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The "geometrodynamical" description of particles by means of topological features of empty space-time
is applied here to the case of N charged masses which are momentarily at rest. These particles are repre-
sented by Einstein-Rosen bridges in a mainfold which satisfies the time-symmetric initial value equations of
gravitation and electromagnetism. Invariant definitions are given for the total mass energy of the system,
and for the "bare mass" of each Einstein-Rosen bridge. These masses characterize various asymptotically
Schwarzschildian regions of the manifold and are, therefore, conserved in time. The total mass of the system
divers from the sum of the bare masses by contributions from the gravitational and electrostatic interaction
energies. It is shown that the interaction energy is always negative, and that it reduces to the classical

expression in the limit of large separation between the masses. The shape of the minimal surface associated
with each Einstein-Rosen bridge, another invariant feature of the "particle, " is discussed. The minimal sur-

faces are also used to characterize manifolds which can be interpreted as a closed universe containing N+1
"particles. "

model for mass and charge in the realm of source-free
gravitation and electromagnetism.

In order to generalize this type of solution to a
geometry containing several bridges (a model of several
masses), one may follow a stepwise procedure: (a) On
some space-like surface Z solve those equations in (I)
which have v=0. These involve only the "initial data":
the electromagnetic field tensor on Z, the induced metric
on Z, and its first normal derivative. (b) Then use the
remaining equations to find the time development —the
initial value equations will automatically be satisfied
for all later times. For the purpose of our computation
it is sufhcient to carry out step (a), which is simpler
than solving the full set of equations.

No nontrivial genuinely static solutions of Einstein's
equations exist; the next simplest are the "time-sym-
metric, "or "momentarily static" solutions. We confine
attention to this case.' In step (a) only two equations

I. INTRODUCTION

'HE Einstein-Maxwell equations of gravitation and
electromagnetism in source-free space

R "——'8 "R=Ii Ii "——8 "F~pF ~,

admit many nontrivial solutions of physical interest if
the underlying manifold is permitted to have a sufIi-

ciently general topology. In particular, these equations
have been discussed in multiply connected manifolds,
and it has been shown that certain solutions imitate the
behavior of real masses and charges. ' In the following

we discuss further properties of such solutions which

can be interpreted in terms of particles and their
interactions. (The term "particle" is used throughout
this paper as a synonym for "geometrodynamical
entity. " It should be understood that these constructs
of classi eel geometrodynamics have no direct connection
whatever with the particles of the real physical world. )

The well-known solutions of Schwarzs child and
Reissner-Nordstrom for a spherically symmetric ge-
ometry endowed with mass and charge provide examples
of nontrivial solutions on multiply connected manifolds.

The maximum analytic continuation of these solutions, '
viewed at a particular instant of time, has a topology
and curvature as indicated in Fig. 1. The tube connect-

ing the two asymptotically Oat sheets will be called an
Einstein-Rosen bridge'; it is a particular example of a

r=0

Fia. 1. A two-dimensional analog of the Schwarzschild-Kruskal
manifold is shown isometrically imbedded in Rat three-space. The
figure shows the curvature and topology of the metric

ds'= (1+m/2r) 4 (dr'+r'ds').
The sheets at the top and bottom of the funnel continue to infinity
and represent the asymptotically Qat regions of the manifold
(r &0, r-+~). —

*The work of this author was supported in part by the National
Aeronautics and Space Administration.

' C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525
(1957). This and other important papers are collected in J. A.
Wheeler, Geometrodyartmt'cs (Academic Press Inc. , New York,
1962).' M. D. Kruskal, Phys. Rev. 119, 1743 {1960) J. C. Graves an
D. R. Brill, ibid. 120, 1507 (1960).' A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

4 We further assume that only the electric field components f;0
d of the Maxwell tensor are nonzero, and set f;O=E;. For a discus-

sion of the time-symmetric initial value problem, see D. R. Brill,
Am. Phys. (N. Y.) 7, 466 (1959);H. Araki, end 7, 456 (1959). .
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remain to be solveds:
R= 2E;E'

E'.,i=0.
The coordinates used to describe our manifold are

chosen in analogy to the isotropic coordinates of the
$chwarzschild and Reissner-Nordstrom solution: The
single coordinate "patch" covering the entire manifold
consists of Euclidean space with as many points re-
moved as there are Einstein-Rosen bridges. The criteria
which must be checked for an acceptable solution
are (a) regularity and (b) completeness in the re-

maining manifold. By way of illustration, consider

again the case of the Schwarzschild solution. Here the
coordinate "patch" is Euclidean space with the origin
r=0 removed. The coeKcients of the isotropic metric
on Z are finite in this coordinate patch, and a study of
the solution in the neighborhood of r=0 reveals the
geometry of Fig. 1, which is indeed complete. '

II. INITIAL GEOMETRY AND FIELD FOR
N CHARGED BRIDGES

0, » ~»;; (jets)

(for a particular value of i) H. ere»;; denotes the
Euclidean distance on Z between the ith and jth deleted
point. In this limit the line element takes the form

ds' —+ [(n P,'/» )(1+A»g/n;)'(I+By;/P;)s
+o(» )j[d» +»,'dQ'j, (8)

where we have set

and

A;=1+ P—
j Qi ~ij

dQ' =de'+

sin'ldll'.

Completeness

Since our solution is asymptotically Rat at ri~ ~,
the only regions to be investigated for completeness are
the neighborhoods of a deleted point. We, therefore,
discuss the metric in the limit,

» =n,p;/»;ds'= (XP) 'ds»',

e consider here only a metric and electric field of Introduce a new coordinate

the simple form

with dsp' the metric field for Rat space on Z, and

(3b)

Then the line element takes the form, in the limit
r,' —+ ~,

x=1+2 n*/»', 4=1+2 P'/»*, (6)

(This form of the metric and electric field is a natural
generalization of the Reissner-Nordstrom solution for a
si»sgle charged Einstein-Rosen bridge. ) The time-sym-

metric initial values equations (2) then take on the

simple form

By=0, 5/=0,

Q being the fiat-space Laplacian operator. These equa-

tions must be supplemented by appropriate boundary
conditions. Ke use here the conditions of regularity and

asymptotic fatness:

(i) x)0, lt )0 everywhere on Z,

(ii) x & —r1 as»~ ~.
Let ri be the Euclidean distance in Z from a field point
to the ith deleted point; then the general solution of

(4) and (5) is given by

ds ~ [(1 +A; p; /») (s1+g n./». )s+O(1/», ~s)]

X (&»,"+»s"dQs) (11)

This expression shows that in this limit the space is
also asymptotically Bat. It is, therefore, complete.
Thus, our metric [(3a) and (6)j describes a space with
IV+ 1 asymptotically flat regions, a generalization of the
Reissner-Nordstrom solution, for which xV=1 (Fig. 1).
A two-dimensional analog of the case %=2, with three
asymptotically Bat sheets, is shown in Fig. 2. Note that
the two lower sheets are separate, and it is not possible
to pass from one to the other except by way of the
upper sheet. (Similar solutions in which the lower sheets
can be identified to form a single sheet have been given
by Misner' for the uncharged, and by Lindquist for
the charged case.)

r «l
Sl S~ '.~ .

where n,)0, P, &0 for all i in accord with condition (i).
The same condition excludes higher multipole terms

in (6).

5A. Lichnerowicz, Theories relatinistes de la graeitatiorl et de
l'elcctromagnetisme (Masson et Cie, Paris, 1955); Y. Foures-
Bruhat, J. Rat. Mech. Anal. 5, 951 (1956). See also reference 1.

s See, for example, C. W. Misner, Ann. Phys. (N. Y.) (to be
published).

FIG. 2. A two-dimensional analog of the hypersurface of time
symmetry of a manifold containing two "throats" is shown iso-
metrically imbedded in Qat three-space. The Ggure illustrates the
curvature and topology for a system of two "particles" of equal
mass m, and separation large compared to m, described by the
metric

ds'= (I+ra/2rg+ra/2rs)4dsss.

R. W. Lindciuist, J. Math. Phys. (to be published).
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III. PARTICLE INTERPRETATION

Bare Mass and Total Mass

Equation (11)shows that the (X+1)-sheeted solution
asymptotically takes on a Schwarzschildian form on each
sheet; therefore, a unique mass energy is associated with
each asymptotic region, and can be computed by simple
comparison with the terms in 1/r of the Schwarzschild
solution:
ds's, i,~«», i,;id ~t 1+m/r+O(1/r'))'(dr'+r'dD'). (12)

Thus, the mass as measured in the ith sheet is given by

;=&~.+&. ;=;+e,+Z(O. ,+e, ;)/;; (13)

Due to conservation of flux, the charge on the (%+1)st
sheet is, of course, simply the sum of the individual
charges q;.

By comparing (13) and (16), and recalling that n; and
P; are positive, one readily sees that the magnitude of
qi can never exceed m;. This restriction on the charge-to-
mass ratio in general relatively —already present in the
Reissner-Nordstrom solution —is a quite general con-
sequence of the assumption of regularity, and is in-
sensitive to the particular model used to represent the
particles.

The constants of integration n; and P; are determined
by the physical quantities m; and q, via Eqs. (13) and
(16). We give the inverse formulas to order 1/r;;:

Also, the mass on the (X+1)st ("upper") sheet, r; —+ ~
(alii) is found directly from Eq. (6):

~'=k(m' —q')L1 —
2 Z(m+q)/r'~ j,

(17)

m~+i= E (~'+P') (14)
P; =-,'(m;+q;) [1——,

' P (m;—q;)/r;;j.i'
Although no particular sheet of our solution is geo-

metrically preferred, the (unprimed) coordinates we are
using are appropriate for an observer located on the
(X+1)st sheet (corresponding results will hold for an
observer on any of the other sheets). Such an observer
would consider the system as composed of E "particles"
which together produce a total mass energy M=mN+l.
The well-defined mass mi associated with each particle
then corresponds to the "bare mass" of the particle.

Charge

In addition to the mass, a measure of the Qux of the
electric field is also uniquely defined on each of the %+1
sheets. In accordance with the spirit of geometro-
dynamics, we associate a charge qi with each Einstein-
Rosen bridge, defined such that the Qux on the ith
sheet is given by 4xg;. We evaluate the Qux through a
large sphere, r ~ , or equivalently, ri —+ 0:

q, = (1/4m) E,~'dS.

Here E; is given by (3b); I' is the unit outward normal
to the sphere r =constant and, hence, points inward in
the r coordinates:

ri"= —1/x4,
e'=n+=0

while dS=(yf)'rmsin8d8dq is the element of area
the sphere. Therefore,

Interaction Energy

If there were no interaction between the particles,
the total mass would equal the sum of the bare masses.
However, one sees from (13) and (14) that

N

M=+ m;—P P(a;P;+n, p;)/r;,

The difference between M and Pm; is to be attributed,
as in other 6eld theories, to the energy of the electro-
static and gravitational interaction between the N
masses. Equation (18) shows that the interaction mass
energy

m;„,=M—p m;= —p p(~,p;+n;p, )/r, , (19)

is always negative, corresponding to attractive forces
between the masses. This is reasonable, since for a non-
singular solution the "charge" associated with each
"particle" cannot exceed its mass, as shown above.

Consider now the limit when the masses are far apart,
so that Eq. (17) applies. The expression (1.9) for the
interaction energy then takes the approximate form

(2O)

This is precisely the expression for the energy of inter-
action according to Newtonian gravitation and Qat-
space Maxwell theory, as one would expect in this limit.

q;= —(1/4m) ($8X/Br XBQ/Br) r'dQ—
=A P Bn-
=P, n;+P(P,n, P—,n,)/r, , — (16)

IV MINIMAL SURFACES

In the previous sections we have singled out one
sheet of the initial hypersurface to represent the "rest
of the universe. " Since the metric is everywhere con-
formally Qat, and asymptotically Qat on each sheet, we
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r =-0 i= 0

s,

FIG. 3. The manifold illustrated here is of the same type as
that of Fig. 2, but the separation is comparable to the masses:
n, =P;=r»(s= 1, 2). The metric can be written in the form

ds = (I+2a/)r —a(+2n/[r+a)) (dr +r dQ )
Here the particles are so dose together that a third minimal sur-
face, S3 appears in addition to the two surfaces S1 and S2 already
present in Fig. 2. The three sheets are, in fact, completely equiva-
lent, for the inversion maps r+a~(2n/~r&a))'(r&a) are isom-
etrics. Viewed from the top sheet the manifold represents a
composite particle; viewed from a symmetrical position in the
center of the figure it represents three "particles" symmetrically
placed in a closed universe.

internal structure, immersed in an asymptotically Rat
space (Fig. 3). An alternative interpretation arises if
one treats the sheets symmetrically and focuses atten-
tion on the region of concentration of curvature. This
region has the topology of a 3-sphere with 1V+1
Einstein-Rosen bridges attached. It can be viewed,
therefore, as a model of a "closed universe" containing
1V+1 particles. '

Approximate Shape of Minimal Surfaces
To illustrate these features we examine the shape of

the minimal surfacesin the two limiting cases of very
small and very large ratio of mass-to-separation distance.
Let (r,8, p) be a set of spherical coordinates based at the
point r;.=0, and let the equation for the minimal surfaces
5; associated with the ith particle be expressed as

could equally well have chosen any other, say, the ith,
for this purpose. This would also provide a metric and
electric field of the form of Eq. (3), and all the preceding
formulas would apply to this new interpretation. How-
ever, the total mass (now defined as the mass associated
with the ith sheet) and interaction energies would have
different numerical values. Note that this total mass
satis6es the polygon inequality

Yet in some cases the geometry itself singles out one
sheet above all others. For example, the three sheets
of Fig. 2 are joined together along two surfaces S&, S2 of
minimal area. Each minimal surface can be deformed
continuously into a sphere lying in the asymptotic
region of one of the lover sheets. There exists no such
deformation of either minimal surface into an asymp-
totic sphere in the upper sheet. Similarly, the (1V+I)-
sheeted manifold admits at least N-independent minimal
surfaces, each of which can by a continuous deformation
be associated with one of these sheets. ' If there are
precisely N minimal surfaces, it is natural to interpret
the corresponding N sheets as "particles, " and the re-
maining (1V+1)st sheet as the "arena" in which these
particles move about. This happens whenever the N
particles are well separated (m; and m, «r;,).

When the "particles" are very close together it is
found that another minimal surface appears. This addi-
tional surface is associated with the remaining (1V+1)st
sheet, and, thus, leads to an interpretation of the mani-
fold Z as a model of a single composite particle with an

8 The set of all 2-surfaces in Z can be divided into homology
classes, and each class (not 0) contains at least one minimal
surface. This surface will not necessarily be connected, but we can
find at least N connected minimal surfaces which belong to dis-
tinct, linearly independent homology classes, since the second
homology group of Z has dimension N. Furthermore, each such
minimal surface will be homologous to a sphere lying in the asymp-
totic region on one of the N+1 sheets.

&* 050

FIG. 4. Results of a numerical determination of the minimal
surfaces for two equal uncharged Einstein-Rosen bridges are
shown for several different values of the ratio (mass/separation).
This ratio is measured by the parameter n=n&/res(=ns/rqr
=p, /r»=P2/r», since rn~=ms and g&

——
q& ——0). The radius r(B) of

the minimal surface was expanded in a truncated series of Legendre
polynomials:

L

r(8) = Z ccf'i(cosa),
l=0

and the coefficients cg chosen to minimize the integral (24). The
figure illustrates the shape of a cross section of each minimal sur-
face as seen in the Qat imbedding space. As o. increases, the surface
enclosing each particle becomes more and more highly distorted
while the outer surface approaches the sphere r =2r». Conversely,
as n decreases the inner surfaces approach spheres of radii nr»/
(1+n), while the outer surface begins to pinch oG; for a&0.32 no
minimal surface enclosing both particles was found.

R. W. Lindquist and J. A. Wheeler, Rev. Mod. Phys. 29, 432
(&vs7).
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FIG. 5. Graphs of the coeScients c~ in the series expansion
L

r(e) = Z crP/(cope)
0

for the minimal surfaces of two equal uncharged Einstein-Rosen bridges (cf., Fig. 4g. In (a) the radius vector is drawn from the
right-hand particle Pi.e., r (//) =rsvp, while in (b) it is drawn from the midpoint between them.

The initial value metric (3a) induces on S; a two-
dimensional submetric

dos —[f(y(g +) g y)$2[(ys+ (Qy/gg)2)dg2

+(r' sin'g+(Br/Bq)')dy'j (22)

When the particles are well separated the minimal
surface can be approximated by a sphere:

r(g, y) =rp,

with
f=x0. (23)

The condition that S; be a minimal surface can be [ f' Eq' ( )j' T Eq' ( 4) ™Pt
formulated by the variational principle

(25)

(26)

(sg) 1/sdgd ~

(gr) 2-1/s
2 r2

kggi

2- S/2

r' sin'g+ dgdp, (24)
Bp

and„consequently,

r p
—=n;P,/(A;8;). (2&)

rs'= n;tI, = —,'(y/s;s —q;s). (28)

In the limit r,, —& ~ this reduces to the familiar expres-
sion for the "Schwarzschild radius" (expressed in iso-
tropic coordinates):

with r(g, &) allowed to vary freely, subject only to the On the other hand, when the particles are very close
condition that it describe a closed differentiable 2-sur- together one again 6nds a minimal surface of approxi-
face enclosing the given particle. mately spherical shape, this time enclosing all of them.
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Assuming that rp))r & (for all s and j), one sets

f=LI+(2 ~~)/r3LI+(2 &'/r) 3,

and obtains from (26)

Hence, this additional minimal surface exists
nearly spherical) whenever the inequalities

slightly along the lines joining them. ' This type of
distortion is just what one might expect by analogy with
Newtonian tidal forces; indeed, the magnitude of the
distortion is inversely proportional to the cube of the
separation distance r@ in the Newtonian limit, and

(3p) increases as the ratio of mass to separation distance is
increased. Thus, the deviation of each minimal surface

(and is from spherical symmetry provides another way to
estimate the interaction between the X particles.

m~+t))r;;, miv+t))
~
giv~t j, (3I) ACKNOWLEDGMENTS

are satisfied. The remaining E sheets also have their
associated minimal surfaces; however, these are highly
distorted, so that one must resort to numerical solution
of the variational principle (24) to locate them. Figures
4 and 5 display the results of such a numerical investiga-
tion for the special case X=2 and mi=m2, g1=q2=0.

It can be shown that the minimal surfaces are elongated

We are grateful to Professor J. A. Wheeler and
Professor C. K. Misner for many interesting discussions.
One of us (DRB) wishes to thank Professor F. Rohrlich
and Professor M. Dresden of the State University of
Iowa for their kind hospitality while part of this work
was in progress.

"J.A. Wheeler, Rev. Mod. Phys. 33, 63 (1961).
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Solutions of the Density Matrix-Pairing Tensor Equations of
Suyerconductivity Theory*
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(Received 25 February 1963)

An algorithm is provided for writing down explicitly all solutions of the density matrix-pairing tensor
equations which arise in the generalized Bogoliubov-Valatin transformation approach to superconductivity
theory. Certain simpler special cases are then examined. Finally reasons are given indicating that our
solutions should provide a practical computational tool in many-body theory.

r. INTRODUCTION

QENERAI IZED Hartree-Fock method has been
proposed by Bogoliubov' and Valatin' for investi-

gating the quantum-mechanical problem posed by cer-
tain Hamiltonians of the form

1a= dxdx'lI*(x)e(xx')P(x')+- Zgdg'Zx, a~,
2

The letter x denotes the space and spin coordinates of
a single particle, while f is the usual field operator
which may be written

(2)

*This work was supported by the U. S. Atomic Energy
Commission.

)Address from September: Solid State Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee.

'N.
¹ Bogoliubov, Dokl. Akad. Nauk. S.S.S.R. 119, 244

(1958};N. N. Bogoliubov and V. G. Soloviev, ibid. 124, 1011
(1959) Ltranslation: Soviet Phys. —Dokl. 3, 292 (1958); 4, 143
(1959)g.N. N. Bogoliubov, Usp. Fiz. Nauk. 67, 549 (1959) /trans-
lation: Soviet Phys. —Usp. 2, 236 (1959}j.

s J. G. Valatin, Phys. Rev. 122, 1012 (1961}.

where P is a column vector of orthonormal single-
particle wave functions and a is a column vector of the
corresponding destruction operators. We use the nota-
tion that P denotes the transpose of $.

In the approach of Bogoliubov one speci6es a set $
and introduces a new set of creation and destruction
operators through the transformation

&= Uot+ Vort, (3)

a%'= 0, (5)

and calculate the corresponding energy. The latter

where U and V denote matrices operating on column
vectors of destruction and creation operators as indi-
cated. The requirements that the u's and the 0.'s both
satisfy the usual fermion anticommutation rules lead to
certain conditions on U and V which may be written
simply in the present notation as

U'U*r+VV*~=I, UVr+VUr= p.

The procedure is then to de6ne a trial variational wave
function %(U,V) through


