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TABLE III. C(T) for copper (in units of 10' eV ').
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T('K)

20
80

300
400

320&10
320&10
320&10
315&10
300&10

0.544~0.02
0.588%0.02
0.755%0.04
2.17 %0.14
3.14 %0.25

Flinn et al.
Experimental values
8g) C(T) C.F. model

0.552
0.566
0.762
2.10
2.77

Jacobsen

0.579
0.593
0.808
2.29
3.02

White

0.537
0.548
0.733
2.03
2.67

A-S

0.570
0.582
0.779
2.18
2.87

Debye model
8g) =335'K

0.520
0.532
0.697
1.93
2.50

TABLE IV. C(T) for aluminum (in units of 10' eV ').

T('K)

20
80

300
400

Walker

0.471
0.478
0.598
1.54
2.02

Debye model
(tin=382'K)

0.459
0.464
0.583
1.50
1.96

for aluminum determined by Walker from his experi-
mental dispersion curves. The experimental and calcu-
lated temperature dependence of C(T) for copper is

given in Table III. For comparison we calculated C(T)

using a Debye model, the results of these calculations
are also shown in this table.

From the results in Table III we conclude that the
experimental determination of the Debye-Wailer factor
for pure host lattices of cubic symmetry is not sensitive
enough to distinguish between the various models.
Models inconsistent with experimental dispersion curves
such as the C.F. model and White's full tensor model
give essentially the same Debye-Wailer factor.

The results of the calculations for aluminum using
Walker's force constants are given in Table IV. Using
the A-S force constants the values of C(T) are higher
than Walker's by 1% at O'K and by 4%%uz at 400'N.
Only a small difference is expected since Walker's
constants are essentially axially symmetric.
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The Debye-Walker factor, e~w, for tin is calculated using the A-S (axially symmetric) lattice dynamics
model described in an earlier paper. The Debye continuum approximation is found to be unsatisfactory
because the optical modes contribute signifIcantly even at low temperatures. Calculated and experimental
values determined from Mossbauer measurements are in excellent agreement in the temperature range
from 0 to 300'K. Discrepancies above 300'K are attributed to higher order corrections such as anharmonici-
ties and difFusion efFects. In tin, the Debye-Wailer factor depends upon the direction of gamma ray emission
with the ratio 2W /2W, varying from 1.1 to 1.2 for T=0'K and T=300'K, respectively. The calculated
anisotropy in 2W is compared with available experimental data. Dispersion curves and values of 25' calcu-
lated using Rayne and Chandrasekhar elastic data are compared with those calculated using Mason and
Bommel elastic data. The efFect of the relative motion of the two sublattices on the elastic properties of tin
is discussed and found to be important for the elastic constants of Rayne and Chandrasekhar.

I. INTRODUCTION f~ e-sw

HE probability of a gamma-ray emission without
energy transfer to or from the lattice" and the

temperature dependence of the atomic structure factor
in the refiection of x rays' is given by

where 2$' is related to the mean square displacement of
an atom along a definite direction.

Since the experimental determination of f for tin
has only been investigated through a study of the
temperature dependence of recoil-less y emission the
constant 2' is de6ned for this specific case. Hence,

' R. L. Mossbauer, Z. Physik 151, 124 (1958).
~ W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939).
s R. W. James, The Optica/ Principjes of the Dgractzon ofXRays-

(G. Bell and Sons, London, 1953).
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quency spectrum for white tin was calculated using the
elastic constants reported by Mason and Bomrnel. '

In this paper we also calculate the frequency spectrum
using the elastic constants of Rayne and Chandrase-
khar. ~ In Sec. II the dynamic matrix for the acoustic
frequencies is obtained including the interaction of the
optical motion. In the long-wavelength limit this matrix
reduces to an effective elastic matrix in which the e6ect
of the relative motion of the two sublattices is retained.
The method of calculation with the resulting dispersion
curves is also presented.

In Sec. III, the constant 25" is expressed as a quad-
ratic function of the components of y . The method and
results of our calculations are presented in Sec. IV.
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FIG. 1.Dispersion curves for white tin along $100$ direction in the
Brillouin zone using Rayne and Chandrasekhar elastic data.

g(~(q, j)j= +1, (3)
EI1~ (q,j) exp Puu (q,j)/k Tl—1

where X is the number of unit cells, E. is the recoil
energy of a free emitting atom, A is Planck's constant
divided by 2m, k is the Boltzmann constant, T is the
absolute temperature, q is the propagation vector, and

j is the polarization of a vibrational wave of the crystal.
e refers to the specific lattice from which the p ray is
being emitted or absorbed, y is a unit vector in the
direction of emission of the p ray, e (q, j) is the polariza-
tion vector of the vibrational wave.

The purpose of this paper is to provide accurate
theoretical values for the Debye-Wailer factor for white
tin in the temperature region of the harmonic approxi-
mation. Calculations of this type are necessary in order
to determine the extent to which the existing theory
agrees with experimental results. 4 In this paper, Eq. (2)
is evaluated using the theoretical frequency spectrum
and polarization vectors for white tin calculated from
the elastic data.

In a previous paper, ' referred to as WLD, the fre-
4 A rough order of magnitude calculation of the anisotropy ratio

for tin in agreement with our results has been reported recently
by Yu. Kagan. [Dokl. Akad. Nauk SSSR 140, 794 (1961) Ltransla-
tion: Soviet Phys. —Dokiady 6, 881 (1962)j]. However, in view
of the methods used by Kagan in evaluating this ratio, we con-
clude that this agreement is accidental, inasmuch as the optical
modes were not included. Kagan's expressions require a detailed
knowledge of the density of states —a quantity not to be obtained
in any simple manner analytically for a real crystal. His density
of states is derived from a simplified nearest neighbor lattice dy-
namics model in which the dynamical matrix is diagonal and conse-
quently inconsistent with the elastic-dynamic matrix. In addition,
the model does not apply to the actual structure of tin. Having
omitted the optical mode contributions, the expressions derived
are not valid since the optical modes contribute significantly,
particularly at low temperatures as is shown from specific heat
data and by our detailed calculations.' T. %olfram, G. W. Lehman, and R. K. De%ames, Phys. Rev.
129, 2483 (1963).
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Fro. 2. Dispersion curves for white tin along L110)direction in the
Brillouin zone using Rayne and Chandrasekhar elastic data.

s W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930
(1956).' J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658
(1960).

II. EFFECT OF OPTICAL MOTION ON
THE ACOUSTIC MATRIX

In this section we consider the interaction of the
optical and acoustical modes and show that the acoustic
frequencies are in general depressed. This depression
can be understood in terms of a mixing of relative sub-
lattice motion into the "pure" acoustic motion in which
the two sublattices are moving as a unit. In the long-
wavelength (I -W) limit the optic-acoustic interaction
is proportional to q4 for crystals with an inversion center
but proportional to q' otherwise. Consequently, the
elastic properties of crystals without an inversion
center, such as white tin, will contain an optic-acoustic
interaction term whiIe crystals with an inversion center
will not. In this section we obtain the corrected I-W
acoustic matrix.

In WI D, the form of the dynamic matrix for white
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tin in the center-of-mass system was discussed. The
dynamic equations in this system are

x

ixs) xsl

where $(q) is the dynamic supermatrix in the center-of-
mass system with elements

Stt (41)=Dtt+ReD, s,

nts(q) = nst(q) = —ImDts,

+22(q) =Dll ReD12,

50

2.5

20
O

0
I.5

O

1.0

0.5

and the D;; are 3)&3 supermatrices described in WLD.
The vector xt is the "pure" acoustical (in-phase) motion
of the two sublattices and xs is the "pure" optical (out-
of-phase) motion. Using partitioning, we obtain the
dynamic equations for the acoustic frequencies

0.2 0,5 0.4 0.5 0,6 0.7 0.8 0.9 1.0

FIG. 4. Dispersion curves for white tin along L100) direction in
the Brillouin zone using Mason an, d Bommel elastic data.

{(+11 re ) +ls(+22 40 ) +12}+1 (6) q' so that the acoustic matrix reduces to

This equation is exact and shows that the acoustic
frequencies are lowered by the presence of optical
modes. The eigenvalues of X)ii and $22 are the "pure"
acoustical and optical frequencies, respectively. S»
is the optic-acoustic interaction matrix. As q —+0 the
eigenvalues of X)I& and X)I2 vanish. The matrix $2~,
however, approaches a diagonal form with large constant
eigenvalues, the optical frequencies. (Sss—4d') ' can
be expanded in a power series in $22 ',

(+22 4o ) +22 +re +22 +re +22 + ' ' ' (7)

This series converges very rapidly in the L-W limit since
$4o~oj while the eigenvalues of X)ss approach 10"
sec '. In the elastic limit one retains only terms of order

4.0

3,0

2.0

I.O

{(11 40 ) +12+22 +12}s-+0. (8)

The interaction matrix, X)ig, is proportional to q
for crystals with an inversion center and consequently
the second term in Eq. (8) is proportional to q4 and
may be neglected. On the other hand, for crystals with-
out a center inversion, S» is proportional to q so that
the optic-acoustic correction must be retained. Physi-
cally, however, we expect the correction to be small
compared to "pure" acoustic frequencies. In WLD, the
frequency spectrum for white tin was calculated using
the elastic constants reported by Mason and Bommel
(see Table I). In this case the correction term could be
ignored since it caused only negligible corrections
(about 3%). The elastic constants reported by Rayne
and Chandrasekhar, ' (see Table I) also by House and
Vernon, imply in our model a much larger optic-acoustic
interaction. In addition, these constants give rise to a
much lower transverse acoustic branch along the L110]
direction. Consequently, it is necessary to use Eq. (8) to
determine the atomic force constants. Equating Eq. (8)
to the elastic matrix as discussed in WLD yields quad-
ratic algebraic equations relating the atomic force con-
stants to the elastic constants. The value of co. and t
were chosen according to the procedure in WLD. The
A-S atomic force constants for the two calculations are
given in Table II.

Using the elastic data of Mason and Bommel it was
possible to satisfy all equations within the experimental
error in the elastic constants. However, with the elastic
data of Rayne and Chandrasekhar, it was not possible
to obtain total consistency among all the equations.
This resulted because the A-S model implies that

0 .l,2 3 .4 .I . Z .4 .0. I.O

FIG. 3. Dispersion curves for white tin along $001)direction in the
Srillouin zone using Rayne and t handrasekhar elastic data.

C44—Crs —Css+Crs=o.

D. G. House and E. V. Vernon, Brit. J. Appl. Phys. 11, 254
(1960).
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TAsI.E I. Room temperature elastic constants for white tin
(in units 10"dyn cm~).

o 2
IJJ
V)

Cl

K
tO
O

Constants

Cll
C33
C44
C66
C12
C13

Mason and
Bommel

7.33
8.74
2.19
2.25
2.38
2.48

Rayne and
Chan drasekhar

7.23
8.840
2.203
2.400
5.94
3.58

0 I I I
'

I I

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 IQ

When the coordinate axes are chosen to lie along the
principal axis of the crystal, 2$' must be a quadratic
function of the components of y. Hence,

Fro. 5. Dispersion curves for white tin along L110j direction in
the Brillouin zone using Mason and Bommel elastic data. or

2W =R{p,'H„+p„'H„„+p.sH..)1, (12)

This condition is well satisfied for the constants of Mason
and Bommel, but for Rayne and Chandrasehkar's
data it is not.

The effect of the inconsistency is to lower the quasi-
transverse branch by 40'/go and raise the quasilongitudi-
nal branch by 10% along the L101] direction. All other
branches along the principal directions including the
pure transverse branch along the L101] direction are
unaffected.

The resulting dispersion curves are shown in Figs.
1—3.For comparison Figs. 4—6 show the dispersion curves
obtained in WI.D. The value of the optical frequencies
at q=o. are larger than in WLD. This is necessary in
order to keep the optic-acoustic interaction small. In
order to remove the condition on the elastic constants
imposed by the A-S model one needs to consider a full
tensor force model. This, however, will introduce more
parameters which obviously could not be determined
without experimental dispersion curves. In WI D it is
shown that, for any atomic force rn.odel. , it is necessary
to include at least fourth neighbors in order to be con-
sistent with elastic theory.

III. 2W FOR WHITE TIN

=R{(p,'+p„')H„+PP H„), (13)

since the crystal has a fourfold axis of symmetry. It is
convenient to express Eq. (13) in the form

2W=RH, g(T) {e(T)—tusLe(T) —1]},
where e(T)=H„(T)/H„(T), p, =cos9, 0 is the angle
between y and the principal axis.

IV. RESULTS

In order to calculate the constant 2W the vibration
frequencies and polarization vectors for an arbitrary
propagation vector q were determined using the axially
symmetric lattice dynamics model described in a previ-
ous paper. '

The H„and H„matrix elements LEq. (11)]were
evaluated by integrating over ~'~ of the Brillouin zone
appropriate to white tin. This portion of the Brillouin
zone was divided into two regions which were trans-
formed into unit cubes by nonlinear transformations. A
triple Gaussian quadrature was used to evaluate the
resulting integrals.

The 6&&6 dynamical matrix for white tin was diago-
nalized by a 2)&2 Jacobi rotation procedure at 1024
points in each region. The polarization vectors for

2W= R(p, Hp),

P = (P))py)p)))
(10)

where the elements of the H matrix are given by

H-, -=Z.2 gL~(C, J)]e-(aJ)e-*(W).

White tin has a body-centered tetragonal structure
with two atoms per unit cell. The structure is two inter-
penetrating body centered tetragonal lattices with lat-
tice basis (0,0,0), (0,—',,xs). The superscript n is left out
in what follows since the constant 28" must be the same
for either lattice.

Equation (2) can be expressed as an inner product

TAnLE II. A—S force constants (in units of 10' dyn cm ').

Constants

X (1,12)
C2 (1,12)
Z, (2', »)
C2 (2,11)
Z (3,12)
C2 (3,12)
E1 (4,11)
C2 (4,11)

Ia

0.9183
1.515
1.757
0.7575
1.276—0.736
0.4206—0.1979

IIb

0.2945
1.472
1.551—0.7362
2.446
0.7404
0.7054—0.6688

a Using Mason and Bommel elastic data.
a Using Rayne and Chandrasekhar elastic data.

' G. W. Lehman, T. Wolfram, and R. E. DeWames, Phys. Rev.
128, 1593 (1962l.
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TA&LK III. Comparison of experimental and calculated values for the polycrystal Debye-Wailer factor.

T('K)

20
77
90

150
300
400
500

Wiedemann~
et al.

(0.53), (0.60)
(0.52), (0.59)
(0.39), (0.40)

Boyle
et al.

(0.40)

0.22
0.035
0.009
0.002

Barloutandb
et al.

(0.30+0.07), (0.32+0.015)

Alekseyevsky
et al.

(0.32 +0.06)

(0.061&0.015)

Ic

0.63
0.61
0.40

0.22
0.053

0.008

0.61. 0.73
0.70
0.460.37

0.18
0.036
0.011
0.004

0.07

0.012

Debye model
IP 0D = 142'K

W. H. Wiedemann, P. I ienle, and F. Pobell, Z. Physik 166, 109 (1962).
b R. Barloutand, J. O. Picon, and C. Tzara, Compt. Rend. 250, 2705 (1960).
c Using Mason and Bommel elastic data.
& Using Rayne and Chandrasekhar elastic data.

points lying outside the fundamental —,', of the Brillouin
zone were obtained by means of symmetry operations
of the D4y, group. Several checks were made to insure
that our values of H, were independent of order of
the Gaussian quadrature.

The experimental and calculated temperature de-
pendence of the polycrystalline Debye-Wailer factor
is given in table III showing good agreement from 0 to
300'K. The values calculated using Rayne and Chan-
drasekhar's elastic data seem to give the best over-all
fit; however, with the present experimental accuracy it
does not seem possible to select between the two calcu-
lations. For comparison, the temperature dependence of
Debye-Wailer factor calculated from the Debye approxi-
mation with 8D=142'K, as suggested in a previous
analysis" is also shown in Table. III.Clearly, our results
indicate that the Debye model does not give a good
representation of the frequency spectrum of tin and
that one is not justi6ed in accounting for the difference
between experimental values and calculated values
using the Debye approximation by introducing higher
order corrections such as anharmonicities. The deviation
of experimental values from calculated values using A-S
model above 300'K can now probably be attributed to
higher order corrections. The effect of anharmonicities
is presently being investigated.

TAnLE IV. Temperature dependence of H„(T) and s(T).

The temperature dependence of the function H„(T)
and the anisotropy ratio e(T) is given in Table IV. The
anisotropy ratio is found to be only slightly temperature
sensitive in agreement with Eagan's results. 4

We are currently aware of two recent attempts at
measuring the anisotropy ratio of f,/f, = e nor*~/e —"Ir-
One of these measurements has been attempted by
Alekseyevsky et al." and their conclusion is that
f /f, =1.4 over the whole temperature range. Their
calculated f,/f, was determined from experimental
data corrected for quadrupole effects.

It is apparent that the conclusions of Alekseyevsky
et a3. are in disagreement with our theoretical prediction.
In fact, their conclusions that f,/f, =1.4 over the 80-
300'K range imply that the ansiotropy ratio e(T), is
not only strongly temperature dependent but increases
as the temperature increases, which implies that the
lattice anisotropy is decreasing as the temperature in-

creases. This is difficult to believe because if the mean
square displacement along the $001] is larger at low

3.5

3.0

2.5
CJ
LIJ

O
2.0

T('K)

6
15
50
77

150
300
400
500

P„(T)'
(in units of
10'eV ')

0.169
0.170
0.175
0.233
0.304
0.526
1.01
1.34
1.68

1.106
1.106
1.109
1.15
1.17
1.19
1.2
1.2
1.2

H.,(T)s
(in units of
10' eV ')

0.174
0.175
0.183
0.260
0.345
0.606
1.17
1.56
1.95

1.106
1.106
1.109
1.14
1.15
1.16
1.17
1.17
1.17

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.S P.g 1.0

Fro. 6. Dispersion curves for white tin along $001$ direction in
the Brillouin zone using Mason and Bommel elastic data.

Using Mason and Bommel elastic data.
b Using Rayne and Chandrasekhar elastic data.

' A. J. F. Boyle, D. St. P. Bunbury, C. Edwards, and H. E.
Hall, Proc. Phys. Soc. (London) $77, 129 (1961).

"N. E. Alekseyevsky, Pham Zuy Bien, V. G. Shapiro, V. S.
Shunel, Zh. Elrsperim. i Teor. Fiz. 43, 790 (1962) Ltranslation:
Soviet Phys. —JETP 16, 559 (1963)g.
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temperatures than that along the [100$direction in the
harmonic region one would expect their ratio to be an
increasing function of temperature (since the functional
dependence on frequency goes from (1/~) to (1/aP) at
high temperatures). Furthermore, the thermal expan-
sion data show that the thermal expansion coefficient
along the [001j is higher than along the [100); this
should still further increase the difference.

The other measurement is that of Meechan et al.12 of
Our laboratory who have obtained essentially the same
value for f,/f, at room temperature but no measurable
difference for f,/f, at 100'K.

This experimental discrepancy must be resolved be-

TABLE V. Comparison of experimental and calculated values
of the Debye-Wailer factor along three crystal axes.

TABLE VI. Comparison of experimental and calculated values
of the anisotropy ratio e(T).

T('K)

77
300

Alekseyevsky
et cl.

0.715
0.883

A—S model

I II
1.17 1.15
1.2 1.17

a Using Mason and Bommel elastic data.
b Using Rayne and Chandrasekhar elastic data.

Between 6—15'K the calculated values are low. It was
impossible to raise the lattice contribution to the
specihc heat in that temperature range without chang-
ing the low temperature agreement of C, and the Debye-
Waller factor.

A-S model

Alekseyevsky et al.
T('K) 77 293

L001j 0.24&0.05 0.054+0.01
L101) 0.072a0.01
$100j 0.36+0.06 0.076+0.01

I~

77 293

0.46 0.074
0.05

0.39 0.045

IIb
77 293

0.41 0.05
0.033

0.36 0.03

a Using Mason and Bommel elastic data.
b Using Rayne and Chandrasekhar elastic data.

fore we can make meaningful comparison between
theory and experiment.

The experimental and calculated angular dependence
of the Mossbauer intensity for several temperatures is
shown in Table V. The anisotropy ratios are compared
in Table VI. Table VII gives the calculated and experi-
mental specific" heat from 1 to 300'K. As expected, the
calculated specilc heat values using Rayne and Chan-
drasekhar's elastic data is slightly higher than that
calculated using Mason and Bommel's elastic data.

~ C. J. Meechan, A. H. Muir, U. Gonser, H. Wiedersich, Bull.
Am. Phys. Soc. 7, 600 (1962).

"C. A. Shiffman, The Heat Capacities of the Elements below
Room Temperature, General Electric Research Laboratory
(unpublished).

TABLE VII. Comparison of experimental and calculated values
for the total specific heat of white tin' (in units of cal mole '
deg ').

T('K)

1
2
3

6
15
50

150
300

C,,(exp)

0.00046
0.0014
0.0032
0.0067
0.036
0.64
3.68
5.85
6.3

C (I)

0.00042
0.0011
0.0027
0.0053
0.015
0.25
3.10
5.55
5.97

C,(II)'

0.00045
0.0015
0.0042
0.0074
0.021
0.29
3.08
5.53
5.97

3.5 X10 4 cal mole 1 deg '.
b Using Mason and Bommel elastic data.
& Using Rayne and Chandrasekhar elastic data.
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