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A method is developed for obtaining the asymptotic form of the Feynman integral associated with a
general convergent nth order planar graph with two, three, or four external lines. Only graphs corresponding
to the )gP theory are considered explicitly. The Feynman integrals are shown to behave asymptotically like
s &(lns), where s is the large kinematical variable and p and a are integers which can be read oS from the
topology of the graph according to a simple rule.

I. INTRODUCTION

ECENT interest in the asymptotic behavior of
Feynman integrals has been aroused by the

possibility that the single-particle poles formally
involved in the perturbative solution of the dynamical
problem in field theory are actually associated with
Regge pole trajectories which are known to charac-
terize composite particle states in nonrelativistic
potential scattering. If, as in potential scattering, these
trajectories determine the asymptotic behavior of
scattering amplitudes for large values of the (crossed)
kinematical variable, then specific information about
them might be obtained from the study of the asymp-
totic form of perturbation series terms given in the
form of Feynman integrals.

Most of the existing methods' ' for the study of the
high energy behavior of Feynman integrals have been
applied only to rather restricted classes of graphs. The
work of Weinberg, ~ though of a general character, is
concerned with Euclidean. external 4-momenta and is
not applicable to the case of interest.

In this paper a method is developed of obtaining the
asymptotic form of the Feynman integral associated
with convergent rtth order ptartar graphs with two,
three, or four external lines for the )~qP interaction. It is
believed that the method, which may be considered as
a generalization of the technique used by Polkinghorne, '
can be extended to nonplanar graphs as well and will
be useful for the study of interactions of a more com-
plicated algebraic structure.

In Sec. II a theorem and some auxiliary results

necessary for the subsequent discussion are given. The
theorem is concerned with the relation of the topology
of the graph to the algebraic structure of the polynomial

f(x), which is the coeKcient of the large kinematical
variable s in the denominator of the integral expressed
in terms of Feynman parameters.

In Sec. III, the results of Sec. II are used to deduce
the asymptotic form of the integral for the graph with
four external lines which is shown to behave like
s &(lns) at large values of s.

In Sec. IV a rule is given for reading off the exponents

p and o. from the topology of the graph. The rule for p
has been correctly conjectured by Federbush and
Grisaru' on the basis of a number of specific planar
graphs. The application of the rule is illustrated in a
number of examples. The rule is easily extended to
include graphs with two or three external lines.

The obtained results are brieQy discussed in con-
nection with the conjectured Regge behavior of ampli-
tudes in field theory. We note (1) the existence of an

elementary pole in Xgs theory and (2) that in every
order the graph with the strongest asymptotic behavior
is the ladder graph.

Finally, the rule is applied to a specific class of graphs
representing an iteration of Regge pole terms. We show
that the moving branch points in the angular mo-
mentum plane proposed by Amati et u1.' on the basis
of elastic unitarity alone are actually cancelled if all
intermediate states of these graphs are taken into
account.

II. THE PARAMETRIC REPRESENTATION
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We consider an rtth order Feynman graph of the Xp'

topology for the scattering process p+ Jc —& p'+k'. Such
a graph has I=~a—2 internal lines and l= —,'e—1

independent loops or integration 4-momenta.
We are concerned with the asymptotic behavior of

the associated Feynman integral for large values of the
invariant s= —(P+h)s and fixed t= —(P—P')'.

Considering only strongly connected graphs without
divergent self-energy parts, we carry out the inte-

D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,
896 (1962).

A graph is weakly connected if, by striking out one line, it is
decomposed into two unconnected parts. A connected graph which
is not weakly connected is called strongly connected.
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grations over the internal 4-momenta by introducing
Feynman parameters x&, x2, ~, x&. According to the
Chisholm method" we bring the integral to the fol-
lowing form, where we have omitted unimportant
numerical factors

F(s t)=
i [C(x))i—7

b(Q x;—1)
[D(s,t, x))'+'

&&igxia7x, "&xr. (1)

Here D(s, t,x) is the (3+1))&(I+1)discriminant of the
Feynman denominator P; ii (QP+mP) regarded as an
inhomogeneous quadratic form in the / integration
4-momenta (Q; being the total 4-momentum flow
through the jth line of the graph) and C(x) is the IX'
discriminant of the associated homogeneous quadratic
form.

We have D(s, t,x)=f(x)s+g(x)t+k(x), where f, g,
and h are polynomials in the Feynman parameters
Xg) ' ' ') Xgo

It is well known" that f(x) and g(x) are (1+1)th
degree polynomials linear in each x, whereas k(x) is of
(k+1)th degree quadratic in each x. The function k(x)
also depends on the masses of internal and external
particles.

Evidently for any e&0, the region of integration in
x space defined by

~
f(x)~)4 gives an asymptotic

contribution for s —& ~ of the form s ' '. Thus, the
strongest asymptotic contribution comes from an
arbitrarily small neighborhood of the hypersurfaces
defined by f(x) =0.

In this paper, we shall investigate graphs in which
all monomial terms in f(x) are of the same sign. In that
case, for real and positive x's (undistorted contours),
f(x) =0 implies that every single monomial term in

f(x) vanishes.
All ptamar graphs have this property. A graph is

planar if it can be drawn on a plane with no
crossing internal or external lines, the latter being
attached around the graph in the order p, k, k', p'."

In this section, we shall prove a theorem relating the
algebraic structure of f(x) to the topology of the graph.
A consequence of the theorem is that for planar graphs
both f(x) and g(x) have only terms of negative sign.

It is also known that in the Euclidean region {Res)0,
Ret)0, Res+Ret&4m')D does not vanish for real
contours. Accordingly, in our discussion we shall obtain
the asymptotic behavior of the integral for t real and
fixed in the Euclidean region and

~
s~ ~ ~ away from

the real axis. It is reasonable to expect that the result,
having explicit analytic properties in 3, gives the correct
asymptotic behavior for values of t to which it can be
analytically continued, and also for all ways of ap-
proaching the point at in6nity in the s plane.

Before we state the theorem, it is perhaps helpful to
recall the structure of the determinants D and C.

al 1 ' ' ' al l

alit 1' 'aE+1 l

al, z+x.

al, l+1

a/+1, l+1

all ' al, l
C=

a~, y' ' ' ag, ~

The diagonal element a,;(j&t+1) is equal to the
sum of the parameters associated with the jth loop.

The off-diagonal element a,, (i,j &I+1) is equal to
the sum of the parameters common to the ith and jth
loop. The sign with which this sum is to be taken
depends on the relative direction of the assigned ith
and jth loop 4-momenta through the common lines.
For example, in planar graphs we can assign the same
sense of rotation to all loop momenta and thus take as
a;; the sum with a negative sign. Needless to say that
although the sign of the parameters in the a; s depends
on the assignment of the integration 4-momenta
directions, D and C as functions of the x's do not. In
fact, D and C do not depend on the specific choice of
the l independent loops.

The element a, , ~ ~ is the algebraic sum of the products

(parameter of a line of the jth loop)

&& (external 4-momentum flow through that line).

The sign of each product again depends on the relative
direction of the loop momentum with respect to the
external momentum Row. The element a&+&,&+& is equal
to pir x, (Q70'+mp), where Q70 is the value of Q; with
the loop momenta set equal to zero (or alternatively
the external momentum flow through the line).

As an example we w'rite down D for the graph shown
in Fig. 1 and in the form appropriate to the indicated
choice of the loop 4-momenta q~, q2, and q3.

xi+ x2+x4+ x4 X3 X4

X3 x4+x4+x4+x7
X4 $7 x4+ x7+x8+x9+x10

xip x3 (p' —p) —x4 (k —k') —x,p+ x, (p' —p) x4 (k —k')+ xs (k—k') +xi ok

xip' x4 (p' p) —x4(k —k')— — —
—x4P+ x4 (P' —P)

x4 (k —k') +xs (k —k ')+xi ok

a44

a44 ——x, (p"+m, ')+x,m2'+x, [(p' —p)'+m, ')+x4[(k —k')'+m4')+x4(p'+m4')
+x,m4'+ x,m72+ xs[(k —k')'+ms')+ x9m9'+*io(k'+mio')

' R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952)."R.J.Eden, Phys. Rev. 119, 1763 (1960). This paper contains a detailed study of the properties of the discriminants D and C
and gives further references.

"For example, the graph of Fig. 2(b) is not planar, though if vye interchange p and k it is converted into a planar graph.
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FIG. 1. A graph il-

lustrating the choice
of independent loops
and the use of the
theorem.

(x,)

qz

(x&)

k

k

(0)

~ (b)

Fza. 2. (a) The p
and k paths of a
graph with four ex-
ternal lines. (b) In
this graph the p path
necessarily has a line
in common with the
k path.

'3 In the type of graphs shown in Fig. 2(b), the p and k paths
necessarily have one line in common. In such cases it is easily
verified that f(x) is as given by the theorem plus the term
x, .C(xl ~, 3, where x, is the parameter of the common line.

We are concerned with the structure of the coeKcient
function f(x) of s in D(s, t,x). Clearly, in order to
compute f(x), it sufFices to consider D for p=p' and
k= k' (f=0) and to look for the coeKcient of —2Pk.

It is also convenient to arrange the Row of the external
4-momenta p and k so that they start from the corre-
sponding input external lines and, following two con-
tinuous and distinct" arcs, reach the output external
lines as shown in Fig. 2(a).

For brevity, we shall call the lines through which p
or k flows p or k lines, respectively, and the continuous
arcs that they form p or k paths, respectively.

In the case of planar graphs, it is most convenient
(1) to choose as independent loops the set of those loops,
each of which circumscribes a region in the plane
disjoint from the other ones (as we have done in the
example of Fig. 1), (2) to choose the p and k paths
along the "boundary" of the graph. Clearly, a planar
graph has a well defined boundary consisting of those
lines which belong to just one of the independent loops
chosen as above.

Theorem T.he coefFicient function f(x) of s in D(s, t,x)
can be written down as an algebraic sum of all possible
terms, each of which corresponds to one of the ways
(which we shall call p-to-k paths) by which, starting
from a p line, we can reach a k line by successively
entering adjacent independent loops without passing
twice through the same loop. The term associated with
a particular P-to-k path is just the product of all the
lines crossed by the path, multiplied by the C discrimi-
nant of the graph obtained by striking out the loops
entered by the p-to-k path. In case this latter graph is
not connected, its C discriminant is the product of the
C discriminants of its connected parts.

We note that this theorem gives us one way of
writing down f(x) for every choice of the /-independent
loops.

In our example of Fig. 1, choosing (5,1) as the p path
and (10) as the k path, we have the following possible
p-to-k paths:

(1,4, 10), (1,3,7, 10), (5, '1,10), and (5,3,4,10).

According to the theorem, we write down f(x) as
follows:

f(x)= xtx—4xm (xs+xs+xs+xr)+xtxsxrx10
+xsxtx10 (x1+x2+ xs+ x4) +xsxsx4x10.

Proof. D is a symmetric determinant. Therefore, being
interested only in the coefltcient of —2pk, we may
cross out the p terms in the (1+1)th row and the k
terms in the (1+1)th column and evaluate the co-
eKcient of —pk in the new determinant D'.

We notice that the general term in D' contributing
to the coeKcient of —pk can be written in the form

( ) a &1 1+ra&3&la&3&2a&4&3 ak&r la 3+1 &r Cii &) (x)) (2)

where Ct1,& (x) is the subdeterminant of D ob-
tained by striking out the ii, i2 .

, i„and (1+1)th
rows and columns.

The theorem now easily follows if we recall that

(i) a';, ,1+1 is equal to p multiplied by the algebraic
sum of those parameters of the i~th loop that belong
to the p path.

(ii) a'1+1,;. is equal to k multiplied by the algebraic
sum of those parameters of the i,th loop that belong
to the k path.

In each particular case, it is not dificult to see what
sign each p-to-k term is to be taken with.

In the case of planar graphs, we can choose the
directions of the loop integration momenta so that the
x variables in the off-diagonal elements a;; are all taken
with the minus sign. Thus, we can factor out an
additional (—1)' in (2); and therefore, for planar
graphs, all p-to-k terms in f(x) are to be taken with the
minus sign. Furthermore, the c subdeterminants are
polynomials having all terms (after possible cancel-
lations) with the positive sign because they are the
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positive number. Evidently, in the so restricted range
of integration only the t paths remain as minimal V
sets of f(x).

In the following we shall make extensive use of what
we shall call the ) transformation. By this we shall
mean a transformation of a set of integration variables
x») x2, , xg, of the form

I8I' I9 "26

i p k

F»G. 3. Illustration of the topological de6nition of a t path.

III. DERIVATION OF ASYMPTOTIC BEHAVIOR

In the previous section we have seen that f(x)=0
only if a minimal V set of f(x) vanishes. To simplify
the discussion we shall at first restrict the region of
integration of our integral, so that only t paths remain
as minimal V sets of f(x) This is accom.plished by
restricting the range of integration of a (minimal) set
g of variables such that the remaining variables do not
form any complete loops. Thus, we impose the re-
striction x;) e on all x,&gal, where e is some small

discriminants of positive definite quadratic forms. It
follows that for planar graphs all the terms in the

polynomial f(x) have a negative sign.
For the following two de6nitions will be convenient:

Dcf&,nition 1. A set of variables x~, x2, , x&r will be
called a V set of a polynomial Q(x), if for x& ——x2 ——

= x& ——0 all terms in Q(x) vanish individually.
Clearly, a set of variables associated with lines

forming a loop is a V set of f(x) or C(x): one needs only
to write D or C, respectively, by taking that loop as
one of the independent loops.

Definition Z. A minimal V set (i.e., such that none of
its proper subsets is a U set) of f(x) which is not a loop,
will be called a t path.

It is easy to see that the minimal V sets of C(x) are
the loops: by setting a set of variables not forming a
loop equal to zero we simply obtain the C discriminant
of the graph obtained by short-circuiting the corre-
sponding lines. From this remark and the theorem we
obtain the following topological characterization of a
t path: it is a continuous arc which, if shor[ circuited, -

splits the entire graph in two parts having no common line
and only one common vertex (to which the entire t path has
been reduced), the p and p' external lines being attach. d 3o

one part and the h and h' ones to the other. The situation
is iBustrated in an example in Fig. 3.

Thus, the minimal V sets of f(x) are the t paths and
the loops which do not contain any t paths. In the
following section, we shall also make use of the following
trivial property following from the linearity of f(x) in
each x variable: (A) Let x&, x2, , x~ be a minimal
V set of f(x); then f(x)=n&x&+ +n~xN where n,
does not vanish identically for x»= x2 —— ~ ——x~——0.

x, =Ax, ', J=1, 2, , h; x&'+x2'+ +x&,
' ——1

dx&dx2 dx&, —+X" 'b(x&'+x2 j .+xp' —1)
Xd~~x»'dx2' - dxk'

As we shall always be interested in the contribution of
an arbitrarily small neighborhood of the origin in the
space of the variables x», x2, ~, x&, it is easily seen
that we may take for the new variables X, x»', , xz'
the same range from 0 to 1.

The strongest asymptotic contribution comes from
an arbitrarily small neighborhood of the hypersurfaces
in x space where f(x)=0. On those hypersurfaces at
least one 3 path (disjoint from%), which we denote by
I'», vanishes.

We now apply the 'A transformation on the variables
x») x2) ' ' ') xpI of I»

X1 ~»X» ) X2 ~»X2 )
' '

) Xpy ~»Xpy

dxydx2 dx —+X)" 'b(x &'&qx &'&+ +x "'—1)
Xd) »dx»")dx2&») . dxp, ").

According to the property (A) of 3 paths mentioned
at the end of the previous section, ) 1 may be factored
out of f(x), so that f(x)=) &f~(x). Clearly, the con-
straint

b(x& "&+x2&"+ +x o& —1)

implies that at least one of the new variables, e.g. , x»"'
is kept away from zero in the region of the strongest
asymptotic contribution.

For each value of )1 the strongest asymptotic con-
tribution will come from the regions where f&(x)=0.
Again f~(x) vanishes only if at least one t path denoted
by P2 vanishes. The path P2 is disjoint from 9l and can
be taken not to contain the line associated with x».

We apply the ) transformation on the variables of I'2.

XPI+» ~2XPI+» ) Xpy+2 ~2XPI+2

(2)
xpl+P2 I 2xpl+PQ

*n+&' ' '
ei+e2 2 ( n&+& +' ' '+*ni+ua )

Xd~2dxpI+» ' ' dxpg+ p2

It is understood that if I'2 has some lines in common
with I'», their already ) 1-transformed variables are
again transformed now according to the X2 trans-
formation.

Again X2 is factored out of f&(x), i.e., f(x)=)9 2f~(x)
and, e.g. , x»+»"' is kept away from zero because of the
new delta function constraint. For Axed values of X»

and ) 2, the strongest asymptotic contribution comes
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from the region where fp(x) vanishes. Again fp(x)
vanishes only if at least one of its t paths vanishes.

Proceeding in this way we obtain a sequence Pl, P2,
Pp, ~ ~ of t paths disjoint from Q and chosen so that
in each P, there exists a certain line (whose variable
x "& is kept away from zero because of a delta function)
which is not taken up in the formation of the subsequent
t paths P,+l, P;+2,

Clearly, the sequence Pl, P2, ~ will finally stop,
when there will be no more t paths quali6ed for a new
P. We, then, have our integral in the form

Cl—lglp1 —lp p2—1. . .g perp
—id/ dg

(XgXp X fs+gi+h)'+'

tS Pj 3+l
Xg 8(g x,"'—1)8(g x,—1)dx dx&'. ~ . (3)

From the way the sequence Pl, P2, , P was chosen,
it is not dificult to verify that for suSciently small
values of the )'s:

(i) We may strike out of 5(P&&~'x„&'&—1) all x„"&'s
associated with lines occurring in P;+l, P;+2,
We shall use a prime on the summation sign to remind
this

Pj
S(P' x„~ & —1).

(ii) We may also strike out of the over-all delta
function of the Feynman integral 8(P& P't+, x—1) the
variables belonging to the P's.

(iii) f cannot vanish; namely, it has no more minimal
V sets and, therefore, no V sets at all. This we show as
follows: f is a continuous function of X~, lI, p,

so that it suKces to show' it for Xl=) 2= =A =0.
Now if the ) 's are set equal to zero, all terms associated
with p-to-h paths (see Theorem) not "crossing" the
same P more than once survive (no c subdeterminant
can vanish because of the restriction on the variables)
and only those. For the surviving terms the minimal
V sets would be the t paths allowed by the delta
functions. But such t paths do not exist, since otherwise
the sequence Pl, P2, ~ would not have ended.

Under these conditions the asymptotic form of (3)
is that of

C ' 9l" 92t'2 ' X '~ 'dl. Ch dI!I

(X)Xp X fps+gpt+hp)'+'
tS P j'

Xg 8(Q' x„"'—1)5( Q x;—1)dx dx&&'&, (4)
j=l v=1 i P

where the subscript zero means that in C, f, g and h
we have set xl ——x2—— =x =0. Clearly, C0, g0, and
h0 are equal to the corresponding functions for the
graph obtained by short-circuiting all lines belonging

to Pl, P2, , P . This latter we shall call the P-
reduced graph.

The function fp is obtained from f by:

(i) replacing the p subdeterminants (see theorem)
by those of the P-reduced graph,

(ii) omitting all terms associated with p-to-h paths
crossing the same P path more than once, and

(iii) using the appropriate superscripted variables
for the parameters of the lines of Pl, P2, , P in the
p-to-h products.

We have brought our integral to a standard form. In
the Appendix it is shown that the asymptotic behavior
of the integral in Eq. (4) is s &(ins)~ ' where

p=min(pg, pp, ,p }
and M is the number of p s equal to p. We recall that
p; is the "length, " namely the number of lines of the
t path P;. Therefore, it suffices to use only P's of length
equal to that of the shortest t paths of the graph.

Accordingly, we take as P s as many of the shortest
t paths of the graph as we can under the restrictions:

(i) No loop should be formed out of lines belonging
to Pl, P'2, ~ ~ ~, PM.

(ii) In the sequence P&, Pp, , P~, the lines of the
path P, should notbea/tincludedin(Pg+g P;+p, P~}.
The set g of restricted variables can then be appro-
priately chosen to be disjoint from Pl, P2, , PM.
Under these conditions the asymptotic behavior of
our integral is (see Appendix)

(t—t)!(t—1)!1 (!ns)
poc

t! s yS-1)!
C l—1

0

(gpt+hp)' '+'fp~-
M p

Xg 8(p x„~&'&—1)5( p x,—1)dx. dx&'& ~ ~ ~ . (5)
g=1 v=1 i P

We now assume that the limiting process s~ ~
can be interchanged with the integration over the
restricted variables Q. Accordingly, if, after relaxing
the restriction on the range of the variables of g, the
integral in Eq. (5) still exists, then (5) is the correct
asymptotic form of our Feynman integral.

Let us now examine the conditions under which the
integral in Eq. (5) exists. We know that fp(gpt+hp)
does not vanish unless one of its V sets vanishes. We
have

gpt+hp= Dp(0, t,x),

i.e. the D discriminant of the P-reduced graph. There-
fore, its minimal V sets are the loops of the P-reduced
graph.

In order to determine the nature of the singularity
associated with some V set of fpo p, we apply a X

transformation on the variables of that V set and
evaluate the order of the pole at ) =0.We now examine
various kinds of V sets of fpop.
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(1) A (connected) set of lines" containing t paths of
fs(x) and not connected to any of the P,'s. Let this V set
have L lines and t„ independent loops altogether.
Subjecting its variables to a X transformation, we have

fo= x'"+'fo' D,= &,'D, ' c,=& "c,',
and the order of the pole at X= 0 is

—(l 1)i—„+p(l„+1)+(t—p+1)/„—L+1
= —L+ (p+1+2l„).

Fxe. 6. The two possible
forms of singular configu-
rations of type 8 and
weight E attached to a t
path shown by a wavy line.

N

IN-I

2

IN-I

i«

2

Since this V set contains t paths of fs whose length
(i.e., number of lines) is at least p+1, it is straight-
forward to verify that there can be no singularity at
A, =O. The only exceptions are V sets associated with
configurations of the type shown in Fig. S. These
"singular" self-energy parts will also cause non-
integrable singularities in the next type of V sets that
we shall consider.

(2) A (connected) set of knes«4 which, through more
than one of its tines, isj oined to one of the P; s. Let this
V set have L lines and l„ independent loops. Also let
E„be the number of its lines which connect it to the
vertices of one of the P s, e.g. P . Clearly, in the
P-reduced graph this V set forms l„+E„1inde-—
pendent loops. Therefore, by a ) transformation on the
variables of V we have

Co= ~'+@~'Co'& Do= X'++2 'Do'

jN-2
,«N-$

{N-2
IN-s

",N-2 IN-2 "«N-2I„

, «

Fro. 7. The possible forms of singular configurations of type C
and weight E—2 attached to a t path shown by a wavy line. The
shown part of the t path could have an additional vertex (not
shown) which, however, is not to be connected to the configuration.

and the order of the pole at X=0 is

—(i 1)(i.+E. —1)+p(i.+E—.—1)
+ (l p+1) (i„+E—„1) L+1- —

= —L 1+2(l„+E~)—.FIG. 4. A connected V set
of fo. The lines marked by
1, 2, ~ ~, E~ belong to V
and are connected to ver-
tices of a t path. The E'
lines do not belong to V,
but are needed to restore
the )qP topology.

Let E be the number of external lines of V (con-
sidered as a separate graph) and E' the number of
additional external lines (belonging to the graph but
not to V) needed to restore the Xps topology, namely,
the requirement that three lines should concur at each
vertex (see Fig. 4). Then we have

I.=31.+2E+E'—3,

Pong

The polynomial f(x) is of (i„+E~)th degree in the
variables of the set {P,V). Since in f& only terms Therefore,
linear in {P ) are included, it follows that fs is of
(l.+E~ 1)th degree in —the variables of our V set.

FIG. 5. The form
of a singular configu-
ration of Type A in-
volving X loops {or
of "weight" E). All
such configurations
in the graph are to
be replaced by a suc-
cession of E—1 lines
as shown.

N-l

N-2

N-l
i«

N-2

2

'4 Some of these lines may belong to the set P&, P2, ~ ~ P~.

Configuration A:
(Fig. 5)

Configuration 8:
(Fig. 6)

Configuration C:
(Fig. 7)

/, =E'=0; these are the self-energy
parts already mentioned in connec-
tion with the previous kind of V sets.
t.=o, Z'= S.

E'= 0

and the order of the pole at X=0 becomes

t„E'+2 2(E —E~—). — —
Since E&~E„, the nonintegrable cases have E=E„

and are classified as follows:
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X;+

»N-P

~N-I N I

~u-s M-2

FIG. 8. In this type A configuration, the
parameters of its lines are marked as used
in the text.

X
I

Proceeding along the same lines, it is straightforward
to show that no other kind of V set of foDO can produce
a pole at A. =0.

In order to prevent the nonintegrable singularities
caused by the singular configurations A, B, and C, we
must remove them before taking the limit s ~ ~.

CorigguralionA. We mak. e a ) transformation of the
3S—1 variables of its lines as they are labeled in Fig. 8.

ZV)=
o (x,y, s)dx dy ds

~ (q2)
—N+1

t e (x,y, s)V'+4(x, y,s)3" '

Xi+I) Xi+2) ' ' ') Xi+N) $1) P2) ' ') PN-1) ~1) ~2) ' ') ~N.

The VariableS X1, X2, Xi 1, X;+~, X, belOng tO

some E path. The function j(x) takes the form

f(x) = li (2 ixi+A gx2+ +A,x,+)x,+i'A;~i+
+~xi+N +i+N+xi+N+i+i+x+i+ ' '+xp+ p) ~ f

Accordingly,

C'—'dx;+1 dr~

(fs+gf+h) '+'

C" ') ~ 'd) b (Q—x'+—Qy'+ps' 1)dx,+i'—
(f's+ g't+ h') '+'

The function f' has a new t path consisting of the
p —X+1 variables xi, x2, , x;, ), x;+~+i, . , x, .
Because of the factor X~—' in the numerator the "effec-
tive" length of this i path is (p—iV+1)+ (Ã—2)-p —1.

This means that the behavior of our integral is
radically different, since the correct exponent of s is
—p+1 instead of —p. In fact, if we calculate the
singular part as a self-energy graph we find

because the shortest 3 paths of q are of length S. If
we are not interested in the correct coefficient function
of the asymptotic form of (1), we may replace the
configuration A wherever it appears in the graph by
S—1 consecutive lines, as shown in Fig. 5. This re-
placement may change the length of the shortest t paths
of the graph. It also takes care of the type of singular
configuration noted above in connection with V sets
not connected to any P paths.

Configurations 8 and C. If we make a X-transfor-
mation on the variables of a configuration of one of
these types, we obtain, via P, an additional 3 path of
length p. The so introduced delta function keeps one
of the new variables away from zero, which corresponds
to removing one of the lines of the configuration. This
still leaves as singular configurations parts of the
original one, which are to be treated in the same way.
It is straightforward to verify that, in order to remove
completely the singularity caused by a configuration
of type B or C having E independent loops, we have
to introduce S or E—2 additional t paths of length p,
respectively.

Accordingly, the effect of the presence of the singular
configurations B or C attached to some of the shortest
t paths is to increase the exponent of Ins by E or E—2
units, respectively, E being the number of (inde-
pendent) loops of the configuration.

Clearly, the ),-integrability for all V sets of foDO is
a necessary condition for the existence of the integral
in Eq. (5). That it is also sufhcient follows from the
possibility of a repeated application of the A.-transfor-
mation on the variables of foDO. The accumulation of
delta function constraints will finally prevent all V sets
of the denominator in Eq. (5) from vanishing.

Thus, our investigation of the asymptotic behavior
of the Feynman integral (1) is completed. The resulting
rule for reading off this behavior from the topology of
the graph will be stated in the following section.

IV. RESULTS AND DISCUSSION

It is perhaps convenient at this point to provide the
reader with all the definitions needed for the formulation
of the rule.

A t path is a set of lines forming a continuous arc,
such that

(a) If we short-circuit all these lines, the entire graph
is split into two parts having no common line and only
one common vertex (to which these lines have been
reduced). The p and p' external lines of the graph are
attached to one of the two parts and the k and k' ones
to the other (Fig. 3).

(b) None of its subsets has property (a).

A t path is a 3 path of minimum length (i.e. number of
lines).

A singular congguraA ou of type A'is a self-energy part
of the specific form shown in Fig. 5. Before the appli-
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cation of the rule, we must first replace the given graph
G by the graph G' obtained by replacing every existing
configuration of type A by a succession of E="1 lines,
X being the number of independent loops in that
particular configuration. This replacement is also
indicated in Fig. 5; it obviously may shorten some
t paths by one or more units and consequently the
t paths of G' may be different from those of G.

A singular conftguration of type B is a (connected)
set V of lines with the following properties:

(a) They do not form any loops.

(b) If we consider U as a graph, its external lines are
all bgt oee connected to vertices of a simgLe t path. If
that t path together with V form 37 independent loops
altogether we shall say that the weight of the con-
figuration is E.
The possible forms of type 8 configurations of weight
E are given in Fig. 6.

A singular configuration of type C is a (connected)
set V of lines with the following properties:

(a) They form exactly one loop;
(b) If we consider U as a graph, its external lines are

aLL connected to vertices of a single t path. If that t path
together with V forms E independent loops, we shall
say that the weight of the configuration is E—2.

The possible forms of type C configurations of weight
E—2 are given in Fig. 7.

We can now state the following rule:

RULE. The Feynman integral (1) behIJees like s P(lns)~
where p is the (common) length of the t paths of G'.

To ftnd a, we consider a sequence r: P„P„,Psr
of t paths of G' such that

(i) no loop is formed out of lines belonging to P~,
Pg, , I'~, and

(ii) the lines of P; are not all included in P;~t, P,+s,
~ ~ o P~

Let a. be the sttm of the weights of all distinct singular

configurations of type B and C attached to t paths belonging
to I'. Thee

u= max{M+a —1),r

namely, the maximum of M+o —1 under al/ possible
choices of I'.
Protlision In case th.e set I', which maximizes M+o —1,
together with the attached singular configurations
make up the entire graph G', we lower the exponent of
lns by one unit.

This last provision is an obvious consequence of the
over-all delta function in Eq. (1) which keeps one of the
x variables away from zero.

It is evident that the t-dependent coefFicient of
s p(lns)" is the sum of the contributions of all distinct
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I" sequences which maximize M+o —1.These contribu-
tions are of the form of Eq. (5) where the changes ap-
propriate to singular configurations are to be made.

The application of this rule is illustrated by a number
of examples in Figs. 9, 10, and 11.

We discuss now the strongly connected' convergent
graphs with two or three external lines. If we choose
the p and k paths as shown in Fig. 12, we can easily
see that the theorem of Sec. II is still valid and gives
us the coeflicient function f(x).The argument presented
for the graphs with four external lines is unchanged
apart from certain minor points, which we note below.

(1) Graphs with three external lines All t paths.
necessarily start out at the input point of the external
line carrying the "large" 4-momentum. The integrand
in Eq. (1) is replaced by C' 'D '. As a consequence,
whenever L=p=length of shortest t paths, we must
raise the exponent of lns by one unit. From the dis-
cussion given in the Appendix, it is evident that this

s (logs)
(e)

FIG. 9. Examples of the determination of the asymptotic
behavior of graphs having no singular con6gurations. In each
case the t paths of a sequence PI, P2, P~ of maximum M are
shown by wavy lines. In examples (a), (b), (c), and (d) simply alt
t paths belong to the sequence. Thus, we have (a) p = 1, max M =2;
(b) p = 1, max M =%+1 (c) p = 1, max M = 1; (d) p =2, max
M=2E+2. In example (e) not all t paths can belong to the
sequence. Taking both (10, 11, 12, 13, 14) and (10, 15, 16, 17, 14)
would violate requirement (i) of the rule for the sequence P1,
Pg, ~ ~ ~ because of the loop 11, 12, 13, 17, 16, 15. Also taking all
four of (1, 2, 3, 4, 5), (6, 7, 3, 8, 9), (1, 2, 3, 8, 9) and (6, 7, 3, 4, 5)
would violate requirement (ii). Thus, for this graph p=5, max
3f=6.
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p' 2

P
r

s (logs)
3N-I

(o)

k

external lines with l= p are just singular configurations
of type B and C occurring in four external line graphs.

(2) Graphs with two extermal limes. All t paths start
at one of the two vertices where the external lines are
attached and end at the other. The integrand in Kq.
(1) is replaced by C' 'D—'+'. T-he graph /=1 is the
divergent 2nd order self-energy graph. The case l= p
is again exceptional, because the denominator of our
integral is then

Ef(x)s+h(x)]& ',

s (logs )

(b)

Fro. 10. Simple graphs containing singular con6gurations
There are no type A con6gurations so that G=G' in every case
The t paths of the maximizing sequence P1, P2, ~ ~ - mentioned in
the rule are shown by wavy lines. (a) Each of the E basic "cells"
contributes two t paths and one type 8 singular configuration of
weight one. Thus, we have p =2, max M+0 —1 =31' 1. (b) The—re
are two t paths of length 3 in F and also two singular configu-
rations of type 8 of weight one, so that p=3 and max(&+0 —1)=3.
Erratum. The asymptotic behavior in Fig. (a) is s~(lns)'~ '.

is due to the behavior of the integraIs of the form

and the shortest 5 paths are of length p. Thus, the
integral behaves simply like s (t' ". Again we note
that the self-energy graphs with t= p are just singular
configurations of type A which we discussed as parts of
graphs with four external lines.

Also the case t=p+1 is exceptional for graphs with
two external lines for the same reason as the case l= p
for graphs with three external lines. Again we find that
the exponent of lns, as given by the rule, is to be raised
by one unit for such graphs. We note that these graphs
are just the singular configurations of type C which
were discussed as parts of graphs with four external
lines.

dA. ~d) 2 dA.~
p (Xihs Xsrs+A)~

which is s '(lns) ~ ' for P) 1, but s '(lns)~ for P= 1.
It is interesting to note that the graphs with three

~i/
)|p~k

p+k

FIG. 12. The p path and
the k path for graphs with
three or four external lines.

Graph Q

FPP~ FE/ii (s)

FrG. 11.An example of the determination of the asymptotic
behavior of a graph containing singular con6gurations of type A,
3, and C. From the given graph 0 we obtain the graph 6' by
replacing the type A configuration by two consecutive lines. In
0 the sequence P1, P&, ~ ~ ~ consists of four t paths shown by
wavy lines (3E=4). Attached to the t paths are: one type C
configuration of weight one and two type 3 configurations of
weight 2 each. Thus, p =5, max 3f+o —1=8. The asymptotic be-
havior for the given graph G is accordingly s '(lns). '

For clarity we remark that the above-mentioned
increase of the exponent of logs for graphs with three
external lines and 1=p, and graphs with two external
lines and t= p+1, is counterbalanced by the decrease
which is to be made because the provision of the rule
applies for such graphs. On the other hand, when these
types of graphs are incorporated as singular configu-

.rations of a larger graph, neither of the above two
changes of the logarithmic power is necessary and thus
there is no inconsistency.

So far, we have been dealing with strongly connected'
graphs. The asymptotic behavior of a weakly connected
graph can readily be deduced from that of its strongly
connected components. An example is given in Fig. 13.

Also our rule is applicable to graphs obtained from
planar ones by crossing the p and p' lines (s~N),
since they have the same coefficient f(x) of s apart from
an over-all change of sign. We shall refer to those as
"crossed" planar ones.

We now make a brief remark about the divergent
graphs. In the X@' theory all graphs become convergent
if one replaces the 2nd order self-energy parts by their
renormalized finite parts. These latter may be brought
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to the form
o (s)ds

p sp'+4''

where o (0)=flnitegO. Thus, it is possible to incorporate
Zr(p')(p'+m') ' in this form in the Feynman integral
as if dealing with ordinary propagators associated with
two consecutive lines. The 2' integration introduces
additional U sets. As this possibility is a special feature
of the XqP theory, we will not follow this point any
further.

Before discussing the implications of our rule con-
cerning the Regge behavior of amplitudes in
theory, it is interesting to note a connection between
the planarity of a graph and the analytic properties of
the associated Feynman integral. Ke have seen in
Sec. II that, for real and positive values of the Feynman
parameters, we have, for planar graphs, f(x)(0 and

g(x) &0. It is also known" that h(x))0. Accordingly,
if we keep the contours real, we can continue F(s,t)
from the Euclidean region to the region Res&0, Ret &0.

FIG. 13. Example
of the determination
of the asymptotic
behavior of a weakly
connected graph.

p
I

Ml.4 S-2
( f~s)5

~ 2

-t
S

p s $

M2=2 s (~ogs)
2

o2&l

s tlogs)

"R, Oehme, Phys. Rev. 130, 424 (1963).

Thus, F(s,t) is regular for Reu)4m'. If it satisfies the
double-dispersion relation, we must have p&„=p, „=0.
Similarly, for "crossed" planar graphs, p&,

——p„,=0.
Thus, it appears that the planar and "crossed" planar
graphs correspond to the direct and exchange terms in
potential scattering where p, „=0 always.

We now list certain immediate consequences of our
rule for planar and crossed planar graphs.

(1) There are no graphs behaving like s'(lns) ~, 1V &~1.
Thus the pole term g'(t —m') ' appears to be an
elementary pole occurring in the physical partial wave
amplitude Fp(t) and not in the analytic interpolating
function" F+ (t,X) for X=O.

(2) With the exception of the s-independent graphs,
in every order the graph with the strongest (s '(lns)')
asymptotic behavior is the ladder graph t Fig. 9(b)j.
The sum of the asymptotic forms of the series of ladder
graphs has been obtained by Polkinghorne' and shown

to be of the form s '+g'~'" strongly suggesting the
existence of a Regge trajectory

Fxo. 14. A type of
graphs associated
with the iteration of
a Regge pole.

2

I 2 3

where q is the c.m. momentum of one of the particles
in the t channel: t=4q'+4m',

P4 is the Feynman integral for the 4th-order graph,
s' (s") is the cosine of the scattering angle between

the intermediate and the initial (final) state, and
dQ refers to the integration over all angles of the

intermediate state.

FIG. 15. A nonplanar
graph.

"This result has also been obtained by S. Mandelstam (private
communication). However, we do not know the details of his
proof.

'7 I am indebted to Professor R. Oehme for this treatment. A
similar argument for the same graph, based on the existence of a
pole at X= —1, has been given by Professor S. Mandelstam
(private communication).

(3) Let us consider the graphs of the type shown in

Fig. 14. They can be regarded as representing the
iteration of a ladder in the s channel. Amati et a/. ' have
used the elastic unitarity condition in the s channel to
iterate an amplitude dominated, at large values of s,
by a Regge trajectory a(t). The result is a superposition
of powers of s up to i (t), where

i (t) )rr (t)+a(0)—1,

suggesting a moving branch point in the angular mo-
mentum plane.

However, according to our rule all these graphs
behave like s ' lns iedependemt of 1V and M and, there-
fore, cannot sum up to produce such a moving branch
point. Thus, the argument of reference 8 is not appli-
cable here because of the incompleteness of the iteration
based on elastic unitarity alone. '

Concluding, we briefly discuss the case of Nortp/azar

graphs. For such graphs the polynomial f(x) contains
terms of both signs and therefore it can vanish without
any of its V sets vanishing. The following example
shows that in such cases our rule may not apply without
some modification.

We consider the nonplanar graph'~ of Fig. 15. For
4m'&/&9m' we can employ the unitarity condition
for the discontinuity across the two-particle branch
cut in the t plane:

F (s,t+s0) —F(s, t—s0) =——F4*(s",t)F4(s', t)dQ,
2m t'"
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