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Three-Dimensional Containment of Charged Particles by Orthogonal
Standing Waves
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It is shown how genuine three-dimensional containment of a single charged particle can be achieved even
in the presence of a repulsive uniform space-charge distribution using three mutually orthogonal standing
waves or equivalently a resonant cavity. Possible extensions of this technique to plasma containment are
also discussed since it would appear that the high energies (on the order of 100 kev) achievable with this
system make it worthy of further investigation.

I. INTRODUCTION Wuerker et al. ' and Shapiro and Katson4 are generally
used for the containment of particles possessing an e/trt
ratio of less than unity and, therefore, will not be
discussed.

Since the entire problem of genuine plasma contain-
ment is exceedingly complex, an enormous simplifica-
tion is afforded by starting the analysis from the single-
particle equations. This allows us to be unconcerned
about the many-body aspects of plasma physics, such
as charge separation, polarization, and conductivity.
Later, however, we shall include space-charge effects
due to a uniform distribution of particles of the same
sign, and finally attempt to make some qualitative
remarks about the expected behavior of an actual plasma
system.

It is the purpose of this paper to show how three
mutually orthogonal standing waves can give rise to
genuine containment of a single charged particle even
in the presence of a repulsive uniform space-charge
distribution. One normal mode of the system is demon-
strated to have a Mathieu-type solution and has regions
of stability depending upon the choice of various param-
eters. Since it was impossible to obtain an analytic solu-
tion of the whole problem, we used analog computer
solutions to demonstrate the nature of the solutions as
a function of the various parameters at our disposal,
such as frequency and field strength.

S far as is known, genuine three-dimensional eon-
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tainment, on the basis of a single-particle model
has not been demonstrated for a high voltage, tuned
cavity device which employs both E and 8 fields for
containment and exploits the Q of the cavity for the
purpose of establishing large fields; although an rf
mechanism has been proposed as a possible explanation
of naturally occurring ball lightning. ' However, many
two-dimensional arrangements have been considered,
most of them relying upon cylindrical geometry. ' In
the majority of these cases the 0 motion is superQuous,
the r motion is stable, and the s motion ignored. In
addition, several schemes have been put forward utiliz-
ing radiation pressure, and would obviously have appli-
cation to very dense, highly conducting plasma con-
figurations. However, practical questions relating to
the initial plasma injection at the required densities
are usually neglected, along with problems such as the
detuning of the cavity as a result of local plasma in-
stabilities, etc. Low voltage, low power, and pure
oscillating electric field devices, such as those of
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satisfies the normalized Mathieu equation

$"+(a—2q cos2r)(=0, a=0, q=2k/u)', r=cot/2. (6)

The regions of stability are characterized by the usual
Mathieu plot (see Fig. 1). In this case, a=0 and stable
solutions exist in the first region for k (0.45co'. However,
this is not necessarily sufficient to guarantee the bound-
edness of the separate coordinates individually.

It will suffice to say that the other normal modes are

rt=xi+e' ~'x2+e—' "xg

f=xi+e ' tsx2+e' t'x3 rt*,——

and satisfy Hill equations with complex coe%cients.
Attempts to solve the resulting equations for x;(t),
x, (t) analytically have failed. However, particular
solutions have been obtained by means of an analog
computer and are presented in Sec. C.

FIG. i. Stability regions in the a—q plane for a charged particle
in the neighborhood of a cloud of like particles.

B. Space Charge

The eBects of a uniform space charge upon the equa-
tions of motion of a single particle can be demonstrated
by considering a spherical charge distribution of the
same sign and of uniform density E particles/m'
located at x;=0.

A simple consequence of Gauss' theorem indicates
that the force experienced by a test particle at position
xi inside the charge distribution is due to those charges
between xi and the origin, so that

II. DEVELOPMENT

A. Single-Particle Equations

Without actually describing their physical origin, we
shall consider three mutually orthogonal standing-waves
represented by the following fields:

2'7t x(i+2)8,.=—8p sine/ cos
Ee'Se'

P., = (-', m-x;3) = x,.
4~gpxi2 3ep2&x(i+])

E„.=cBp cosset sin (2)
These forces are all repulsive and modify Eqs. (4) to a
form given by

plus cyclic permutations, i=1, 2, 3, where Bp is the
maximum value of the oscillating magnetic fields of
angular frequency c and wavelength X. Notice that pairs
of these equations independently satisfy Maxwell's
equations and that the E and 8 fields are m/2 out of
phase in both space and time, characteristic of the
standing-wave form.

Using the familiar Lorentz force equation

and concerning ourselves with small displacements in
the vicinity of an electric node, we may readily derive
the following equations of motion for a charged particle
of mass m and charge e:

,= (k/i0) (x;-+, , x)+si2n~t+—kx;+i coscot,

where we have set eB&o/m= k and have replaced
sin(2m. x/X) by 2x.x/X, and cos(2my/X) by unity. We
notice immediately upon addition that the quantity

Ee'
x;= kx;yi cos(et+ —(x,+i—x,+2) sinu)t+ x;. (10)

GO 3mtp

—4Ee'

3m' 6p

(12)

with q, r, and P defined as in Eqs. (5) and (6).
Thus, the space charge may be expected to provide a

negative "a" term which limits operation to those por-
tions of the stability regions lying below the q axis (nar-
row regions between converging lines in Fig. 1). For
example, using Fig. 1, we find that a representative
choice of parameters for stability is a= —0.2, q=1.
These parameter values can be achieved at a drive

As an indication, and for the sake of simplicity, addition
of the above three sets of equations yields, in normalized
folm,

$"+(a—2q cos2r))=0,
where
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frequency of 10'0 rad/sec, with a Geld strength of
6.2X10' U/m and an electron density of about
5 X 10"/m'.

From a purely qualitative point of view, it is clear
that the introduction of positive ions into the system
has a twofold effect: (1) It tends to restore the effective

a of Eq. (11) back to zero, and (2) gives rise to a
polarization phenomenon vrhich tends to reduce the
effective fields inside the plasma. In short, it restores e
to zero, but reduces the effective value of g, in Eq. (11).
In fact, the reduction in the 6eM strength could be
computed, given the effective dielectric constant. It
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I'zo. 2. Computer solutions of Eqs. (4} for e =0 and the initial conditions: x;= i, 2, —2.5; x =2, —1.5, 2.5.,
(8,) ~= —O,iis, q=i; (b) ~= —O.ii, q=i,
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should perhaps be stressed that the electron cloud
picture represents the worst possible plasma configura-
tion, and that in a physically realizable plasma, one
would expect densities at least an order of magnitude
greater than those derived on the basis of the pure
electron cloud distribution model.

C. So1utions

Equations (4) were solved on an analog computer
(GEDA). These equations are linear and hence the form
of the solutions is independent of initial velocity and
displacement (see Sec. D). However, one must bear in
mind that Eqs. (4) correspond to the physical situation
only for

0&x,/X&0. 1.

The primary purpose of the computer simulation
was to determine whether the solutions to Eqs. (4) have
regions of stability similar to those for Mathieu
equations.

The typical computer solutions shown in Fig. 2 indi-
cate that within the accuracy of the computer the solu-
tions in the x; and x, are identical to those in g and g.
Furthermore, all the solutions exhibit those character-
istics peculiar to Mathieu functions. The solutions shown
in Fig. 2 were obtained with different initial conditions
in each coordinate x,. For equal initial conditions the
solutions for x; bear an even greater resemblance to
those for the $ normal mode.

The boundaries of the first stability region for the
Mathieu equation were explored for Eqs. (4), i.e.,
0&v&1. It was found that they behaved as if they
were Mathieu equations. Figure 2(b) illustrates the
onset of instability at a= —0.11, q= 1.

In Sec. D, it will be shown that the achievable kinetic
energy is a function of the parameter (e+p). Figure
2(a) illustrates the solution for a combination of field

strength and Coulomb repulsion for which m=0, P 1.
Thus, stability is indicated for these high-energy
configurations.

x,=A, P D2,+„cos(2r+P+P)r

+8; P D2„+r sin(2r+P+P)r, (13)

A;= x, (0)/ p D2,+„, (14)

B,=x (0)/ p (2r+p+p)D, „+„, x,'(0)=2x, (0)/~ (15)

0&P&1,

where p is 0 or 1, depending upon the region in the
a—

q plane and P is the fractional portion of the non-
dimensional characteristic v=g+P, n an integer. ' The
A; and 8, are determined by the initial coordinates,
x, (0), x,;(0), and the series are Mathieu functions of
order v.

The kinetic energy, T, of this particle is

T=g T;

T;= m(A 2+8')—Q Dg„+„(2r+p+p)
8 r=—~

f&,l
Xsin (2r+P+P) r —tan '~ —

~

&A,i
Assuming, for simplicity, equal initial conditions in
the x; and substituting from Eqs. (14) and (15), we

obtain

D. Kinetic Energy

We have shown that the equation of motion of a
single charged particle at the intersection of three
mutually orthogonal standing electromagnetic waves

may be represented by the Mathieu equation, Eq. (6).
The general stable solution of this equation may be
written

3' 00

T= m x(0)'{ g Dq,~„f(2r+p+p) sin(2r+p+p)r tan 'pj/ p D—2„+~)'
8 r=—0O 00

4x(0)' 00

+ f p D2„+„(2r+p+p) sinL(2r+p+p)r —tan 'pj/ p (2r+p+p)D, „+„)'

2x(0) OO

Z D.'./ 2 (2+p+p)D.".
a&x(0) r= wr=~—

An estimate of the energy may be obtained from the
following considerations:

(a) The products of terms at different frequencies

contribute only to the instantaneous energy; their

integral over a period vanishes, and

sin2er &sinmr sinlr, e/l.
' N. %. McLachlan, Theory and A pplication of Mathiel FNnc-

tsons (Oxford University Press, New York, 1947), p. 77.
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VXE= —8B/&t

(b) For g&5, the coefficient of the term for which We notice that V E=O is satisfied identically,
2r+p=l is numerically greater than the others, ' i.e., moreover, we can find the associated 8 fields from the

solution
(D. ~ ) )Ds,+„~, —~ &r& ~, q&5.

(c) Equations (4) are valid only in the range

0&a&0.1, a,=x;/X

and from physical reasoning the particle may be con-
tained for a, value of n up to 0.25. Therefore,

giving rise to

Ep~ m x;+g 2m xi m xi 2z-x;+2
cos sin —2 sin cos sincot. (19)

d

One readily observes that

Let

3'
T= rN x(0)'(e+P)'+—*'(0)' .

8 QP

8;8,.=0. (20)

In order to put. these waves into a cubical cavity of side
d, we require, furthermore, that

and recalling that
x(0)=a)~

re =2rrc/)t

we obtain the following approximate expression for the
kinetic energy of the system )tg= P/(5)'"Ed. (22)

V XH = trees (8E/Bt). (21)

Simple substitution of the appropriate quantities gives
rise to the condition

x(0)'
2'= mc' a'(n+P)'+

2 3 C

Equation (16) clearly shows that the mean kinetic
energy is only weakly dependent upon the initial in-
jection velocity, and is almost entirely governed by
the initial displacement and the stability parameters.
Therefore, a reasonable estimate of the kinetic energy of
a single electron contained in the first stability region of
the Mathieu equation, i.e., n=0, will lie between 75
and 474 keV, corresponding to o. of 0.1 and 0.25,
respectively.

Consideration of the space-charge effect as in the
previous section will restrict operation to a&0. Whereas
this does restrict the choice of m, it does not aBect the
available range of P. For n=O, there is an appreciable
region of stability below the g axis (see Fig. 1). Qne
could conceivably operate at higher values of n as
shown in Fig. 1. Moreover, it is interesting to note that
despite the critical requirements on u and g for stability
in the region m=1, a&0, the stable range of kinetic
energies is 4 to 1, i.e., (v+1)'/(n+0)s

ji Xs+2 2%$s+$
E,.= —Ep cos— sin (23)coscot.

Similarly, 8,. is given by

EQ7l 7I Xi+a 2xxi
8~, = — — sin sin

d

7FXs 2' Xi+2
+2 cos cos sinret (24)

plus appropriate permutations.
Before deriving the equations of motion, we shall

again assume small displacement (i.e., 2s.x,/)t«1, etc.)
and ignore quadratic terms in the displacement; i.e.,
Eqs. (23) and (24) may be approximated by

2xxi+1
E —Ep (25)cosset

III. RESONANT CAVITY

We now find it convenient to displace our origin of

(16) coordinates from one corner of our cavity to the center
of the cube, necessitating the replacement of xi by
x —~d. Thus, we obtain, finally,

From a purely physical point of view, it would be
desirable to show that the equations of motion, Eqs. (4),
may be obtained from the use of particular modes of a
resonant cavity. This may be accomplished by investi-
gating the properties of the following field configura-
tions:

2T .B,,~—L&'p—singlet.
dc'

(26)

Using the Lorentz force equation (3), we readily
obtain the equations

2' $(i+1) ~X(i+2)
E,.=EQ sin sin cosset. (17)

x,= —kx,+i cosrot ——(x;+r—x;+s) singlet,
CO

(27)

where we have dropped the primes for convenience. We

of stanQargs Tabtsr getottar t0 )ilattrte+ note that the above set is identical to Eqs. (4), except
FNrrcttoas (Coiurnbia University Press, New York, 1951). for the rePlacement of k by —k, corresPonding to chang-
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ing the sign of the charge. This, of course, has no eRect
on the boundedness of the solutions since k is multiplied
by a periodic function. Hence, by analogy with the origi-
nal set of equations of motion, we have containment of
the charged particle v ith the same range of parameters,
provided we recall that we are assuming small displace-
ments from the center of the cube.

The input power I', required to achieve a given oper-
ating point in the a—

q plane is a function of the Q of
the cavity. The Q may be expressed in terms of the con-
ductivity of the walls, 0., as

The amplitude of the electric field in each of the three
modes that must be excited in the cavity is obtained
from

Erj
2mepQ, '

(29)

Substituting in Eqs. (4) and (6), we obtain the Mathieu

parameter
e 2P;) t1'(ps)to ) '~

m es I ( 7r'c' I
(3o)

in terms of the power input, the wavelength, and the
wall conductivity. At to=10" rad/sec, a g of 0.342 in
each of the three coordinates would be achieved with an
input power of 300 k% and a wall conductivity of
3X10' mho/m. The o. chosen corresponds to a cavity
Q of 50 000 at this frequency.

IV. CONCLUSION

We have shown, using analog computer techniques,
that a single charged particle can be contained inside a
resonant cavity, provided that (1) certain boundary
conditions are employed and (2) that the system is
operated in an appropriate region of stability for the
normal mode that is described by a Mathieu equation.

It is estimated that a single electron could be con-
tained in the neighborhood of a central pure electron
cloud of density 10" electrons/m' by an rf source sup-
plying 2.5 MW at 1.6 Gc/sec and a cavity with a Q of
50000. The resulting normal mode parameters would
be q=i, a= —0.4, and the electron would have an en-

ergy on the order of 50 keV. The energy of this particle

and the density of the cloud are linear with input power.
However, the wavelength dependence of the energy is
X'~' and that of the cloud density 'A'". Moreover, the
Mathieu stability parameter q is proportional to the
square root of the input power and to the fourth root
of the containing wavelength.

It should perhaps be mentioned that the equations of
motion have been derived on the basis of neglecting the
radiation reaction, 7 relativistic effects and the well-
known diRusion mechanisms. The former eRect will
produce a drag on the electron and give rise to a nonzero
expression for the power dissipated through the particle.
The relativistic eRects will be expected to remain in-
significant ((10%%uc) provided. that we concern ourselves
with fields less than 150 kV, which will certainly be the
case for electrons trapped in the first region of stability.
The inclusion of diRusion effects is presently being
considered.

Finally, collective plasma oscillations will tend to
become important when the plasma frequency co„ is
coroparable or larger than the drive frequency ~. The
replacement of the charge p and current pv by the usual
velocity integrals of distribution functions P;,, (x,v) of
electrons and ions would lead to a Vlasov-type equation
and would obviously have to be solved digitally. Ex-
perience indicates' that this is probably too lengthy
for existing machines, hence an experimental program
would probably be more fruitful. From a practical
point of view, it is clear that it is necessary to increase
the Q of the cavity (e.g., by supercooling) in order to
minimize the prohibitive power requirements.
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