18.8k8D for the cases
with the Einstein spectrum and e =10keD for the
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Debye cases. The qualitative features of the solutions
do not seem to be dependent on the precise value of e .
The singularities in the interactions have also been cut
off. For the Debye case the logarithm in the interaction
was treated as constant in an energy region of width
0.05k8& about the singularity. With the Einstein spec-
trurn the singularity is of the 1/x type which is stronger
than the logarithmic singularity in the other case. Be-
cause of this, we cut off the singularity over a wider
region, 0.5k8~, and joined the positive value of the
interaction on one side with the negative value on the
other side by a linear interpolation. For a narrower
cut-off region of the singularity, we found the resonances
at multiple values of k|tD as discussed by Rowell,
Chynoweth, and Phillips, " but we have not made
accurate calculations of these eGects. In order to make a
quantitative comparison with the experiments, it would
be necessary to know in detail how the lifetime effects
cut off the singularity and this has not been worked
out as yet.

To take into account the fact that the Coulomb inter-
action averaged over angles is not a constant but de-
creases for large k or k', we have replaced the constant
8 in the interactions (4) and (5) by

where ep is a constant. If we take for ep the Fermi
energy k'k&'/2m, then for e and c' above the Fermi level,
Eq. (7) is of the form

V '"'= Bkp'/(kk')

We used ep=100k8~ in our calculations. The effect of
this variation of Vc'"' on the solution was to cause A(e)
for e larger than 4ke& to be slowly increasing toward
zero instead of having a constant negative value (see
Figs. 4 and 5).

ELIASHBERG POTENTIAL- DEBYE SPECTRUM
TRO

a, el 8, -.OOI49

"2-

FrG. 4. Numerical solution of the BCS integral equation for
the Eliashberg interaction with a Debye phonon spectrum. This
is the same solution as in Fig. 3, but it is shown over a la ger
energy range.

"J.M. Rowell, A. G. Chynoweth, and J. C. Phillips, P1:ys.
Rev. Letters 9, 59 (1962).

BERG, POTENTIAL - EINSTEIN SPECTRUM
T*O

a,XSe, .Oa54

~5 (c)/h(0)

-5.29T V (&s&' 0)

0
1

2
1

8 IO

c/k8&

1 1

l4 l6 ll

FIG. 5, Numerical solution of the BCS integral equation for
the Eliashberg interaction with an Einstein phonon spectrum.
This is the same solution as in Fig. 3. Also plotted is CIV(~, ~ =0),
where C& and Cs are chosen to satisfy Eq. (8) at the energy ends.

One of the striking features of the calculations of
Culler et aL' is that for their plot of h(e) with the Cou-
lomb repulsion included (their Fig. 4 with C not zero)
there is a second relative maximum at e 3k' and the
solution even becomes positive at this point. For our
calculation in Fig. 4, there is also a relative maximum
at &=3.5k8~, but it is so slight that it does not show up
on the graph. For our strongest coupling case in Table I,
there is a pronounced maximum at 3.3koa, but the
function does not become positive. When the singular
peak in the interaction was smeared over a region larger
than 0.05kgD, this bump in A(e) became smaller. Thus,
this second maximum is another example of the reso-
nances of Rowell et al."

Morel and Anderson' found their solutions of the
BCS integral equation by assuming a solution of the
form

(8)

and determining the constants C~, C2, and hp so that
6(0)=As and also so that the equation is satisfied at
high and low energies. In Fig. 5 we have plotted together
with our solution d, (e)/As the function CiV(e, e'=0)
where C~ has been chosen C~= —3.297. With this value
of Ci, Eq. (8) is satisfied at the two ends of the energy
range with Cs=+0.3805. If Eq. (8) were satisfied, the
one curve of Fig. 5 wouM be a constant amount below
the other over the entire range. The deviations from (8)
occur in the region of the singularity; this is just the
region where Morel and Anderson indicated their solu-
tion would be inaccurate. We can not compare our
values of hp, C~, and C2 with those using the method of
Morel and Anderson since we have treated the singu-
larity quite differently. Figure 5 demonstrates the way
in which we have cut off this singularity in V.

Equation (8) not only gives the qualitative features
of A(e)/As for the Eliashberg interaction with the Ein-
stein spectrum but also for this interaction with the
Debye spectrum. With the Bogoliubov interaction, the
agreement of the numerical solution with Eq. (8) is very
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good over the entire energy range. However, with the
Bardeen-Pines interaction, or even a square well in
Ip —p'~, the solution does not qualitatively agree with

(8) in the neighborhood of the Fermi surface.
YVe are now in a position to compare the results of our

numerical calculations with the experimental require-
ments. First of all, all of the interactions give the BCS
results in the weak coupling limit and, thus, agree with
the experimental law of corresponding states. When the
screened Cou1omb interaction is included, all the solu-
tions change with energy from a positive solution with a
negative slope to a negative solution with negative slope
in the region of koD. This is the requirement from the
tunrieling results of Giaever et a/. '; however, the slope
for the simplified Bogoliubov interaction is so small
that it does not appear that it could give the magnitude
of Giaever's eRect."The resonances of Rowell et al."
occur only for the interactions with singularities; this
also rules against the simplified Bogoliubov interaction.

In comparing with the critical 6eld results of FM, we
6nd that as long as the coupling is not too large the first
two assumptions we made about the solutions are valid.
That is, d(p, T)/A(p=0, T) is essentially independent of
temperature, and A(e=0, T)/A(p=O, T=O) is very
nearly the same as the BCS weak coupling result. The
latter function is very close to the BCS strong coupling
result

D(T)/A(0) = tanh[(T, /T)(A(T)/A(0))], (9)

as has been observed before. 4 '
For coniparing the calculated D(p) with the require-

ment we found from the critical field data, we have
given in the third column of Table I the value of

-

Z(ken)/Ap where the function Z(p) is defined as the
quadratic function (1) which fits the actual numerical
solution near the Fermi surface, The values in Table I
should be compared with the values of A(p)/Ap in Fig. 1
for e=8hp, since for our critical Geld calculations of the
previous section we assumed ho~ 8kp.

We see from Table I that the Bogoliubov and Bar-
deen-Pines interactions produce large negative parabolic
parts in A(p) near the Fermi surface. This negative part
is the smallest in the stronger coupling Bogoliubov
interaction, but even here it appears to be too much to
account for the positive critical field deviation function
of Pb and Hg."On the other hand, the Eliashberg inter-
action gives a positive parabolic part to A(p) as shown in
earlier calculations, "and for the stronger coupling cases
the magnitude of this parabolic part is not unreasonable.
The conclusion was previously reached, ' on the basis of
the magnitude of the jump in the specific heat of Pb at
T., that d, (p) must have a positive parabolic part. These

two pieces of information both favor the Eliashberg
interaction over the other two.

There is still a problem about the third assumption in
our calculation of the critical fields, namely, .that
2h p/kT, takes values as large as 4.1.The solution of the
integral equation sets the value of this ratio; so it is not
an adjustable parameter. The weak coupling solution
gives 3.5 for the ratio for every interaction tried.
Whereas with the constant interaction of BCS and also
with a square well in

~

p —p'~ the ratio increased with
increasing coupling, ' we see from Table I that the op-
posite is true for the more realistic interactions. This
was previously noted by Culler et al. ' Thus, we can not
obtain a positive deviation in the critical held with the
solutions from the Ehashberg interaction because
2Ap/kT, is not large enough. It may be that the large
value of the ratio is brought about by the things that
were neglected in the present calculation such as life-
time eRects, anisotropies, or other crystal eRects. If
these other effects do produce a large energy gap to
critical temperature ratio without changing the validity
of the first two assumptions, then the critical field data
favor the Eliashberg interaction.

The Bardeen-Pines interaction was derived' on the
assumption that the electrons are in the normal state.
Hence, it is not surprising that this interaction is not as
accurate as the other two for the superconducting state.
Comparing the Eliashberg and Bogoliubov interactions,
we have seen that the tunneling experiments as well as
the critical field and specific heat data point to the
Eliashberg interaction as being the better. On the other
hand, Liu" found that the Bogoliubov interaction led
to a lower energy state than the Eliashberg interaction
and thus should be a better model for the superconduct-
ing state. This discrepancy is as yet unresolved.
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Note added se proof. Since this paper was submitted
for publication, J. R. Schrieffer [D. J. Scalapino, and
J.W. Wilkins, Phys. Rev. Letters 10, 336 (1963)],have
shown that it is not the ordinary quasiparticle density
of states in the superconductor that is appropriate for
the tunneling current. They have also shown that the
imaginary part of the energy-gap function is as impor-
tant in explaining the tunneling anomaly as is the
real part.

"S.H. Liu, Phys. Rev. 12K, 1244 (1962).


