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By introducing an N8 scattering resonance, the V'8, N88 sector of the Lee model provides a calculable
model for reaction processes leading to a three-particle final state where two overlapping resonances can
occur. The V8 scattering and reaction cross sections calculated are found to be free of any bump in the energy
range corresponding to overlap of the two anal N8 resonances. The V8 scattering amplitude is analytically
continued to higher Riemann sheets, and the singularity analogous to that conjectured by Peierls to be
the cause of higher resonances in the pion-nucleon system has been shown to lie on a Riemann sheet far
from the physical domain. These results cast considerable doubt on the validity of this proposed mechanism
for the production of higher resonances.

1. INTRODUCTION
'

N the study of the reactions of the strongly interact-
s - ing particles, we And that most of the cross sections
are dominated by bumps in definite angular momentum
and parity states. This dominance of the cross sections
by isolated resonances is in itself a considerable simplifi-
cation of the most general situation, as it allows us to
describe the situations by a finite number of parameters.
The number of parameters can be further reduced if
some of these resonances conspire to produce some of
the others. This hope has motivated several authors' '
to propose models for the second pion-nucleon res-
onance. One of these, due to Peierls, ' is the subject
matter of this communication. Peierls has made an
attempt to explain the higher pion-nucleon resonance
as a dynamical consequence of the lowest pion-nucleon
resonance, the well-known (3,3) isobar. His model
consists of taking the isobar seriously as a particle;
thus, he can consider the amplitude of the pion-isobar
scattering as an amplitude relevant in the final-state
scattering e8ect in the process xÃ —&ewe. He then
looks for the singularities of the mS*—mS* amplitude
LN* denotes the (3,3) resonance] and finds that the
Born approximation singularity in the crossed-channel
falls in the region of the physical energies, and numer-
ically is in the correct position to be considered as a
likely candidate for the second pion-nucleon resonance.
This singularity is necessarily below the pion-isobar
threshold in the case of the isobar being stable. The
question now arises whether this singularity (of the
phantom srN* amplitude) will show up in any physical
amplitude or not. At this juncture Peierls conjectures
that it shows up in all the coupled channels. Tuan'
follows up this lead and predicts a number of bumps in
the KN channel based on taking V* (srA resonance) as
the causative agent.
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We can visualize the content of the Peierls mechanism
in a straightforward fashion by looking at the Dalitz
plot of the Fxm state. Certainly there is an enhance-
ment of the reaction along the bands where one or the
other of the Sx pairs is in resonance. When the total
energy is equal to twice the energy of the resonance,
then these two bands will cross in the physical region
of the Dalitz plot, and it is unlikely that this crossing
region, which is necessarily small, can dominate the
total cross section. What is required for the Peierls
mechanism to be applicable is a general enhancement of
the reaction over the whole of the Dalitz plot. This
fact has already been emphasized by Tuan. There is
no physically obvious way in which such an enhance-
ment can be conceived. We find it worth while to
re-examine the model taking unitarity into account.
Goebel4 has looked into the problems associated with
treating the unstable particles on the same footing as
the stable ones in this particular context, and has come
to the conclusion that the particular singularity con-
sidered by Peierls is present in the xX—xE amplitude
at the same energy; however, it is not on the second
sheet, but on a higher Riemann sheet of the energy
plane.

In this paper, we try to carry the Peierls mechanism
a step forward by calculating the effect of unitarity
exactly for a particular model. It should be noticed that
the pion-isobar system is, in fact, a 3-particle system,
and, hence, any attempt to introduce unitarity is
thwarted by the complication of the complete five-
point functions. We simplify the problem to the barest
essentials by eliminating all the extraneous states and
all the momentum transfer variables. This we achieve
by working in a generalized I.ee model. ' The model used
describes the interaction of three static fermions V,
V~, and E with a light boson 0 via the interaction
V~ N+0 and Vt —+ N+0. All the particles are assumed
to have no antiparticles; also all the interactions are
assumed to be in s states. The physical situation
discussed by Peierls is then simulated in essence by
considering Vi as unstable. The particles V ancl, V in

4 C. F. Goebel (to be published).
5 P. K. Srivastava, Phys. Rev. 128, 2906 (1962).
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the model correspond to the nucleon and the V~ corre-
sponds to the isobar. Graphs typical of the Peierls
model are present in the VO scattering. Thus, important
inferences can be drawn from an exact solution of
the VO scattering. Such a solution has already been
obtained by Amado' in the usual Lee model, and shown
to be unitary. VVe have carried out a numerical calcula-
tion using a modification of Amado's solution, modified
to take into account an unstable V~ particle. The
calculations were carried out for a wide range of
parameters. No bumps were found either in the elastic
or the inelastic VO cross sections. The VO scattering
amplitude was analytically continued as a function of
the total energy variable, across the three-particle
branch cut, and a complex cut in the second sheet;
a singularity was found near the position conjuctured
by Peierls but on a sheet far removed from the physical
sheet. In Sec. 3 of this paper, an attempt is made to
correlate the singularities discussed in Sec. 2 with those
of a model in which both the V particles are stable.

2. V6 SCATTERING IN THE GENERALIZED
LEE MODEL

The particular generalization of the Lee model' with
which we are concerned has two V particles, instead of
one as in the usual Lee model. ' When both the U
particles are stable, we can easily write down the
Hamiltonian of the system and solve the appropriate
Schrodinger equations to obtain the wave functions of
the physical V states. Also the model can be described
in a completely renormalized form. In the present case,
where we want to deal with the situation when one of
the V particles is in the $8 continuum, the renorrnaliza-
tion program can not be carried out explicitly; therefore,
we find it profitable to describe the unstable V particle
in terms of (C.D.D.)' pole parameters instead of the
usual mass and coupling constant. In the case under
consideration, the stable

~
V) state and the ~1VO+)

scattering states themselves form a complete set of
states spanning this particular sector of the Lee model.
(The states in the Lee model split up into these sectors
due to the stringent selection rules imposed by the
absence of antiparticles and the restricted interaction
V ~~xV+8. Thus, there are only two types of states in
each sector, e.g., V and EO, VO and 3~OO, etc. This
splitting up of the states into finite sectors is one of the
reasons which make the Lee model soluble. ) When we
introduce these states in the decomposition of the
scattering amplitude for the EO system, we get the
following dispersion relation

g' 1 "k'I'(~')~ 3I(~')~'d~'
M(pp) = ——+—,(2.1)

pi 7l & 47I (M —pi —p p)

6 R. D. Amado, Phys. Rev. 122, 696 (1961).
7 T. D. Lee, Phys. Rev. 95, 1329 (1954). M. L. Goldberger and

S. B.Treimann, ibid. 113, 1663 (1959).
L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,

453 (1956).

where u'(&u) is the cutoff function introduced to obtain
convergence in the integrals. The mass of the V particle
has been chosen equal to that of the E particle, and for
convenience the zero of energy is also chosen to be the
mass of the E particle. The mass of the O particle is
taken to be p and it obeys a relativistic energy momen-
tum relation. The equation obtained for 3II(pi) is a
Low-type equation which has a solution

(2.2)

where

and

k'u' (pi') dpi'

or or —or

k —(~2 ~P)1(2

(2.3)

(2.4)

The integral equation (2.1) only defines the residue
of the function 3f(pp) at the pole at pi=0 and the
discontinuity across the cut from or= p, to or= ~. This
information is insuKcient to define the function M(pp)
completely, and gives one the freedom to modify the
function 1—P(&p) by adding a number of C.D.D. poles.
In our case, we modify the function by adding —Ap~/

(pi —p~p), where A and (Op are real constants.

k'u'(rv') dpi' Aor
(2 &)

or or —or —26 or —oro

The parameters have to be so restricted that 1—P (p)) 0.
In that case, 1—P(p~) does not have any zeros in the
cut or plane. There are, however, zeros in the II sheet
which for sufficiently large or lie at complex conjugate
points m and m*. This is precisely the form of the EO
amplitude in the presence of two V particles as obtained
by the Hamiltonian method when one of the U particles
is unstable. When oro is varied so as to violate the
condition 1—P(p) )0 an extra pole is obtained in M(pp)
and we get the SO scattering amplitude applicable to the
Lee model with two stable V particles. With these
comments on the EO scattering, we turn our attention
to the VO scattering.
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Frc. 1. (a) Disper-
sion graph for V—0
scattering corre-
sponding to the divi-
sion of the amplitude
given in Eq. (2.6).
(b) Dispersion graph
for P (co'pr) as di-
vided in Eq. (2.7).
To each of the graphs
there corresponds
one more with 0 par-
ticles interchanged.

The assumption of mv=m„ is in no way restrictive, and the
case mv&m„has been carried through.
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and

2Q O'N2 ((o')F(a)',a))IC((a')
dc'

~T(~)=
4m

(2 6)

F(a)',co)=—geo g f 1 1
Bg,g +—T(o&)I—

u2((a) 20 &can' (o'—co—ie)

Amado has solved the problem of VO scattering in the
standard Lee model exactly using dispersion theoretic
methods. His method consists in solving the following
equations, obtained by introducing intermediate states
as shown in Fig. 1:

Numerical Evaluation of the V6
Cross Section

We note that the integral (2.12) defining C(co) does
not have a singular integrand; although (a&' —or) does
vanish at co=a&', the numerator p(&o —~'), also vanishes
at this point. Thus, the real and imaginary part of
C(cv) can be evaluated without any difhculty. For a
simple cutoff function I'(&o) =&v '/I aP —&ao'$ the function
1—P(cv) can be evaluated in terms of elementary
functions. The VO cross section can then be determined
using

1 "big'(&oi)
M(Gli)F (Mi, (d)

~ ~
~

1 1
X + d~i, (2.7)

G01+Gl M $6 (dl ld +$e

e*'i"&"& sinai g (co) =ku'((u) T ((o)/4n-

~„,= ImT (~)/k,

o.)..= I T(a&) I'/4rr.

(2.13)

(2.14)

(2.15)

where

E(co)= L(2a&Q)'12/tt (~)](OIf(0) I
1V8„+),

T(~)=L(2~f1)"'/~(~)3(V
I j(o) I

V~-+),
(2.8)

F (~',~) = I:(~~')"'/(I (~)~(~'))l(xe„+ I j(0) I
ze.+),

(2 9)
and

f(t) = Ld/«—)0 (t),

j(t) =L(2~0)"'/u((o) jI i +—~ —Iug(t). (2.10)
t' .d

dt

fi and ~i are destruction operators for V and e
particles, respectively, and 0 is the quantizatioo volume.
Equation (2.7) is an Omnes"-type integral equation in
the variable ~, and can be easily solved. The polynomial-

type ambiguity is absent in this case because of the
convergence required in (2.6). The result obtained after
these maniupulations is given by Amado which we quote

T(cu)= —[g'/(oj/L1 —P((o)—2/(1+(u C(a))}j, (2.11)

where

1 "ImL1—p(a)') j 1 p(a) —a)') da)'

C((o) =— . (2.12)
I
1—p(c0 ) I

co 1—p(M —co ) M —(d

These results are directly applicable to our model also.
As the stable V state and the EO scattering states are in
themselves complete, " the derivation of the integral
equations is not affected by our modification. Also as
only renormalized quantities are involved in (2.6) and
(2.7), the solution. is also unaffected by out modification.
The effect of the modification is only felt via the func-
tion 1—P(~) appearing in (2.11) and (2.12).

' R. Omnes, Nuovo Cimento S, 316 (1958).
"The author believes that this statement can be proved along

the lines of reference 12.

The results that we obtain in the Lee model would be
physically sensible only if they are insensitive to the
cutoff function. Thus, the parameters have to be chosen
in a restricted range of values, so that the energies
above the cutoff do not play an important role in any
integral. It so happens that the real part of the function
1—P (cv) has a minimum at some energy above the cutoff

energy, and gives some unwanted bumps in the EO

cross sections if the V-SO coupling constant is made

very large. This fact also gives a large contribution to
the function C(o&). In the numerical evaluation of C(a&),

we restrict the parameters such that energies much

higher than the cutoff had a small effect. This range of
parameters is slightly more restrictive than that required

for the elimination of the ghost V states. This still

leaves a large scope of variations; especially the
resonance in the EO channel can be made as narrow' as
w'e like. In the results which are presented here the

parameters were chosen so as to make XO resonance

appear like the 33 isobar. The mass of the resonance

1p, the width 0.5p, the C.D.D. zero was chosen at
the threshold so that the JVO cross section behaved like

a P-wave cross section. This, however, restricted our

choice of V-EO coupling constant to comparatively
low values, g'/4~=0. 3. Figure 2(a) shows the XH cross
section that was used and Fig. 2 (b) shows the Ve elastic
and inelastic cross sections. We note the absence of

any resonance of the type suggested by Peierls. Results
of calculations with a side range of parameters confirm

the above conclusion.

Analytic Properties of C(~)

The function C(a&), defined by the integral representa-
tion (2.12), has a logarithmic branch point at 2ti. The
character of the function at this singularity can be

easily studied by studying its imaginary part for
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FxG. 2. (a) The E8 cross section
which is used to calculate the V8
cross section in Fig. 2(b). The param-
eters are g'/4rr=0. 3, A =0.6 and ceo

=1.0p, and shows resonance around
2p, . (b) The V8 elastic and inelastic
cross sections calculated with the Ã8
cross section in Fig. 2 (a) as the
input information.
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Imor =+0 and Re(or) slightly greater than 2p.

1 "Im(1—p(or' )) 1
ImC(or) = ——

x „ i1—P(or')i' or'

tSMIm(1 p( )j
7

i1—p(or —or') i' or' —ar

as ImP(&0) =0 for or(pr we can rewrite the above as

(2.17)
ImL1 —P(or —or') j der'

l1—p(& —or ) I

urn"

As in the entire range of integration in (2.17) the
argument of P(or) is near ii, we can treat every term
except k„= (or' —p')'" as a constant, thus,

a' ~'( )
ImC(or) = — —(or —2p)'

-4~
I

1—p(~)3'- 4u

g' ~'(~)
C(ar) =const-

4tr L1—P(p)g' 4xp

)( (or —2p)s lil(2p —or)r (2.20)

there is as indicated before no singularity or ~=p.
As the analytic continuation of C(or) involves analytic

continuations of the function 1—P,o&, vre find it
convenient at this point to discuss some of the properties
of the latter.

It is apparent from the representation (2.5) that the
function 1—P(o&) has no singularities in the cut or

plane defined in Fig. 3(a).

1—P(~) =1—A(g g'
+

0)—070 4% 2

"O'I'(a&')der'
(2.21)

CO CO GO

A rosses the real axis above p from the upper half
f h plane, we have to deform the contour and e
scarc

resulting function has the representation

Also

ImC(or) =0, for or(2p, (2.19)

from (2.18) and (2.19), it is obvious that the singularity
of C(or) at o&=2p has a logarithmic character.

p I II

(b)

Fio. 3. (a) Connec-
tions between sheets I
and II of the function
1/[1—p(co)]. m and m*
are poles in the II sheet.
(b) The figure shows the
sheets e and 6 of the
function 1/[1—p (r0) ],
obtained from I and II,
to be a clockwise rota-
tion of the cut p ~ 00 to—~ —+ p,. m is a pole in
sheet a, and et* in b.—p, is a branch point in
sheet b.

g' k(or)N'(ar)
1 P"(~)=1—P(~)+s——

27f' 07

(2.22)
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XXXXXXXXX XXXXXXXXXXXX

QJ -P,
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FIG. 4. The figure
defines the contour
C1 in the co plane.
The branch lines A,
8, and 8' are defined
in the text. The
branch line 8 is in
the same sheet as CI,
while 8' is obtained
by analytic contin-
uation through A.

This cut is two sheeted due to the two-sheeted nature
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FIG. 5. The regions I—V in which C(cu)
has diferent representations.
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Flo. 8. Further de-
formation caused by the
second-sheet pole of
Lt —P(ru)g '. Notice that
it affects the contour in
the II sheet only.
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In order to obtain the continuation of the expression
(2.12) for C(&o) to higher Riemann sheets, we rewrite it

Fro. 6. The de-
formation of contour
C1 to obtain analytic
continuation into re-
gion II. The dotted
part of the contour
in the sheet obtained
by analytic contin-
uation through A
(hereafter called
sheet II).
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in the form of a contour integral

1 1 ds p(ce —z) 1
(2.23)

22r2', c, 1—P(s) s 1—P(oI—s) s—c0

where we have used the reality property p'"(te) =p(ce*).
The contour C~ is de6ned in Fig. 4. The integrand is a
function obtained by multiplying two functions having
two sheeted cuts, and thus has four sheets. We call
these cuts A for L1—P (&e)] ' and B for P (a& f)—
L1—P( —f)].

It should be noticed that the position of the cut 8
depends on &e and when we continue the function C(o&)

as a function of cv, this may cross the contour of integra-
tion. In such cases we would have to deform the cut 3
and this would reveal the second-sheet singularities of
the function P(&e). These in turn may cross the contour

of k(&e). The function in the II sheet thus has all the
singularities of u2(co), a pole at ate =0 and a branch point
at co= —p. More important, however, are the zeros of
this expression which give rise to poles of M(&o) in the
second sheet. For fairly large coo these lie at complex
conjugate points m and m*, Fig. 3(a). Later, we have
to rotate the cut to position —eo ~Id+@ when we
find it convenient to define sheets a and b. As indicated
in Fig. 3(b), 1—p (Id) has a zero at m, and 1—p~(&e)

at m*.

Continuation of C(GI) to Higher
Riemann Sheets

of integration giving branch points in the second sheet
of C(ce). We find it convenient to define five regions
which are numbered I through V and are connected as
shown in Fig. 5, in which the function C(te) has different
representations. These numbers do not denote the
Riemann sheets of function.

As ~ moves from region I to region II, the cut 3
crosses the contour in C&, and to obtain an analytic
continuation of C(&o), we have to deform the contour as
shown in Fig. 6. Rotating cut 8, we can reach the
con6guration shown in Fig. 7. The analytic representa-
tion of C"(te) can then easily be written

CII (~)
1 1 dz p (te —s) 1

22r2 c, 1—P(s) s 1—P'((a —s) z—ce

( 1 1

2~2 „k1—P(s) 1—P"(s))

ds p (a)—s) 1
X— . (2.24)

s 1 P (ce s) s—te

The deformations in the contour reveal two poles of
the integrands; one at s= m from the term t 1—p"(s)] '

and another at s= te m from the term —L1—p (a&
—s)] '.

These poles cause the region of validity of C"(&u) to be
limited, and as ~ goes from II~ III, we have to
further deform the contours, as shown in Fig. 8. As the
contours are deformed by a pole, it is easy to write the
contribution

f2
CIII (~) CII (~)

m (m —ce)

p( ) p( )
X

1—P (te —m) 1—P'((o —m)

where f' is the residue of [1—P"(&o)] ' at ce=m, and
may be complex. Similarly when the pole at s=cv —m
crosses CI (i.e., we go from region III—IU), we have to

Fro. 7. This contour is
obtained from that of
Fig. 7 by rotating cut 3
clockwise.

c,
A Fro. 9. Deforma-

tion of contour CI
caused by pole of
L&-~.( —)r'. X X—X—X X—X X—X X—X-X—X X

~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~I1
X X X X X X X X X X~ ~ ~ ~ 0 ~ B and 8'

~ ~

(~~x'.) m
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Fxo. 10. Figure
showing the energy
dependence of
ReL1—P (a&)j and
Re i 2/(1y~C (~) ) I
in region I and V.
It should be noticed
that only the pole
of T(co) near m+m*
is in the region V.
There is, however, a
pole below co0 in
region I.

deform C~ Fig. 9. and we get the continuation

2 1
Clv (~) CIII (~)

m cu —m

Cv(ro) = —2
mm or —m —m*

(2.27)

The analytic continuation of C(o&) also has poles at
other points in these sheets; for example, it has a pole
in region III at ol=2m, where p'(ol —m)/t 1—p (ol —m)]
becomes infinite. Also left-hand singularities of
1—P" (&u

—m) contribute cuts at m —p, and there are
poles far away due to n'(ol), but none of these is very
close to the overlap energy o&= m+m*.

Analytic behavior of T(ol). T(ol) is a function which is
simply formed out of 1—P(co) and C(&u) Eq. (2.4), and
has the cuts of both the functions. The analytic con-
tinuation of T(ol) to region V can be thus obtained
simply by replacing C(ol) by Cv(ol), 1—P(ol) is unaf-

X (2.25)
1—P"(ol —m) 1—P'(ol —m)

Xow' when co crosses real axis above 2p in region IV—V,
We get, aS C"(ol) ~ C'(&v) = C(ol),

f2 1 P~(ol —m)
C (ol)=C(ol) ——

m (m —ol) 1—P'(ol —m)

P'(ol —m)

1—Pr (ol—m) 1—P'(ol —m) 1—P'r (ol —m)

(2.26)

The most important property of this function is that
it has a pole at ol=m+m* on the real axis (but not on
the physical sheet), due to terms involving 1—P" (ol —m)
and 1—P~(o&—m). In the neighborhood of this point,
We Can repreSent CV(ol) by

3. THE MODIFIED LEE MODEL

We consider a system of heavy fermions V&, V2, and
S, interacting with a light boson 8.' We choose V~ and
E to have the same mass which we also choose as zero
of energy. The mass of V2 is chosen as m, and that of
8 particle as p. All the fermions are taken as static,
whereas 8 obeys a relativistic energy-momentum
relation. Xone of the particles has antiparticles, and
the only allowed interactions are

Vl /+0,
V2 X+0. (3 1)

First, we consider the situation in which V~ is stable,
and study the reactions

Vl+0~ Vl+0,

Vl+0 —& V2+0,
and

Vl+0 —+ /+0+0. (3.2)

We denote the transition amplitudes for these reac-
tions by T»(co)T»(a&) and F(ol', ol), respectively, where
co is the total energy and co', the energy of one of the 8
particles in %88 state. We also consider V28 elastic
scattering with the amplitude T22(o&).

The functions Tll(ol), Tl2(co) and T22(ol) have cuts
beginning with tl and m+tl, which are two-sheeted,
and a logarithmic cut beginning with 2p arising from
the three-particle state E88. The continuation of the
two-particle amplitudes through the two-particle chan-
nel has been discussed before" and we simply quote this:

fected as the path from region I—V takes it to the II
sheet and back again to the I sheet.

g2 1
Tv(~) =— (2.28)

ol 1—p(ol) —2/L1+ol C ((0)]

If we approximate Cv(&u) by its pole term at m+m*, it
is easy to see (Fig. 10) that it causes the real part of the
denominator in Tv(o&) to vanish at an energy lower
than (m+m*). As the residue at the pole of Cv(&o) is
negative, and the imaginary part of 1—p(ol) is positive,
the pole of T (&u) would lie below the real axis. If the
residue f' is very small, it is easy to see that this
energy is very close to the energy ol=m+m*.

Thus, it appears that the pole conjectured by Peierls
and by Tuan is present in the V8 scattering amplitude,
but is not on a nearby sheet so as to contribute any
bump to the physical cross sections.

Tll(ol) (1+2sp2(ol) Tg2(ol)) = 2ip2(ol) Tl2 (ol)III (~)
(1+2zpl(ol) Tll(ol)) (1+2ip2(&u) T22(ol))+4pl(co) p2(&u) T12 (M)

T»(ol)III (~)
(1+ 2' l (ol) Tll (ol)) (1+2sp2 (ol) T22 (ol) )+4pl (ol)p2 (ol) Tl2'(ol)

~ G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 30, No. tt (1955)."R.Oehme, Z. Physik 162, 426 (1961).

(3.3)

(3.4)
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FIG. 11. The figure shows the
connection between sheets I—IV
connected along the real axis, as
shown by vertical shading.

P---
m'+p.

Peierls Singularity

for Stable V&

3
I 2

gp l' m+mj
~ ~ ~ ~ ~ ~ ~ \ ~

I

! ! peierls Singularity
i 1! for Unstable V~

/ J
y

& m+/l

where pr(~) and pm(~) are phase-space factors for the
VI8 and V20 channels

pJ (ro) = N'(~) (~ m~—p)'—~', p2 (~)=e'(&o) (ca m—2 p—)"
The connection between the four sheets connected at
p and m+p is shown in Fig. 11.

In general, the function Tg2(~) has a short cut in the
physical sheet arising from the Born approximation
graph Fig. 12. This shrinks to a pole in the static model.
It is clear from (3.3) and (3.4) that the analytic
continuations of Trr(&u) and Tr2(~) also have cuts at
the same point, and these in our model will be poles.
This is the singularity considered by Peierls and, hence,
we are interested in studying its migration as V2 becomes
unstable.

In Appendix A we have studied the migration of the
pole in the Ne scattering corresponding to V2, as it
becomes unstable. Applying the same results to the
movement of the V20 branch points in the VI8 scattering,
we come to the conclusion that the branch point at
m+p in the physical sheet of VrH amplitude moves
around the point 2p as shown in Fig. 13, and takes the
position m*+p in the upper half of the a& plane. At the
same time, a branch point is found at m+ p in the lower
half of the co plane reached from the physical sheet by
crossing the real axis, between 2p and in6nity from the
upper half-plane. This branch point should correspond
to the second sheet pole at m in the N0 scattering
amplitude. When V2 is stable, this should be the analog
of the pole m' in the second sheet in NH amplitude, as
described in Appendix A. The cuts are shown in Fig. 13.

To illustrate the migration of the Peierls singularity,
we consider the simplest perturbation theory graph in
which it occurs, viz. , Fig. 14. The matrix element of
the graph is proportional to

(3.5)

which has as a function of &u a branch point at mb+p,
and in the sheet obtained by crossing this cut there are
poles at ~=net, and ~=m +mt, . In the case where V2
is stable, then clearly m, =mb=m, we have the well-
known singularities already described. When the
partide V2 becomes unstable, we have to make m
complex; however, we must have physical principles

FIG. 13.The figure shows the various singularities of V&8 ~ V&8

scattering, for VI stable, and also for V2 unstable. When V~ is
stable we have three cuts in the physical sheet, starting at p,
m+p, and 2p, the thresholds for VI8, V28, and N88 channels,
respectively. There is also a branch point in the second sheet at
m'+p, where m' is the position of the second sheet pole in N8
scattering amplitude. There is a pole at 2m reached by path 1 from
the physical sheet. This migrates as V& becomes unstable to m+m*
reached along the path 2 from the physical sheet. There is, how-
ever, another pole reached by path 3, which has been discussed by
Goebel, and also by us in Sec. 2 of this paper. This, however,
cannot be easily connected to the case in which V2 is stable, as
long as we use perturbation theory, because the II sheet is not
correctly described by a perturbation theory.

to choose the correct sheets. First, we require that the
cuts move as shown in Fig. 14, and second, that the
outgoing particles must be in decaying states. These
conditions give mb ——m* and m =m. The Peierls
singula, rity is then at m+m* reached as shown in Fig. 13.

4. CONCLUSION AND DISCUSSION

We have shown by an explicit calculation in the
I.ee model that the Peierls second resonance model is
untenable once unitarity is correctly taken into account.
Evidently, unitarity does not couple the mÃ* —+ m.N*
channel to the xN —+m-N channel as Peierls had con-

juctured. Although the present calculations were done
in the Lee model, and crossing symmetry, recoil, etc.,
were ignored, we believe that they cast serious doubt on
the validity of the Peierls mechanism. Probably the

difhculty with the Peierls model arises from the treat-
ment of the unstable particles on the same footing as
the stable ones. In this connection we would like to
draw the attention of the reader to the material in the
Appendix A, where it is shown that the eGect of a
particle becoming unstable can not be taken into
account simply by replacing m by m —ip where p is
positive and denotes the width of the resonance. This is
because in most important cases, especially in the one
under consideration, we do not want to make the
particle stable by switching off the interaction, but by
changing the mass conditions. This process involves an
analytic continuation of the relevant functions as a
function of the mass variable and in such cases the
considerations in the Appendix A become relevant.

FIG. 12. Born approximation graph
for 2'gg((y).

V N V N V

FIG. 14. Graph of lowest order having V28
scattering in the final staff,
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Lastly, we would like to point out that the amplitude
for Ve scattering that we have used has a puzzling
feature that it has a C.D.D. zero at precisely the same
position as the C.D.D. zero in the Ee scattering
amplitude. We are unable to account for this.
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APPENDIX A

In this Appendix we follow the position of singularity
representing a particle, as it becomes unstable. " In
order to facilitate the discussion, we make the particle
slightly unstable, and then we study the movement of
the singularity as it becomes unstable with respect to
the new channel. We illustrate this in the Lee model,
which is described by the following Hamiltonian

I'rG. 15. The figure shows the connection between the sheets
I—IV connected along the real axis, as shown by vertical shading.
The function M(co) has four sheets corresponding to two sheets
each of @(ao), and 4 (co). The correspondence is as follows, I(1,1),
II(2,2) III(1,2), and IV(2, 1); where the two numbers in the
paranthesis correspond to the sheets of the function)/ (ru)and(1)(cu),
respectively.

very easily and we can then trace the path of the
V-particle pole." We take /2'&/2 and f2((g2, so that
when Re m~(p, there are two poles on the sheet III at
complex conjugate positions. We show only the one
reached from above the real axis, Fig. 26. There are
also poles in the II sheet at points mr' (lower than mr).
When my' is increased, these move as shown in Fig. 26
my' —+ m and m& —+ m*. The pole m is in II sheet and
m* in IV sheet. As far as the poles ns~* and m~'* are

mr pv fv+pko)rrk c(k+Qk wPk Pk

+ (Ioi/r'Per&+H C )+ (fgx'4'vP'+H. c ), (A1).

where
(P2+p2)1/2 w (P2+/2/2)1/2

N(o)) s(w)
A=+ ak and 8=Q )(ik, (A2)

k (2o)r)'" k (2wr)'"

~ggrpW
fA

I~
I

Ply

Aly

~ N

I'&G. 16. Migration of
the pole corresponding
to V intermediate state
in N8 scattering as it
becomes unstable with
respect to the N8
channel.

0 is the quantization volume; later 0 is allowed to
become infinite.

Pr and P/)/ are destruction operators for fermions
V and /V, and o(k and pk are destruction operators of
particles 8 and 8' in momentum states k."The mass of
0 and 8' is p and p, ', respectively. The SO scattering
amplitude can now be simply written down

g2

M(o)) =
mrs —o)—g 1t) (o)) f c'(o))

concerned, a similar trajectory takes them to m and
m* in IV and II sheets, respectively. We, thus, see that
the poles which were close to the physical sheet are now'

on remote sheets and they are replaced by another pair,
which was previously on remote sheets.

In the limiting case of f'=0, the sheets I and III
become identical, so do sheets II and IV. The V-particle
singularities stay on the real axis till they meet on the II
sheet and then they split apart into m and m*.

where

and

1 "
/2. "N'(o)')do)'

4(~)=
CO

—M —Z6

1 "
/2. "t)2(w')dw'

(A3)

Cg c'
t

Frc. 17. Contour C2
and C1' in co plane.
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The physical V particle is then the pole of the
function 3II(o)). This function has four sheets which
can be numbered as shown in Fig. 25. The functions
p(o)) and C (o)) can be continued in the higher sheets

22 G. Hohler, Z. Physik 152, 546 (1958).
"The N8' channel has been introduced only to make the T

particle unstable even when below N8 threshold, so that it is
never on the real axis. The pole can then be followed more easily.
The coupling to the N8' channel is thus necessarily vanishingly
small. The a2boye korea/tmsent is for g waves only.

"If we take a special cutoff function 22'(~) = (co2'//22'+co()2), the
integral can be written down in terms of elementary functions.

/( ) = —( '—r')'") (—( +( ' —r')'")/r1/22)r ((2)

~(~p'+ p')'"+ + (&~ 2+/22)1/2 sinh 1(&@22+/22)1/2
2 COp

where the sheets for the square root and logarithm functions have
been chosen so that there is only one branch point, i.e., at co=p.
This function is very simply obtained on the second sheet by
adding the term 22)r(cu2 —/(2)'/2222(a&). 4(a)) has also a similar
representation. It is now a simple matter to trace the path of the
V pole in (A2). The general nature of the trajectory is independent
of the special choice of the cggoft function,
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APPENDIX B This is an Omnes' type equation which can be

easily solved; however, it is easy to see that the inhomo-

geneous term itself is a solution of the equation. If we

substitute

In this Appendix we discuss an extension of Amado's
method' for V8 amplitude to the %88 amplitude. As this
extension is very direct, we omit the details, and present
only the important steps. As we are interested, in this
paper, in the three-particle states which have res-
onances in two pairs, we want to consider the V-particle
as unstable. This, we find, leads to a solution for F88
amplitude which has an ambiguity which can be
resolved by introducing V as a stable particle and then
analytically continuing to the case of unstable V. First,
we treat the case of unstable V and point out the
ambiguity, and then we give the form in which this
ambiguity has been resolved. Consider the amplitude

(2&g1Q 2~2Q 2cgQ)'~2

F(MP)1%2) = (&8-
I g ~

&8182 ), (B1-)
N ((O1)N (a 2)N ((O)

L2(uQ/N2 ((o)]8k1,2M*(a)2)

in the integral, we get

M (A)1)M (co2)
(02—M—22 601 (0+22-

This is odd under the exchange 1 2. Thus, the sum

of this term and the term for L2&oQ/N2(co)78k2, kM*(~1)
vanishes. Thus, this inhomogeneous term, plus a
solution of the homogeneous equation, gives the
complete solution. Ke can prove that

M (10)M*((o1+(o2—(a)

where
(2(or)'~2 ( d

j(~)= I

—2—+~ ~~k(~),
N((u) i dt )

ak(t) being the annihilation operator for the 8 particle
in momentum state k, N(~) is the cutoff function
introduced to cause convergence of all the relevant
integrals, and 0 is the quantization volume later allowed

to become infinite. The minus sign on the state indicates
outgoing waves. This amplitude is the one which is
required to take into account the effect of F88 state as
the 6nal state.

First, we consider V in the continuum. Then the E8
states are complete and we can obtain a dispersion
relation for this function in the variable by contracting
the 8 from the left in (B1)

F (M~(de)2)

(2(aQ)
—

(2(g2Q) "2

(Xi ji X8;)
N'(CV) N((O2)

(2M1Q)'" (2M1Q)'~' (2M2Q)"'
+8„, P~jiz8;) +

N (0)1) N ((01) Q (M2)

x»m(&l(~k(~), jjl&8182-&. (B3)

1 "O'N'((o')I=-
i
M(&o')

i
2M*((o1+(u2—(o')

+ «'. (B6)
(0 —

GO
—Z6 GO

—
COy GDg 4) Z6

This can be rewritten as a contour integral,

M (o)')M*((u1+(u2 —(o')
2%5

which can be easily integrated

M(G) )M ((01+(d2—(d )2'

X + dGO

CO GO
—Z6 0) —

GOy COg
—0) $6

is a solution of the homogeneous equation in the case

(B2) where M(~) has no poles in the physical sheet, as
follows: Consider the integral

Introducing the intermediate states ~1VO ) which are
complete, ' and using

(2 Q)1i2

M*(o))= (N
~j ~

X8 ),
N((u)

we get

F(~p~1&2) L8k1,kM (~2)+8k2,kM (~1)g
N'(co)

1 "k'22'((u')+- M (co )F((d,M1M2)

+2M(o))M~(a)1+~2 —a)). (BS)

The integral on the right-hand side of this equation is
seen to be equal to I when we make a change in the
integration variable Lo&'~ (&o1+~2—&u')$. Thus, a solu-

tion of (B4) is

F(&y&1&2) (Sky, kM(&2)+8k;, kM(&1))
N'((u)

+A((o1)M2)M(~)M*(~1+~2—~). (B9)

X
CO 22 6) (G)1+C82 M)+22

The coeKcient A (&o1,a») is not determined by the

integral equation we have solved. This should not be

(B4) surprising as there are many Lee models, with different
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numbers of V in the XO continuum which leads to the
same equation. The coefficient A (&u&,~2) may be deter-
mined by analytical continuation from the case of
stable V particles. The more complete equations are

2GOQ

F (+&+ioo2) Bk,h&M (~2)+~km, kM (+18
u'(co)

1—gT(Mi, oog)

m —co m —(Xi+&2 6&)-

1
+— e—"&'& sin8 ((o')F(oo',coicu2)

where

E*((o')u'(a)') F ((o',(oi(u2)
T(cubi, (u2) =Q, (811)

(2(o'0) (a)' —io)

(2(uiQ 2&o20)'l2
T (Mi, oo2) = (V~ g X~,e;), (812)

u(ooi)u((o2)

(2ooQ)'jm
E*(oo)= (Ot fiE8 ).

u((u)

These are soluble exactly by the method used by
GO

—
qQ) y 602—M

(81O) Amado. We put the result in a slightly different form

2o)Q
F (~)~loo2) $M (ool)~k, k2+M (~2)~k, kg)+

u'((u)

2M*(ooi)M*(oo2)M(co) M*(rai+co2 —(u)

uu'(~) ~M(~') ~'M(~, +~,—~')d~'g M (coi+oo2 ~)+
4n-'

. (814)

The denominator in (814) can be easily put in the
form of a contour intetral

D( ooi+oo)2= g M (Hi+602 —fp1)

This result holds whether or not V is stable because all
that happens is that the V-particle pole in M(~)
migrates to the II sheet of the function. As C~' already
encloses this pole, no singularity crosses any contour of
integration. Hence, for a stable V particle, we have

+ M(co)M*((ei+(og —a))da), (815)
2%2 Q'g A (a)i,co2) = 2M*(o)i)M*((u2) M(o))

2' Z

where D is the denominator function in (814). Here we
see that the 6rst term is just the residue of the integrand
at the point co=m. Thus, we can easily dehne a new
contour C~' to go around m when, leading to the
expression

D((ui+cv2) = M(co)M*(ooi+cu2 —ar)d(o. (816)
27T$

)(,M (Ni+Mg —07)doo (817)

and the expression remains valid when the V particle
lies in the continuum. The function D(&u) has properties
quite similar to those of C(&v); in particular it has a pole
in region V. This may give rise to a zero of D(&u) close
to co=m+m*, which might show up as a bump in
A (oo&,a»); however, this is not physically interesting.


