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band' upon excitation by ultraviolet showed that the
quantum eKciency increased as the incident photon
Qux increased for excitation by 7.7-eV photons. For
excitation with photons having an energy of 5.7 eV the
quantum e%ciency was independent of the incident
photon intensity. It is noted that 5.7 eV is just less than
the band gap of NaI (5.8 eV)" while a 7.7-eV photon is
capable of producing ionizing events. As the excitation
intensity with 7.7-eV photons increases, the steady-
state density of I2 ions increases while the density of
other electron traps (associated with impurities or
imperfections) remains constant. On the basis of the
present interpretation this situation would lead to an
increase in the quantum eKciency of the ultraviolet
band as the excitation intensity increases, in accord

J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev.
116, 1099 (1959).

with experiment. The fact that the ultraviolet emission
band is stimulated by light in the fundamental band
region (5.7 eV and below in NaI) indicates that the
ultraviolet band may result from the radiative decay of
an exciton, as previously suggested by Van Sciver."
This implies that the excited state of both the (I2 +e)
center and the exciton decay radiatively with the same
emission spectrum. The interpretation suggested in
this paper is, therefore, similar to that previously given
by Van Sciver" with regard to the emitting excited
state.
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The character of magnons and helicons in magnetically ordered conductors is considered. Conductors
become transparent to circularly polarized electromagnetic waves, helicons, when co,r))1, where or, is the
cyclotron frequency and r is the relaxation time of the conduction electrons. It is shown that, in general,
there exists a strong coupling between helicons and magnons, so strong that a perturbative approach is not
adequate. The effect of this strong coupling is calculated and is shown to produce large effects on the magnon
and helicon spectra at long wavelengths. The coupling between magnons and helicons can be varied by
changing the external magnetic field. These effects should be experimentally observable.

E consider the problem of the existence of helicons
in magnetically ordered conductors, and their

interaction with spin waves. A helicon, called a whistler
in atmospheric physics, is a mode of propagation of a
circularly polarized electromagnetic wave through a
charged plasma in a magnetic fieM. Recently, helicons
have been observed in very pure metals at liquid-helium
temperatures' ' where they have also been called
magnetoplasma oscillations. In the limit approached
in these experiments of co.r&&1, where co, is the cyclotron
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frequency of the electrons in the magnetic field and z
is their relaxation time, the electron plasma is trans-
parent to one sense of circularly polarized radiation,
the one that rotates in the same direction as the. elec-
trons around the magnetic field, while it is reflecting
to the other sense. The angular frequency, co, of the
helicons of wave number q is given by the usual relation
for electromagnetic waves

co2 —(c2/tt e) g2

where p and e are the magnetic permeability and
dielectric constants, respectively. For nonmagnetic
metals and for frequencies near zero'

e = 4srrtec/osB,

and to a good approximation p=1. Here 8 is the
magnetic induction and there are e effective conduction
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electrons per unit volume of charge e. The net density
being given by the difference between the electron and
hole densities.

The ratio of the magnetic field and the electric field
E of the helicon is given by

&/&= (e )'",

which for nonmagnetic metals is equal to about
10"/gtp. The frequency tp is ahvays much less than
or.=10" so that it is seen that the helicons are practi-
cally all magnetic field.

L HELICONS IN MAGNETIC CONDUCTORS

In the case of magnetically ordered conductors, the
situation for the propagation of helicons is more
complicated. Not only must the conduction electrons
be considered, but, in addition, the ordered spins of the
system are strongly coupled to the magnetic field of
the helicons and their effects must be included. Further-
more, the spin-orbit interaction of the conduction
electrons can be important for magnetically ordered
materials. Before any detailed models are considered,
we will derive a general expression for the interaction
of spin waves with the helicons.

For simplicity, we consider the case of a single-

crystal, single-domain ferro- or ferrimagnet, with the
external field and the magnetization lying along an
easy axis and a spin wave propagating along the mag-
netization direction; for other directions of propagation
the analysis is complicated by the tensor nature of p,

and ~ but Iio new physics occurs. As the spins precess
they produce a time-varying magnetic induction field
8 which induces currents in the conductor. These
currents produce a magnetic field which acts back on
the spins. The induced currents are a forced helicon
mode and are the coupling mechanism between helicons
and magnons. We can also see this coupling by starting
with a transverse helicon propagating along the mag-
netization direction. The magnetic field of the helicons
wiB tilt the spins away from the magnetization
direction. This displacement of the spins rotates
around with the magnetic field of the helicon and
induces a forced spin-wave motion.

We calculate this coupling between magnons and
helicons by use of Maxwell's equations. We shall ignore
all surface effects, such as surface currents and mag-
netostatic modes, thereby limiting the applicability of
our treatment to wavelengths short compared with the
sample size. Assume that a transverse magnon varying
in time and space as expLi(qs —cot)7 is propagating
along the s direction which is also the easy magneti-
zation and external magnetic Geld directions. The
circularly polarized time-varying component of the
magnetization, M&, is in the x-y plane and is given by

M~= hatt (i+ij) expLi(qs —tot) $,

where
tp =yH +nq',

the magnon spectrum if there were no coupling to
helicons.

Expression (8) can be rewritten, in a more transparent
fashion so that it has the form of Eq. (1), in which case
we find that

(g')p = 1+y4a.M./ (tp„—tp) .

The general relationship given in (8) has already been
derived in various forms for different problems. ' In
these previous cases the high-conductivity limit, or,z&)1,
where helicons exist, was not considered. We will

consider this limit.

II. FREE-ELECTRON GAS

Consider the model of a degenerate free-electron gas
imbedded in a uniform positively charged background
so that there is macroscopic charge neutrality. As
shown later in this section e is generally a function of
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where i and j are unit vectors in the x and y directions,
respectively. From Maxwell's equations

q'H~= (ouse/c') (H~+ 4trMp). (4)

Here H~ is the induced magnetic field produced by
the conduction electrons and e is the dielectric constant
of the solid, which is considered, in general, to be
complex to include all conductivity effects. Equation
(4) is easily solved for Hz giving,

H&
—4trM& (qscp/pp e—1) . (5)

Neglecting phenomenological damping effects, the
motion of the spins is determined by4

dM~/dt= y(M XH)+ (a./M, )MX PM, (6)
where

H=H +Hp
and

H„=H.„;,+Hp.

Here M, is the saturation magnetization, H,„;, is the
magnetic anisotropy field, Hp is the external field, and
y= ge/2mc. The second term on the right-hand side of

(6) is due to the exchange interaction between the
oriented spins. The solution of (6) gives
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q and co, but if the Fermi velocity eo of the electrons is
small enough so that vpq« t

p2, —p2 t
the dielectric

constant is only a function of cv and is given by

e = 1—&p~2/Id (p2 —p2,), (9)
Where p2„2=42r2M2/2I. We Will uSe the COnVentiOn that
co(0 reverses the sense of the circularly polarized wave.
For this model and neglecting the 1 in e, Eq. (8) has
the solutions

Gog corn 2' 3f8+
P2=—+—+

1+(q/q')'

and
B=Hp+42rM, .

where

and

pp = ppp2m, pI a/tup, q«qr,

tup
——1+42rM,y/p2„

co =co„um, g))g„. (12)

Here ~~ is the helicon spectrum if there were no coupling
with the magnons. To obtain insight, consider the long-
and short-wavelength limits, q«q„and q))q~, respec-
tively, of Eq. (10).

where
Id p = q2(p. (q„'+q')

—',

Id, = eB/222C,

2= M 2/C2

(a)

I
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FxG. 1. A sche-
matic representation
of the helicon and
magnon spectra as
given in Eq. (10).
The spectra in the
case of no coupling
(p,0=1) is shown as
the dashed curves
and the spectra with
coupling is shown by
the solid curves with
@0=8.The Doppler-
shifted absorption
region is represented
by the hatched area.
Within this hatched
area the modes are
too highly damped
to be observable.
Figures 1(s) and
1(b) represent the
situation when the
conduction electrons
are electron-like or
hole-like, respec-
tively.

Id p co~ 27Mr—+—+
t

—Id nIp, (10)
1+(q/q. )'&

=~my h (10')

The two solutions in (11) and (12) correspond to the
spin-wave and helicon modes. It is of interest to com-
pare the field distributions for these two types of modes.
Consider the case q«q„. Inserting the two limits given
in (11) into Eq. (5) we hand that the limit p2=i2pM, the
spin-wave mode, corresponds to field distributions of
H~ =—42rM~ or B~=0. The limit Id =pIs/12 2, the helicon
mode, corresponds to field distributions of (pp —1)
H~=42rM& or B& 12pH&. W——e see that at long wave-
lengths (but short compared with the sample size) the
magnon frequencies are increased by the factor p, p,

while the helicon frequencies are decreased by the
factor po . For iron and in zero external field p,0=23
so that the interaction causes a spectacular effect at
long wavelengths. The result given in (11) for the
helicon mode can be easily understood from Eq. (8')
where we see that p, o is just the magnetic permeability
of the magnetic spins at low frequencies. At short
wavelengths the solutions given in (12) are the same as
those for the magnons and helicons without interaction.

Figure 1 gives a schematic plot of (10). The dashed
curves are the magnon and helicon spectra if there
were no interaction between them. The two possibilities
are shown where pI,/pI )0 and pI,/pr (0. These
correspond to the cases of electrons and boles, respec-
tively. In the case where (pp, /pI ))0 the branch for
the helicon-like mode at small q becomes the magnon
mode at large q and vice versa. In the case where

(pI, /pI ) &0 both the magnon- and helicon-type modes
retain their identity for all q.

The parameter (tup
—1) determines the coupling

between magnons and helicons. When (iip —1) is large
there is a large coupling while when po —1=0 there is
no coupling. We have already seen how a large (pp —1)
produces a large eGect for q«q„. When p, o

—1=0, Eq.
(10) has the solutions

(b)

The spectra in (10') are the free magnon and helicon
spectra, respectively. We see from (10) and (7) that
po can be varied by changing the external magnetic
field. Thus, an experiment can be performed on a
magnetic conductor such as iron where it is possible to
measure from the strong-coupling limit to the weak-

coupling limit by merely varying the external fieM.
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In a real magnetic conductor the model chosen for e

in (9) has to be modified in three ways. One, the spin-
orbi. t interaction has to be considered; two, the approxi-
mation vsq«~ts, —ts~ is only correct for small q; and,
three, finite relaxation times must be considered.

The spin-orbit interaction, as pointed out by Kittel, '
does not act like a magnetic field because the spin-
orbit potential is periodic, and the time-independent
electronic eigenstates are still Bloch waves. Thus, the
spin-orbit interaction does not affect the Lorentz force
on the electrons in Bloch states of wave vector k, and
it is still given by

Adk vXB)
=e E+

dh c

where 8 is given by the same expression as in (10).The
spin-orbit interaction does, however, contribute to the
dielectric constant through a polarization of the elec-
trons, "but it can be shown that this makes a negligible
contribution to the dielectric constant at the low
frequencies of helicon propagation. On the other hand,
at optical frequencies this spin-orbit polarization is the
cause of the very large Faraday and Kerr rotations in
ferromagnetic metals. " We shall elaborate upon this
in a subsequent paper.

In real metals the velocity of the electrons at the
Fermi surface, vs, is such that vsq«~ts, —

&0~ is not
usually satisfied. The expression in this case for
neglecting 1 becomes" "

Res = fts~s/(o (ts,—ts) ]F(x),
where

F(x)= sx((1—x') in' (1—x)/(1+x) i

—2x), (14)
and

x= (~,—~)/qvs.

Ime=-,'v. ((o '/tsqvp)(1 —x') x'&1

Here Im and Re mean imaginary and real parts.
It is seen from (14) that even for qvs

——a&,—ts there is
no major change in Res which is only increased by 50%%u~

over the simple form in (9). The main change occurs in
the Ims which becomes finite for qvs) ~a&,—ts~. This
means that the magnon and helicon modes will become
damped in this region. The physical origin of this
damping mechanism can be easily understood. If in the
conductor a wave of frequency co and wave number q
is present, then an electron of velocity vo experiences,
because of the usual Doppler-shift, a frequency

(15)

If cv' coincides with the cyclotron frequency of the
electron ~„ the absorption of the energy of the wave
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by the electron will occur at

co,—co= van. (16)

Figure 1 also illustrates the Doppler-shifted damping
region and shows schematically the magnon and helicon
spectra in that case. In real metals, then, the region for
observing the predicted helicon-magnon coupling is
appreciably reduced from that of the simple model as
represented by (9).

The helicons will be highly damped even for qvo

slightly greater than (ts,—ts). For all greater values of

q the helicon mode is damped so severely that it ceases
to exist. This is indicated on Fig. 1 by extending the
hatched lines over the entire part of the helicon mode
where qvs) ~ts, —ts~. The magnon mode is also highly
damped for qvs slightly greater than (ts,—a&). However,
this severely damped region does not extend to all
values of g. For very large q where the g dependence
of co becomes dominant the lossy nature of e has no
longer a damping effect.

Till now the discussion has neglected effects of finite
relaxation times. The expressions for e given in both
(9) and (14) assume that ~ts,—tsa r))1. The expression
for ls given in (8') assumes that ~cs —tv~r ))1, where
r is defined as the imaginary part of co arising from
the lossy terms in the Landau-Lifshitz equation. The
effects of these finite relaxation times can be included
in the previous work simply by replacing ts, by (ts,+i/r)
and cs by (ts +i/r ) Thus. , for instance, we see that
finite relaxation times in Eq. (10) make cs complex
describing the damping in time of modes which vary
in space as e'". This damping is small as long as both
co,r))1 and co r &)1.

The propagation of the modes in space is more
severely effected by the finite relaxation times. Con-
sidering the problem of the excitation of these modes
on a plane z= zo, the modes will become highly damped
in their propagation through space when either, or both,
)~,—ts~r&1 and ~pets —tsar &1. Clearly, for any
finite 7. there exists a band of frequencies around co,

where this will occur. This damping is important only
in the case of electron conduction illustrated in Fig.
1(a). It may impose a more severe restriction on the
perfection of the material for propagation of modes on
the upper branch than the lower branch. In order to
see the upper branch ~lists —ts,

~
r) 1, whereas in the

lower branch it is required that co,7&1.The effect of a
finite relaxation time r in p places a particularly severe
restriction on the propagation of the modes in the upper
branch. This condition appears to be very difficult to
satisfy for modes in the upper branch. However, even
when this condition is not satisfied, vestiges of this
mode will remain, for example, as an anomalously large
penetration depth. In any case, the modes of the lower
branch easily satisfy this condition and should show
the predicted effects. Attenuation of the upper branch
modes may prove to be a very sensitive way to measure
the Landau-Lifshitz damping in metals.
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Appreciation of the transmission characteristics of a
highly conducting ferromagnetic medium is gained by
consideration of the frequency dependence of the
dielectric constant and permeability. For simplicity we
will consider the case of the local dielectric constant of
Eq. (9) rather than the more general Eq. (14) and we

ignore damping. According to Eq. (1), propagating
solutions will exist only when the product p, c is positive.
From Eq. (9), the dielectric constant is positive for
frequencies less than ~, and negative for co&co,. Con-
sidering for the moment the behavior of p along the
q=0 axis, from Eq. (8') we see that p is positive at
co=0 and rises toward infinity as co approaches ~ from
below. Thus, in the region below co both & and p are
positive, and there is a band of frequencies in which
the medium is transparent.

At frequencies immediately above co the perrnea-
bility reverses sign to —~, and increases with increasing
frequency. Hence, in this region the permeability is
negative and the dielectric constant is positive, and
there is a reQection band of metallic behavior. There
are two possibilities for the upper edge of this reAection
band, depending upon the particular values of the g
factor, the anisotropy held, and principally upon the
effective mass of the charge carriers (and, hence, upon
the direction of propagation). Either ~, lies above or
below p, gu . If co, lies above p~, then the upper edge
of the reQection band is at p, oco at which frequency
@=0.In the region above @go both e and p are again
greater than zero and transmission occurs. This pass
band extends up to co„where e changes sign. In this
case the upper branch starts at @pcs at q=0 and rises
with increasing q up to co,. Above co„p is positive,
approaching one as co —& ~, and e is negative, becoming
zero at co=co„.Thus, no other transmission bands occur
below co„.

If circumstances are such that co, (p,par, then co,

determines the upper edge of the intermediate reQection
band. In the region between co, and poco, both e and p
are negative, and transmission again occurs. The
allowed frequencies start at ppco at q=0, and drop to
ar, with increasing q. This is the circumstance depicted
in Fig. 1(a).

III. NUMERICAL ESTIMATE

It is of interest to estimate the magnitude of quanti-
ties involved in the helicon-magnon coupling to deter-
mine if it can be experimentally observed. We consider
the case of iron in no external 6eld which then has the

TABLE I. Estimate of quantities involved in the
helicon-magnon coupling in iron.

4m-M

Hanis
'g

g
Vp

~rn
cue

gp

22000 G
1000 0

10"cm '
2.14

10s cm/sec
9.4)&10' sec '
3.52)&10"sec '

23
0.1 cm'sec '

properties given in Table I. It is seen from Eq. (10)
that the coupling between the helicons and magnons is
strongest for

q(q„=6)&10' cm '

which corresponds to wavelengths larger than 10 ' cm.
The Doppler-shifted frequency cutoff condition in (16)
gives a value of

g( (CO M)/'Dp

=3.4X10' cm ' for upper branch in Fig. 1(a)
=3.5X 10' cm ' for lower branch in Fig. 1(a)
=7.3X10' cm ' for upper branch in Fig. 1(b)
=3.5X10' cm ' for lower branch in Fig. 1(b).

We see that the Doppler-shifted absorption is the
mechanism restricting the region of observation of the
magnon-helicon coupling, but this region is very
accessible experimentally. In addition, the ~~,—cu

~

r))1
condition, of course, must be satisfied which restricts
the observation of the effects considered here to very
pure materials at very low temperatures. It is appro-
priate to emphasize that the effects discussed in this
paper occur in bulk samples and are not limited to skin
depth regions. This is because the material is trans-
parent to the electromagnetic modes described in this
paper. Thus, whenever the exciting fields penetrate the
material they will not be limited to the ordinary skin
depth region but will propagate through the medium
being attenuated only by processes described by the
imaginary parts of p, and e.

We caution that our discussion has been limited to
the case of propagation along the magnetic field
direction. While propagation in other directions is
complicated by the tensor nature of the medium, it is
easily seen that helicons do not exist for propagation
normal to the 8 field. Thus, Azbel'-Kaner geometry of
cyclotron resonance is inappropriate to helicon
excitation.


