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Crystal field theory has been used to examine the origin of magnetic anisotropy in CoC12 and NiC12. These
salts are antiferromagnets in which the metal ions form ferromagnetic layers with alternate layers oriented
in opposite directions. An exchange Hamiltonian is derived for ions in the ground state taking account of a
ferromagnetic in-layer interaction J& and an antiferromagnetic between-layer interaction J2, and it is found
that the anisotropy may be approximately represented by including a single extra parameter. The coopera-
tive problem is then treated by molecular field theory at extremes of high and low temperature, and by
Green function techniques (using the results of the previous paper) for temperatures near the Neel point.
Fitting low-temperature experimental results with the theory, the exchange interactions are calculated
showing, in particular, that the ratio Js/Js is large in both salts (11.6 for CoCls, 13.1 for NiClq). Using these
estimates the high-temperature susceptibility is derived and a good agreement between experiment and
theory observed. For CoCI2 the anisotropy is considerable and g values g&1=3.38 and g~=4.84 are estimated.

1. INTRODUCTION

'HE anhydrous chlorides of iron, cobalt, and nickel
are members of a class of substances which have

been widely referred to in the literature as metamag-
netics. Their somewhat unorthodox magnetic properties
have been investigated experimentally in some detail,
and we may mention, in particular, the work of Starr,
Bitter, and Kaufmann' on powder susceptibility;
Trapeznikowa and Schubnikow' on specific heats; and
more recently, the single-crystal susceptibility measure-
ments of Bizette, Terrier, and Tsai'; and the neutron-
diffraction experiments of Wilkinson, Cable, Wollan,
and Koehler. 4

For each of these salts the magnetic susceptibility in
small magnetic fields shows a maximum at a tempera-
ture close to that at which a lambda-type anomaly
occurs in the specific heat. This kind of magnetic be-
havior suggests the appearance of antiferrornagnetic
ordering for temperatures below the anomaly. The
salts, however, are conspicuous among antiferromagnets
in that the low-temperature susceptibility is quite
markedly field-dependent while the paramagnetic Curie
temperature O~ t obtained by applying the Curie-Weiss
law y= C/(T 0) to high-temper—ature susceptibility
measurements) is positive.

All three salts have a crystal structure of the CdCl2
type (see Wyckoff') in which the metal ions are ar-
ranged in hexagonal layers, where each layer is sepa-
rated from an adjacent one by two hexagonal layers of
chlorine anions. As long ago as 1933,Landau' suggested
that the magnetic properties could be qualitatively ex-
plained if there were present a strong ferromagnetic
intralayer interaction together with a much smaller

' C. Starr, F. Bitter, and A. R. Kaufmann, Phys. Rev. 58, 977
(1940).

'O. N. Trapeznikowa and L. W. Schubnikow, Physik. Z.
Sowjetunion 7, 66 (1935).

'H. Bizette, C. Terrier and B.Tsai, Compt. Rend. 243, 1295
(1956).

4 M. K. Wilkinson, J. W. Cable, E. O. Wollan, and W. C.
Koehler, Phys. Rev. 113,497 (1959).

e R. W. G. Wyckoff, Crystal Strstctnres (Interscience Publishers
Inc. , New York, 1948).' L. Landau, Physik. Z. Sowjetunion 4, 675 (1933).

antiferromagnetic interlayer interaction. Thus, in the
ordered state, this would give rise to ferromagnetically
ordered layers with the magnetic moments of alternate
layers oriented in opposite directions. The weakness of
the antiferromagnetic exchange could account for a
field dependence of susceptibility in the ordered state,
and the dominant ferromagnetic exchange would lead
us to expect a ferromagnetic "internal field" and, thus,
a positive value of O~.

To put these ideas on a more rigorous basis, Neel~

applied the molecular-field theory to the problem, and
was able to give a semiquantitative explanation of
many of the magnetic properties. The major difficulties
which present themselves when one attempts a more
quantitative theoretical treatment of the problem are
twofold. Firstly, we must necessarily include two dif-
ferent exchange parameters in order to describe the
interactions between nearest neighbors (in-plane) and
between next-nearest neighbors (between-plane). This
makes any cluster treatment of the problem difBcult.
In addition, however, the magnetic properties indicate
that the salts are, by no means, isotropic, and that, in
particular, the anisotropy for FeC12 and CoC12 is very
considerable. This means that before we can attempt
the cooperative problem, it is necessary to examine the
microscopic origin of the anisotropy in order to deter-
mine the form of the anisotropic part of the Hamil-
tonian. This has been done for FeC12 by Kanamori, '
who concludes that at temperatures near or below its
Keel point this salt behaves, to a good approximation,
as an Ising antiferromagnet with the hexagonal axis cp

as the preferred direction of spin alignment. Thus, for
this case, the inclusion of anisotropy provides a relative
simplification of the problem, and both Yomosa' and
Heap" have used the Bethe-Peierls cluster method to
attack the Ising problem. They are able to obtain a
good agreement between theory and experiment if the
ferromagnetic intralayer exchange, J&, is considerably
larger than the antiferromagnetic interlayer exchange,

7 L. Neel, Suppl. Nuovo Cimento 6, 942 (1957).
s J. Kanamori, Progr. Theoret. Phys. (Kyoto) 20, 890 (1958).
S. Yomosa, J. Phys. Soc. Japan 15, 1068 t'1960).

'e B.R. Heap, Proc. Phys. Soc. (London) 80, 248 (1962).



MAGNETIC PROPERTIES OF COC12 AN& N&C&2

J2. Heap' finds that the best fit is obtained when
Ji//s ——12.4.

Kanamori' also gives a brief outline of the situation
for CoC12 and NiC12. In both these salts he indicates
that the anisotropy is such that the preferred direction
of spin alignment is normal to the co axis. Such a direc-
tion is also indicated by the magnetic-susceptibility
experiments, and has been confirmed in the case of the
cobalt salt by neutron-diffraction experiments (Wilkin-
son et al.').

In the present paper we shall make a detailed in-
vestigation of the microscopic origin of the anisotropy
energy for CoCl& and NiC1& (using crystal field theory)
and in this way we shall find the form of the exchange
Hamiltonian in each case. The cooperative problem,
using a Hamiltonian of the derived form, we have
treated by the method of double-time Green functions
in the preceding paper. Using the experimental in-
formation which is available concerning low-field, low-
temperature susceptibility and the Neel temperature,
we find that we are able, by fitting theory to experiment,
to deduce values for the isotropic and anisotropic ex-
change interactions in the cobalt and nickel salts. Using
these values, we go on to evaluate the high-temperature
susceptibility and find good agreement of theory with
experiment.

2. CRYSTAL FIELD THEORY, COC1~

Using the one-ion approximation and the weak-field
coupling scheme, we consider a single Co~ ion in the
crystal field of the rest of the lattice. The crystal struc-
ture is such that the cobalt ion is surrounded by a dis-
torted octahedron of Cl ions, in which the distortion is
a trigonal one (along the co axis). The lowest orbital
states of the free Co~ ion (derived from the electronic
configuration 3d') are 'F and 'F in that order, the energy
separation being 14000 cm '. No other terms of the
same syrrnnetry arise from 3d', and other configurations
give terms which are energetically far higher so that we

may neglect them.
In a cubic crystal field, the 4' state is split into two

orbital triplets and one orbital singlet, with a triplet
lowest. If the trigonal co axis is chosen to be the axis of
quantization with wave functions P, where mk denotes
the component of angular momentum in the direction
of the axis, then the states may be written (see, for
example, Bleaney and Stevens" )

Energy Symmetry Wave function

6A 'A s y2/3) (y —y, )—(V'5/3)go

(1/~2) (0 a+0-s)' (1/v'6) & —h/5/v'6)&-
-(1/V'6)4- + (V'5/v'6)4, (2 1)

(2/3)4 —(v'5/3~2) (4 —&- )' (v'5/v'6)&s+ (1/v'6)&-t
-(v'3/46)~-. —(1/v'6)~

"B.Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16,
107 I',1953).

—1)= (V'3/v'6)0 + (1/v'6)@-t,
0)= (2/3) y —(V'5/3&2) (P —II' s),

+»= (v'5/v'()~-. -(1/v'6)~
(2 2)

We may easily verify that

(&ill.,i&1)=~-;, (oll*i0)=0 (2.3)

and, in fact, we may further show that all the matrix
elements of L within the above states of '2't are exactly
the same as the matrix elements of —3L/2 between the
associated I' functions. In group theoretical language
we refer to the structural isomorphism of 4T~ with 4I'

(Griffith" ).
So far we have included in the calculation only the

cubic part of the crystal field. We are now in a position
to introduce the trigonal distortion, together with the
spin-orbit coupling, as a perturbation within the twelve
states of the effective I' state which we shall label

irlr, ,rNB) where the spin 5 is s.
The trigonal distortion is defined by its eigenstates

e J.S.Grifirtb, The Theory of Tralsiteom Metal Iols (Cambridge
University Press, London, 1961).

's G. D. Jones (private communication)."A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A206, 173 (1951).

where we have labeled the states according to their
symmetry group (see Griffith") and where 6 is an
energy parameter which is positive for CoC12. The mag-
nitude of 6 may be obtained by interpreting optical-
resonance data and for CoC12 is in the region 4600 cm—'
to 1700 cm ' (Jones"). The free-ion eF term is not split
by the cubic field and remains an orbital triplet with
symmetry group 'Tj. Since the 4I' term and the ground-
orbital triplet have the same symmetry, however, the
cubic field mixes a little of the former into the ground
state.

The result of this 4I' admixture is to reduce the
matrix elements of the orbital angular momentum L
from the values which would be obtained by using the
pure 'Tt ('F) wave functions (see, for example, Abragam
and Pryce"). This reduction, however, will not be an
isotropic one for CoC12 since there exists in this salt a
considerable trigonal distortion which we have not yet
introduced. A further considerable reduction of L is
caused by the bonding of the cation orbitals with those
of neighbor chlorine anions resulting in the distortion
of the pure d orbitals of eTt(eF). This effect has been
considered in some detail by Tinkham' who replaces
L by kL where the value of k is less than but of order
unity. In this paper we shall take a factor k to include
all the reduction thus neglecting any anisotropy intro-
duced by the 'Tr(eF) admixture. We shall, therefore,
replace L by kL in the matrix elements which will be
evaluated by taking the ground-orbital state to be
42' (4F)

Consider this ground-orbital triplet. Let us write
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and eigenvalues which we shall write tonian in the form

X=——,,sB.L S—S(L,s——',) (2.5)
(O,ms

I
V(trig) I O,ms) = 28/3,

(+1,ms
I
V(t:rig)

I
&1,ms) = —5/3.

(2.4)

Including both the spin-orbit coupling and the trigonal
distortion, we may now write our perturbing Hamil-

where A is the spin-orbit coupling constant and may
differ from its free-ion value of —180 cm '. The matrix
of spin-orbit coupling and trigonal held within the
ground 4T& term is, therefore, found by evaluating the
matrix elements of the Hamiltonian (2.5) within the
effective E state

I mr„ms) We find, where X'=B,,

(—1, l
(0, —',

(1, —',

(1, 2

I

—1 s)
—-,s8+ (9/4) X'
——,'(1/g6)X'

0
0
0
0

Io, —:)

—s (1/g6) X'
2$3—(3/v2)l '

0
0
0

0
—(3/%2)X'
—-'5+—'X'

3 4
0
0
0

0 0
0 0
0 0

——;(1/+6)V—-,'(1/+6)l~'
0 0

0
0
0
0
0

—is8 —(9/4) X'

(2 6)

the matrix elements for
I

—mz, ,
—ms) being the same

as those for Imi, ,ms). The 'Ti('F) state, therefore,
splits into six Kramers doublets, and we may solve the
secular equation to give their energies as functions of
b/X'. The secular equation reduces to three separate
equations for energy, one linear (Z&), one quadratic
(Z,), and one cubic (E.), and we show the solutions
graphically in Fig. 1. For all values of 8/'A' the same Z,
solution lies lowest and we may write the wave func-
tions for this doublet

4+i =ci I
—1,l)+cs I O, l)+cs I1,—-', ),

P,=c,
I 1,——;)+c,IO, —-,')+., I

—1,i),
(2 7)

where the coeKcients cj., c2, c3, are determined by the
value of 5/X' applicable to CoCls which we shall esti-
mate later.

We now introduce an external magnetic held, IIO, and
examine the resulting shift of the energy levels by
perturbation theory. We shall consider, in particular,
the splitting of the lowest Kramers doublet by this
perturbation operator, which we may write

where p is the Bohr magneton. Let us first consider the
case of Hp parallel to the trigonal axis cp(s). Using per-
turbation theory within the ground Kramers doublet,
we find energy shifts

(lt+iI (—rsskL+2~*) Inst+i)pHo (2 9)

If we write this in terms of an effective spin —, as
&—,'pg„Hp, thus defining a g factor for this direction,
we have, using (2.7) and (2.9),

g„= (6+3k)cis+2cs' —(3k+2)cs' (2.10)

In a similar way, when Ho is perpendicular to co, we
may dehne a g factor g& which is given by

g, = (lp~i I [——,'k(L++L )+2(s+ys )jI/pi), (2.11)

where L+=L,&iL„,S+=S,&iS„.It follows that

gJ, 4cs +4v3cicp —3v2kcscs. (2.12)

We noted above that the secular equation for the
ground state was cubic. Following Abragam and
Pryce, '4 we may obtain a parametric solution by intro-
ducing the parameter x, dehned by

PHp( ——,'kL+2S), (2.8)
It follows that

E,= —S/3+-;X'(x+3). (2.13)

- cocl p

I I I I I I~ p

++

p) ' units
f g.

FIG. 1. The split-
ting of the ground or-
bital triplet 4T1(4F)
by the spin-orbit
coupling (P') and the
trigonal Q.eld (8).The
values of s/x' which
occur for Co++ in
CdCl2 and for Co++
in CoC12 are indi-
cated in the figure.

and
:c = (v'6/*): —1:IV'8/(*+2)] (2 14)

(2.15)

(2.17)
(6/x')+1+8/(x+ 2)'

8/X'= —,
' (x+3)—(9/2x) —6/(x+ 2) .

Using (2.10) and (2.12), we may express g„and g, in
terms of x and k alone. We find

(6/x') (6+3k)+2—[8/(x+2)'](2+3k)
gft= (2.16)

(6/x')+ 1+8/(x+2)'
4[1+12/x(x+2)+3k/(x+2) j
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In these results, however, we have neglected the eGects
of spin-orbit coupling in admixing the upper orbital
levels into the ground-state orbital triplet 'T~. The
largest mixing comes frozn the 'Ts(4F) state, and in the
simple approximation of no trigonal distortion this
adds to both the g values a term (—15/2)'A'/LV where
6' is the energy separation between the two triplet
states of 'F and has a value 6600 cm ' (Jonesis) for
CoC12. A more accurate evaluation of the total correc-
tion can be made (see, for example, Abragam and
Pryce") provided that one possesses a detailed knowl-

edge of the optical spectrum. With such a correction,
a measurement of the g values is sufFicient to determine
x and k.

At the present time, however, we do not possess a
detailed knowledge of the optical spectrum for CoC12,
neither are we aware of a published measurement of the

g values. (A measurement of the g values for CoCls is
likely to be difficult since the salt becomes antiferro-
magnetic in that region of temperature where the spin-
lattice relaxation time would be most favorable for the
performance of resonance experiments. ) We must,
therefore, proceed by a less direct method.

We shall assume the value k=0.9 (compare Tink-
ham's for Co~ in Znps, and Low's for Co++ in Mgo)
which should be a fair estimate for the e6ect of bonding
with the Cl anions but which largely neglects the
(possibly strongly anisotropic) effect of cubic-field 4F
admixture. The small spin-orbit correction to the g
values we shall take to be 0.15 for both gli and g&. We
are left with only one parameter (x) and we shall show
that we are able to estimate its value in CoC12 by
examining the bulk magnetic properties of the salt.

We may quickly get some idea of the approximate
magnitude of x by considering the case of Co~ in
CdC12 for which we do have experimental information'
as follows: gt~=3.04, g~=4.95. Using the above esti-
mates for k and for the spin-orbit correction to the g
values we may put g» and g, Prom (2.16) and (2.17))
equal to 2.89 and 4.80, respectively, and deduce that
for this case x=. 3.4, giving, from (2.15), b/X'=2. 37
(see I"ig. 1).

We should expect the value of 8/V for CoCls to be
not too far removed from this value for Co~ in CdC12,
and thus, from Fig. 1, we see that there is likely to be
an energy gap of at least 1.5X' (which is probably

300'K) between the two lowest Kramers doublets.
I"or an analysis of the magnetic properties of CoC12
near and below its Neel temperature T~=25'K, we

may, therefore, safely assume that the ions are pre-
dominantly in the ground state. For an ion in this
ground state we may, using Eq. (2.7), readily show

that the matrix elements of S„S„,and S, are,

"M.Tinkham, Proc. Roy. Soc. (London) A256, 549 (1956).
"W.Low, Phys. Rev. 109, 256 ($958)."K. Morigaki, J. Phys. Soc. Japan 16, 1639 (1961).

respectively,

i''. 0 q i'. 0
it i. q 0 iPi. iq

where

i—q fi. p 0 (2.18)
0 pi. 0 —p

q= cs +43cics,

(2.19)

(2.20)

so that we may formally replace the true spin S=~,
within the ground doublet, by a spin-half operator, s,
where

Sg= 2qS~& Sy= 2qs~& Sz= 2psz (2.21)

We may note that for the case of extreme trigonal
splitting (8))V) cs=1, ci=cs=0; p=-,', q=1, and that
for the case of negligible trigonal field ci=1/K2, cs
= —1/V3, cs ——1/Q6; p=q=-, .

~o ~ L~ll Gzsjz+crl (razes+'4g/span)] (3.1)

in terms of the spin operator, s, where

rr„=3cis+c s —c s

o.i=2cs'+243cics.

(3.2)

(3.3)

For treatment of the cooperative problem it is conven-
ient to single out the preferred direction of antiferro-
magnetic alignment as a s axis, and since, for both
CoC12 and NiCI2, this direction is normal to the hex-

agonal co axis, we shall de6ne a new set of coordinates
as follows: Let the preferred direction of ordering be 2',

the direction of the co axis be x', and let y' be chosen to
complete the orthogonal set. In this notation we may
write (3.1) as

where

giving

s~ =JS~"Sg' —DSsg'Sgg', (3.4)

(3.5)

(3.6)

For CoC12 we introduce a ferromagnetic exchange Jy, Dj.
between nearest neighbors, together with an antiferro-
magnetic exchange J2, D2 between next-nearest neigh-

bors, assuming that the anisotropy introduced by D&

and D2 is sufhcient to provide a fair representation of
the total anisotropy of the salt; that is, we assume that
it far outweighs other sources of anisotropy such as
the dipole-dipole coupling.

3. THE MAGNETIC PROPERTIES

Let us now consider the Heisenberg exchange opera-
tor X;;=J'S; S;. In the ground doublet we may write,
using (2.21)
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In this representation, we write the total exchange
Hamiltonian

The equilibrium value of p is found by making E—Es
an extremum, giving

3'.=P ( Jis—,"s;+Dgs, ;s;;)+ g =giiPHo/(2J2+Dr Ds) 6S. (3.11)

g LJss,"s;—Dss,.s;. 7, (3.7)
nnn

where we have chosen the signs so that all the pa-
rameters are positive for CoCls. From (3.6) we see that
we may write

But the total magnetization is NS&g»p and, hence, the
susceptibility is given by

X ii =Ngi PP'/6 (2Js+Di —Ds). (3.12)

In an exactly similar way we may evaluate the in-plane
susceptibility and we find

(Dr/Jr) = (Ds/Js) = (&r' —«~')/&r' (3.8) Xi=NgrsPs/12Js. (3.13)

where o,&& and 0.~ are both functions of x, so that we
have reduced the problem to the evaluation of three
unknowns J~, J2, and x. In order to obtain estimates
for these quantities, we shall use the experimental re-
sults for the Neel temperature T~ and for the magnetic
susceptibilities parallel (X~i) and perpendicular (X,) to
co at temperatures below T~. We shall use the sus-
ceptibility measurements of Bizette, Terrier, and Tsai.
They measure zI& and x& from very low temperatures
up to 300'K using magnetic fields of several kilo-
gauss. Wilkinson et al.4 shows that the anisotropy
within the cs plane Lwhich has been neglected in (3.7))
is so small that only a few kilogauss is required, at
temperatures below T&, to align nearly all spins normal
to a magnetic field applied in this plane. It is, thus,
fairlysafe to assume that Bizette's in-plane measurement
is, like the one made along the co direction, a measure-
ment of susceptibility perpendicular to the direction of
spin alignment. For T&T~ Bizette' finds the sus-
ceptibilities almost independent of temperature with
values (per mole) of X,=0.4, X« ——0.06. Theoretically it
is quite simple to evaluate this susceptibility at tem-
peratures below T~ since it is well known (see, for
example, Ziman") that the spin-wave theory, which is
a good approximation at very low temperatures, gives
for this quantity the same result as the simple molecular-
field theory. We shall, therefore, use the molecular-field
theory, treating the spin as a classical vector.

Consider first the magnetic field Ho applied parallel
to co. In the absence of the field the spins are aligned
antiferromagnetically in a direction contained in the co

plane. Since each spin has six parallel nearest neighbors
and six antiparallel next-nearest neighbors, the total
exchange energy of the lattice of E spins is

Es 3N(Ji+ Js)S——'.— (3.9)

When the Geld LI'0 is applied, let all the spins turn
through a small angle P towards the direction of cs.
(We assume that Hs is small compared with the in-
ternal Geld. ) The energy of the system is now, to second
order in p,

E=Es—Ng„PFIsSQ+3NS'qP(2J, +D, D,). (3.10)—
"J.M. Ziman, Proc. Phys. Soc. (London) A65, 540, 548 (1952).

In order to obtain a theoretical estimate for TN in
terms of Ji, Js, and D/J we use Fig. 2 of the preceding
paper (which we shall refer to as paper A) which has
been obtained by applying the method of double-time
Green functions to a Hamiltonian of the form (3.7).
Experimentally Tz is found to be close to 25'K.

We now consider values of x in the region x 3 since
we anticipate that the value of x applicable to CoCl2
will not be far removed from the value (=:3.4) which
was found for Co++ in CdC12. Choosing a particular
value (x=3.0, say) we may calculate D/ J using Eqs.
(2.14), (3.2), (3.3), and (3.6).We find that D/J=0. 446.
But we may also calculate this same quantity using the
experimental values for X&&, X&, and T~ together with
the theoretical results of (3.12), (3.13) Lwhere for g„
and gi we use Eqs. (2.16), (2.17) not forgetting to in-
clude the correction for the second-order spin-orbit
couplingf and the Green function graph from paper A.
We find D/J=0. 41 and, therefore, the methods are
not consistent for this particular value of x. Trying
other values for x we may again obtain values for D/J
by these two methods, and we obtain the results shown
graphically in Fig. 2. We find consistency for a value
of x close to 2.92. We, therefore, use this value of a for
CoC12 and proceed to estimate,

from (2.16)

from (2.1/)

from (2.14)

from (2.15)

from (3.13)

from (3.6)

from (3.12)

g„=3.23+0.15=3.38

g,=4.69+0.15=4.84

ci.'c2.c3=0.839:—1:0.575

8/X'=1.68 (see Fig. 1)
J2= 1.79'K

D/J=0. 425

Dg =8.82'K

and, hence, Jr= 20.8'K, Ds ——0.76'K, and Ji/Js ——11.6.

4. NiC1~

We now consider the situation in NiC12 which, like
CoC12, has the CdC12 crystal structure, and almost
certainly has the same antiferromagnetic spin pattern
as the cobalt salt. The task of predicting the exchange
interactions for this salt is somewhat simpler than was
the case for CoC12. This is primarily because, as we shall
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giving

Jg= 19.0'K, J2= 1.45'K.,

see below, the Hamiltonian is far less anisotropic in
this case.

The free Ni++ ion has a 'E term lowest and this
splits in the cubic field exactly as did the 'F state for
the cobalt salt, except that for nickel the energy pa-
rameter 6 is negative, which makes the orbital singlet
term lowest. In this ground-orbital singlet, the mean
value of orbital angular momentum is zero and the
value of spin 5= 1.The level is, thus, triply degenerate
and would remain so under the inQuence of either spin-
orbit coupling alone, or trigonal field alone. Anisotropy
arises only as a second-order effect though the combined
effect of spin-orbit coupling and trigonal field within
the upper states which are linked with the ground state
in the second-order perturbation. The problem of
describing the splitting of the ground term for nickel in
a distorted octahedral environment has been con-
sidered by Stevens. "For a trigonal distortion, we expect
the anisotropy to be adequately represented simply by
a term DS,'. For Ni++ in CdC1~ we have experimental
information (Orton") who reports that D=1.41 cm ',
favoring the co plane. For NiC12 itself we should expect
a very similar result.

The other main source of anisotropy in NiC12 is the
interspin dipole-dipole interaction. This amounts to

0.5 cm '/spin between the cs axis and the plane
(Kanamoris) again favoring the plane. Experimentally
the g value is found to be isotropic" (g=2.25&0.02;
anomalous values reported for T(50'K are probably
due to the onset of long-range order), and also, no
anisotropy is detected in susceptibility experiments.
This suggests that the anisotropy energy is extremely
small compared with the isotropic exchange interaction
energy. We, therefore, neglect it entirely, using the
Hamiltonian (3.7) but putting Dr ——Ds ——0. Using the
experimental results for Neel temperature (50'K) and
for the magnetic susceptibility below T& ()f&&=x&
=:0.107) and comparing them with the theoretical
results of Eq. (3.13) and the isotropic spin 1 curve of
Fig. 2 in paper A, we obtain estimates for the exchange
interactions in NiC12, as follows:

I'rG. 2. Curve (i)
shows the values of
D/J calculated from
crystal field theory
as a function of the
parameter x of Eq.
(2.13). Curve (ii)
shows the same quan
tity calculated from
the bulk magnetic
properties of CoCl~.
The point of inter-
section, giving the
value of x applicable
to CoC12, is at x
=2.92.
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'5.2 3A

5. HIGH-TEMPERATURE SUSCEPTIBILITY

Xcos'es, „s;—gsPHss;, ), (5.1)

where g„„(P„,) means the sum over all spins 8; which
are nearest neighbors (next-nearest neighbors) of s,,
where the 8; are now average values in the direction of
Ho, and where

Having made estimates of the dominant exchange in-
teractions in both CoC12 and NiC12, we may now proceed
to check these values by calculating the high-tempera-
ture magnetic susceptibility in each case and comparing
the results with experiment. Since we shall be concerned
mainly with temperatures many times the transition
temperature, we shall expect the simple molecular field
theory to be adequate. We shall first calculate the sus-
ceptibility assuming all ions to be in the same state, a
state for which we may write a Hamiltonian of the
form (3.7). This will be an adequate approximation for
the nickel salt, but will be very poor for CoC12 for
temperatures much above 100'K.

We introduce a magnetic field Ho in a direction r
making an angle 8 with the co axis. In the molecular-
field approximation we may write the Hamiltonian for
the ith spin

Jr/ Js——13.1. gs= g&& cos'8+gi, sin'8. (5.2)

Thus, the results obtained in the present paper, to-
gether with the results of the Ising theory for FeC12 by
Heap, "would seem to suggest that the ratio of ferro-
magnetic to antiferromagnetic exchange is very similar
in each of the metamagnetics FeC12, CoC12, and NiC12.
The theories give, respectively, J&/Js equal to 12.4,
11.6, and 13.1.

's K.W. H. Stevens, Proc. Roy. Soc. (London) A214, 237 (1952).
~ J. W. Orton, Rept. Progr. Phys. 22, 204 (1959).
2' J. W. Leech and A. J. Manuel, Proc. Phys. Soc. (London)

$69, 210 (1956).

The ith spin is now in an "effective field" H; given by

H, =Hs —V;/gsPs;„,
where

V;= (P Js—g Jr)s, ,s,+(P Dt QDs)—
(5.3)

Xcos'es, ,s;. (5.4)

For temperatures above the Neel point where g PH,sS

«k T (5 is the spin quantum number and k Boltzmann's
constant) the simple theory of paramagnetism for
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spins s; in a Geld H; gives

s,=gbpS(S+ 1)H;/3kT. (5.5)

If we now introduce two sublattices "a" and "b" upon
which the spins in the ordered state are, respectively,
"up" and "down, "we have, from (5.3), (5.4), and (5.5)

gbPS'(S+ 1)
&a+ Ib= 2BO

3k'

They are

(5.9)

i/+i= 0.59
) W 1, &-,')—0.70

) 0, a-,')+0.40
I
a 1, w-', ),

1t'„=0.88
~
0, ~-;)—0.47

~
~1, ~-;),

Pgb ———0.74 [ ~1, a-,')—0.26 [ 0, &-', )+0.62
) a 1, W-', ),

a+4= —o 34l W1 ~2)—0.67
1 0, ~-', )—0.67

~
&1, ~,'-),

Pgb
——0.47

~
0, &23)+0.88

~
&1, &-', ),

0+b= I +» ~k)

6
pm Jl+ (Dl D2) cos Hi(sa+Bb)

gbP

from which the total magnetization is given by

NgeP Ng|t'P'S(S+1)Hp
M= (s +sb) =

2 3k (T—0)

(5.6)

(5.7)

with associated energies E~=3.88K', E2——2.11'A', E3

= 1.06K', E4———1.93K', E5= —2.30K', and E6———2.81X'.
Introducing a magnetic Geld Ho we may calculate the

new energy levels by perturbation theory using the
perturbing operator of Eq. (2.8) (where k= 0.9). For
H& parallel to s(cp) we find, for the matrix elements of
V~~= (—1.35L,+2S,)PHb, the values (in units of PHb)

where P2 A 44 Pb Pa

kO~= —2S(S+1)F2—Ji+ (Di—D2) cos'0j (5..8)

We may apply this result directly to the case of
NiCl2 putting D~=D2=0. Using the values previously
obtained for the exchange parameters we find that
0" = 70'K and is independent of the angle 0. The experi-
ments of Bizette' show that at high temperatures the
molar susceptibility is isotropic and given by 1.33/
(T—67), from which it follows gb ——2.25, and 0'= 67'K.
The agreement is quite a good one.

NiC12, thus, provides us with a good example of a
"simple" metamagnet; simple in the sense that, as far
as the interpretation of bulk magnetic properties is
concerned, we may represent its cooperative inter-
actions by isotropic Heisenberg exchange terms alone.
It is a point of some interest that for such a "simple"
metamagnet the molecular field theory does not allow
values of 8/T~ & 1, in conflict with the observed ratio
for NiC12 of 1.4. That the present theory is able to
reproduce this ratio quantitatively follows very simply
from the fact that the Green function method gives the
same value for 8 as the molecular-field theory but gives
a signiGcantly lower T&.

Once again we find that CoC12 presents theoretically
a rather more diKcul t problem. In this salt, the energy
gap between the ground doublet and the next lowest
level is (see Fig. 1) 1.8X', where V is probably—200'K. (Later in the paper we shall estimate X'

and find a value —230'K.) In the region of room tem-
perature we shall, therefore, expect signiGcant con-
tributions to the susceptibility from states other than
the ground one. We shall include in the following calcu-
lation all the six Kramers doublets which arise from the
state 'Ti(4F) of the cubic field terms.

Let us, for the moment neglect the exchange inter-
action. Using the values for x and 8/'A' obtained in Sec.
3, we may calculate from the secular matrix (2.6) the
wave functions and energies of the ground six doublets.

1.62 0
$2 ~ 0 225
Pb . —2.30 0
f4 . 023 0

0 1 39
0 0

—2.30
0
1.55
2.24
0
0

0.23
0
2.24

—0.10
0
0

0 0
1 39 0
0 0
0 0
0 39 0
0 1.65

(5.10)

4—i '.

s'
4 '.

4b'
4-b '

2.34
—2.26

1.00
—0.18

0.46
0

—2.26
0

—0.47
—0.41

0
—1.66

1.00
—0.47
—1~ 14

1.07
1.43
0

—0.18
—0.41

1.07
0.82

—1.00
0

0.46
0
1.43

—1.00
0
1.07

0
—1.66

0
0
1.07
0

(5.11)

where the matrix elements J'f,*U&P;dr are the same
as fQ—,~Ugf, dr and where all other elements are zero.

In evaluating these elements we have not yet in-
cluded the small correction for the second-order admix-
ture of 4T2 (4F) into the 4Ti (4F) term by the spin-orbit
coupling. For our purpose it will su%ce to include the
correction only in the diagonal elements between the
states of the ground Kramers doublet, since these ele-
ments produce the dominant contribution to suscepti-
bility in the region of temperature with which we shall
be concerned. Including this small correction, the
modiGed matrix elements are

f+] V][1/I+idr= 1.695 and Q~i*V~Ppidr= 2.415.

where the matrix elements for P, are the same as those
for P; and where all the other matrix elements are zero.
For Ho perpendicular to s, we Gnd for the matrix ele-
ments of V,=[—0.68(L++L )+(S++S )jPHO, the
values (in units of PHb)
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The perturbed energy levels, to the second order in Ho, may now be calculated and are

(a) for H p parallel to cp

1.89
E~i——3.88K'a1.695PHp+ P'H p'

0.44
Ego=2.11K'~2.25PHo+ P'Ho'

pl

(b) for Hp perpendicular to co

3.28
Eyi= 3.88K'~2.415PHo+ PsHos

X'

2.07
Ego =2.11K'— P'Hop

0.20
E~s= 1.06K'a 1.55PHo — P'H p'

yl

1.69
L~'~4 —1.93——X'%0.10PHp — P'Hp'

0.43
Eys = 1.06K W 1.149Hp+ P Hp

X'

2.27
Ep4 ———1.93K'&0.82PHp+ P'Hp'

(5.12)

0.44
Ego = —2.30K'&0.39PHp — P'Hp' Eg5= —2.30P '—1.10

P2H 2

Ego = —2.81K'&1.65PHo
2.81

E~o ———2.81K'— P'Hp'

If, in general, we write E;=W;+W Ho+W,"Hp', then
the magnetic susceptibility (see Van Vleck") is given by

P; SL(We's/kT) —2W,"]exp( —W;/kT)
x= (5.13)

g exp( —W;/kT)

It follows from the Eq. (5.12) that, for our case,

xi' ——VP'L(A ii/kT)+ (Bii/X')], (5.14)

x,=XP't (A,/kT)+ (B,/X')], (5.15)

where the quantities A &&, A &, Bll, BI., are shown graphi-
cally as functions of X'/kT in Fig. 3.

AVe may now introduce the exchange interactions,
and we shall do so in the molecular-field approximation.
A difficulty which arises immediately concerns the fact
that the values deduced in Sec. 3 for the exchange
parameters in CoC12 apply only to that region of tem-
perature for which all ions, to a good approximation,
are in the ground doublet, whereas we now wish to
consider temperatures well outside this region. As the
ions populate the higher levels, so we may expect the
exchange interactions to change. In this work, we shall
be forced to make the approximation that the exchange
parameters are temperature-independent, having the
values deduced in Sec. 3. As far as susceptibility is
concerned, this approximation should be quite good,
since the cooperative e8ects are most important in the
lower temperature regions where the exchange pa-
rameters will be close to the values we assume. At high
temperatures, the cooperative effect is small and the

~ J. H. Van Vleck, The Theory of E/ectric and 3fagnetic Sgs-
eePfebjletjes (Oxford University Press, London, 1932).

susceptibility is largely insensitive to the exchange
parameters.

In the complete absence of cooperative sects, the
susceptibility can be thought of as being produced by a
single "effective" temperature-dependent Kramers
doublet with energy

Eg= Wa W'Ho+ W"Ho',

where
W'= P+A, and W"= P'B/2X'—

(5.16)

(5.17)

where

E.=W&W'H, +W"Hop,

Eo= W~W'Ho+W"Hos,

H.=Hp+H;. , and Ho Hp+H;b. ——

(5.18)

(5.19)

I"yo. 3. The pa-
rameters A ll, &z, &ti,
BI,, from Eqs. 5.14
and 5.15 as functions
of X'/kT for the case
of Co++ in Cd Cl~
/curves (Og and for
the case of Co++ in
CoC1~ Lcurves (ii)).

4g

AI

I s A
-3 kT

and where here and henceforth A =A &1, B=Bl&, when
Ho is parallel to co, and A=A~, B=B~, when Ho is
perpendicular to co.

I.et us now introduce the two sublattices "a" and
"b," together with the molecular fields H; and H;~
acting, respectively, upon the "u" and "b" sublattices.
We have Lcompare(5. 16)7, including the internal fields
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o.4

0.2

0
0

k T/lyJ

From Eqs. (5.3) and (5.4) we find

FxG. 4. The in-
verse molar suscepti-
bility plotted as a
function of tempera-
ture for the case of
Co++ in CdCl~ show-
ing the two linear re-
gions of the powder
susceptibility curve
(x~l where a Curie-
Weiss law is obeyed.

function of temperature provided that we Grst estimate
the magnitude of P'.

Work by other authors upon cobalt salts (see, for
example, Low" and Bose, Chakravarty and Chatterjee"
seems to favor a value for A which is either very close
to, or slightly reduced from the value —180 cm '. In
this paper, however, we shall make an independent
estimate as follows. For very small concentrations of
Co++ in CdCl~, we have earlier deduced a value for the
ratio of trigonal distortion to spin-orbit coupling (see
Fig. 1).This fixes the relative energies of the six ground
Kramers doublets and we may, therefore, estimate the
constants A and 8 of Eqs. (5.14) and (5.15) for this
case, exactly as we did for CoC12. These parameters
(for Co++ in CdClp) are shown in Fig. 3. For small con-
centrations of cobalt in the CdC12 lattice we may evalu-
ate the parallel and perpendicular susceptibilities di-
rectly from (5.14) and (5.15) since the cooperative
e8ects will be negligible. These equations may be written

6
H;,= — LJpSb —JiS,+o (DiS,—DpSb)])

gP

6
Hjb LJest Jisb+o(Disb —. D2s, )j,

gP

(5.20)

where 0-=0 when Ho is perpendicular to co, and 0=1
when Hp is parallel to bp, and where g= 2+A.

The magnetic moment of an "a" site ion and of a
"b" site ion are, respectively,

m, = BE /BHp=&—W 2W"Hp, —
(5.21)

mb= BEb/BHp= —WW' 2W''Hp. —
The average values of magnetic moment upon each
sublattice site are, therefore,

P tn, exp( —E,/kT)
ma

P exp( —E,/kT)

and

—SP'/xX'= 1/(Ay —8), (5.25)

IQO '-

where y= X'/kT. W—e may, therefore, plot XP'/X~X'~
against 1/y and this is done in Fig. 4.

Experimental work on susceptibility using salts con-
taining varying concentrations of cobalt in CdC12 has
been performed by Fehrenbach. '4 He reports that the
powder susceptibility (after correction for diamagnetic
contributions from the host lattice) follows a Curie-
Weiss law of the form C/(T 0), bu—t that for each
concentration investigated, the constants of this equa-
tion suddenly change their values in the region T
=:410'K. The values of the constants are, of course,
different for each concentration, but the temperature
of the anomaly is almost independent of concentration.

The powder susceptibility y~ is obtained from the
susceptibilities parallel and perpendicular to co by the

g mb exp( —Eb/kT)
mQ—

P exp( —Eb/kT)
(5.22)

the summations being taken over the two states of the
"fictitious" ground doublet. Expanding the exponen-
tials, and retaining only terms to first order in Ho, H„
and H~, we 6nd

orb, +nlrb= L(W')'/kTj(H, +Hb) —4W' Hp (5.23)

Using (5.17), (5.19), and (5.20), we now find for the
molar susceptibility

50—

FIG. 5. A plot of
the inverse molar sus-
ceptibility for COCl&
(both parallel and
perpendicular to the
hexagonal axis) as a
function of tempera-
ture, comparing the
theoretical curves (ii)
with the experimen-
tal results (i) as
measured by Bizette
et al. (Ref. 3).

4NP'k Tf (A/k T)+ (8/X') $

4kT+6(Jp —Ji+o (Di—Dp))
(5.24)

0
I

Tq

I i I

loo (, )
2oo

I

500

Using the values of 2 and 8 obtained from Fig. 3, we» A. Bose, A. $. Chagravarty, and R. Chatte jee, proc, Roy.
may now plot the high-temperature susceptibility as a Sop, g,ondon} A26&, 43 (1961},
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equation
x„=-', (x„+2x,), (5.26)

and this curve is also drawn in Fig. 4. We see that the
theory does, indeed, indicate a change in the slope,
albeit, not quite so sharp as that seen by Fehrenbach. '4

For 0.3(1/y(1.6 the powder curve does follow to a
good approximation a Curie-Weiss law (with negative
0'). Also, for 1/y)2. 2 the curve also obeys a Curie-
Weiss law, but now with positive O~. If we extend these
two linear regions we may equate the value of T at
the point of intersection with the temperature (=: 410'I)
which Fehrenbach finds for the sudden change of slope.

~ C. Fehrenbach, J. Phys. Radium 8, 11 (1937).

The required point is

1/y = kT—/P '= 1.80,

which gives X'= —158 cm ' or, taking k=0.9, a value
of) = —176 cm '

Using this value for the spin orbit coupling constant
in CoCls (assuming, therefore, that this quantity has
approximately the same value for CoC1& as for Co++
in CdCls) we may now evaluate 1/x as a function of
temperature for the concentrated salt. The results are
shown in Fig. 5 together with the experimental curves
of Hizette et at'. ' We see that the agreement between
theory and experiment is quite good for both X«and X&.
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Structure of the E Center in NaFt
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The electron-nuclear double resonance (ENDOR) method is applied to the study of the structure of the
Ii center in NaF. Hyperfine interactions between the P-center electron and a number of the surrounding
nuclear shells are presented and compared with the results of earlier experiments and with theory. It is
found that the resolved hyperfine structure is not due to the predominance of the 6rst-shell interaction, as
has been thought, but it arises from the fortuitous equality of the 6rst- and second-shell isotropic hyperfine
interactions. Electron paramagnetic resonance (EPR) absorption measurements of the resolved structure
con6rms an expected 31-line resolved pattern. The exceptional resolution found in the ENDOR spectrum
permits the identification of interactions with nuclei well beyond the eighth shell. Although the samples also
contained large numbers of M centers, no evidence for a paramagnetic M center was found in either the
EPR or ENDOR spectra.

I. INTRODUCTION

HE shape of electron paramagnetic resonance
(EPR) lines due to Ii centers in alkah halide

crystals arises from hyperfine interactions between the
F-center electron and the surrounding nuclei. ' Although

centers typically exhibit a single broad Gaussian
EPR line, in a few crystals, viz. , LiF,' ' NaF, ' ' NaH, 4

RbC1, and CsC1, a resolved spectrum has been ob-
served. Rather special relations must obtain among the
hyperfine interactions for a resolved spectrum to appear.
The simplest case arises when the isotropic interaction
with the first shell predominates. Then, if the spin of
the first-shell nuclei is ~3, one expects a nineteen-line

t This research was supported by a grant from the National
Science Foundation.' A. F. Kip, C. Kittel, R. A. Levy, and A. M. Portis, Phys. Rev.
91, 1066 (1953).' N. Lord, Phys. Rev. 105, 756 (1957).

3 G. J. Wolga and M. W. P. Strandberg, J. Phys. Chem. Solids
9, 309 (1959).

4 W. T. Doyle and W. L. Williams, Phys. Rev. Letters 6, 537
(1961).

5 H. C. Wolf and K. H. Hausser, Naturwissenschaften 46, 646
(1959).

s F. H, Hughes and J. G. Allard, Phys. Rev. 125, 173 (1962).

spectrum with a distribution of intensities of 1, 6, 21,
56, 120, 216, 336, 456, 546, and 580, corresponding to
total shell nuclear magnetic quantum numbers of +9,

~ ~ ~, 0, respectively. This simple nineteen-line spectrum
has been reported in LiF,' ' NaF, ' ' and NaH."In
LiF, however, it is now known that the resolved
structure is considerably more complicated. Many more
than nineteen lines are observed and the pattern
depends strongly upon the orientation of the crystal
in the external magnetic field. ~'" In some crystal
orientations, ' and in powdered samples, ' the resolved
structure is obliterated. Electron-nuclear double reso-
nance (ENDOR)" studies have shown that in LiF the
resolved structure is due to both isotropic and aniso-
tropic hyperfine interactions with the first two nuclear
shells "";interactions with all other shells being small

r W. C. Holton and H. 31um, Phys. Rev. 125, 89 (1962).
s W. L. Williams, Phys. Rev. 125, 82 (1962).
9 Y. W. Kim, R. Kaplan, and P. J. Bray, Phys. Rev. Letters 6,

4 (1961).
"W. C. Holton, H. Blum, and C. P. Slichter, Phys. Rev.

Letters 5, 197 (1960).' G. Feher, Phys. Rev. 105, 1122 (1957).
"N, Lord, Phys. R,ev. Letters 1, 170 (1958),


