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Perturbation theory always works in nonrelativistic scattering theory, unless composite particles are
present. By "composite particle" is meant a bound state or resonance, or one that would exist for an
interaction of opposite sign; in fact, this provides a precise definition of resonances. It follows that if fictitious
elementary particles (quasiparticles) are first introduced to take the place of all composite particles, then
perturbation theory can always be used. There are several ways of accomplishing this, one of which cor-
responds to the X/D method. In order to prove these results it is necessary to make a detailed study of the
eigenvalues of the scattering kernel, and as a by-product we obtain new proofs of the applicability of the
Fredholm theorems to scattering theory, of the convergence of the Born series at high energy, of the
Bargmann-Schwinger theorem on the number of bound states, of the Pais-Jost theorem on the identity of
the Jost function with the Fredholm determinant, and of Levinson's theorem. We also give explicit formulas
for binding energies and phase shifts in potential theory, using first-order perturbation theory after insertion
of a single quasiparticle; these formulas work well for the lowest bound state and the S-wave scattering length
of the Yukawa potential, and give precisely 13.6 eV for the hydrogen atom binding energy.

I. INTRODUCTION

~HIS is the second of a series of papers, in which we

hope to develop a practicable method of calculat-
ing strong interaction processes.

In our erst paper' it was proven that any given non-
relativistic Hamiltonian Bcan be rewritten to introduce
fictitious elementary particles (quasiparticles) which did
not appear in H. The new Hamiltonian H yields pre-
cisely the same physical predictions as H, provided that
when we put the quasiparticles into the unperturbed
part, we also modify the interaction term according to
certain rules. These matters are reviewed in Sec. II.

We also remarked in A that such quasiparticles can be
introduced very freely, without any reference to physi-
cally real particles, and also without any point. But
their introduction can be the crucial step in practical
calculations, for such calculations can always be done

by perturbation methods unless composite particles are
present. If we introduce a quasiparticle corresponding
to each composite particle, then we get a new (but
physically equivalent) theory in which there are no
composites, but only real and fictitious elementary

~ Research supported in part by the U. S. Air Force Office of
Scientific Research.

t Alfred P. Sloan Foundation Fellow.
' S. Weinberg, Phys. Rev. 130, 776 (1963); this article will be

referred to as A.

particles, so that perturbation theory works. What
actually happens is that the modification of the Hamil-
tonian forced upon us by the introduction of a quasi-
particle weakens the original interaction enough to
remove the divergence of the Born series associated with
the corresponding composite particle. Seen in this way,
the strength of a given coupling should never make us
despair of applying perturbation theory; a very strong
interaction merely gives rise to many composite par-
ticles, and, hence, forces us to introduce a large number
of quasiparticles before we start using the Born series.

I believe that this approach will make perturbation
theory universally applicable, even to the full rela-
tivistic series of Feynman diagrams. ' The purpose of
this paper is to demonstrate that this conjecture is,
indeed, correct within the limited proving ground of
nonrelativistic two-body scattering theory.

It is shown in Sec. III that the Born series will diverge
if and only if there are composite particles present, and

~ A more general approach to the problem of obtaining a con-
vergent perturbation series has been suggested by M. Rotenberg
(to be published). Our approach seems to correspond to his if the
operator he calls "J—1"is chosen to be separable; otherwise the
quasiparticle interpretation is inapplicable.

'Some preliminary steps in this direction are reported by
S. Weinberg, in ProceeCings of the 1P6Z Annnc/ International
Conference on High-Energy Physics at CERÃ, edited by J. Prentki
{CERN, Geneva, 1962), p. 683.
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in Secs. IV and V (or XI) that the divergence can be
cured by introducing quasiparticles corresponding to
each composite particle. But we have to be careful with
what we mean by this. What matters for convergence at
a given energy TV is, of course, not just a bound state
that might happen to be precisely at 8', but rather it is
the whole denumerably infinite set of energy eigenstates

~
@,) which can be shifted to W by dividing the inter-

action by a real or complex number it„(W). The physical
Born series diverges at energy 8' if and only if some
it„(W) lies outside the unit circle, and all such diver-
gences can be cured by introducing quasiparticles in
correspondence with each it„(W) that ever leaves the
unit circle as W increases from —~ to + pp. At the
particular energy where some g„(W) leaves the unit
circle we have either an actual bound state or resonance,
or one that would be present for an interaction of oppo-
site sign; a bound state or a resonance, thus, always
signifies the beginning of a divergence of the Born
series. In fact, we may take that this is a new definition
of a resonance, which agrees with all previous definitions
for narrow resonances, and which continues to be pre-
cise and significant even for broad ones.

The interpretation and behavior of the q„(W) are dis-
cussed at length in Sec. VI, and examples are presented
in Sec. VII. The most important result obtained there is
that only a finite number of it„(W) ever leave the unit
circle, so that at most a finite number of quasiparticles
need be introduced to make perturbation theory work
at all energies. (The energy W= 0 must be excluded for
long-range forces. ) Also, as by-products of our study of
the it„(W), we are able to offer new proofs of the applica-
bility of the Fredholm theorems to scattering theory
(Sec. III), of the convergence of perturbation theory for
large

~

W
~

(Sec. VI), of Levinson's theorem (Sec. VIII),
of the Bargmann-Schwinger theorem on the number of
bound states (Sec. IX), and of the Pais-Jost theorem on
the identity of the Jost function with the Fredholm
determinant (Sec. XI).We also give an upper bound on
the binding energy of any state bound by any short-
range potential. (Sec. IX.)

In order to show that perturbation theory can really
be made to work, we have derived in Sec. X general
formulas for the phase shifts and lowest bound states
given in potential theory by using first-order perturba-
tion theory after insertion of a single crude quasiparticle.
The scattering length and binding energy have then
been evaluated for the 5-wave Vukawa case, with grati-

fying results. More extensive nonrelativistic calculations
are now under way.

The interested reader with little taste for details is
advised to read Sec. II, skim III and IV, read V, and
skim VI, VII, and X. Section II should make it un-

necessary to refer back to A. Our next paper will use the
quasiparticle method to solve the multibody problem,
and the following one will extend the method to rela-
tivistic particle physics.

Hp)En)=E(Ee);
(E'I'i E~)= ~„.„s(E' E)—

(1)

(2)

We treat e as if it were discrete, though nothing is
changed if e also refers to angles, etc. .
All observables in such a theory can be obtained from
an operator T(W), defined for all complex W by

T(W)= V+T(W)[W Hp] 'V—
= V+ V[W Hp] 'T(W—). (3)

In particular, the S matrix is

S„„(E)= 8„„—2pri(Ee'~ T(E+ip)
~
EN),

where E)0 and p —+ +0; the bound-state energies are
at the poles of T(W).

If the kernel [W—Hp) 'V of Eq. (3) is sufficiently
small at some energy W, then T(W) can be expressed as
the Born series:

TPV) = U+U[W —Hp] 'V+

But no term in this series has any poles in 8'. Hence, the
series must diverge for 8"near bound state energies. We
shall see that it also diverges near resonances, and, in a
certain sense, nowhere else.

In order to cure this divergence of the Born series, we
consider instead of (3) a new integral equation

Ti(W) = ViPV)+Ti(W)[W —Hp] 'Vi(W), (6)

where Ui(W) is a "reduced" interaction

V, (W) = V—Vir PV))(r(W) i V,

and
~

r (W)) and (I'(W)
~

are aiiy linear combinations of
the continuum states

~
Eii). It is shown in A that T(W)

can be expressed in terms of Ti(W) by

T(w)=T, (w)+A- pv)T, (w)~r(w))
XA(W)(r(W) i T,(W), (8)

A(W)=[1—J(W)] ', (9)

J(W)=—X '(W)(r(W)
i Ui(W)

X[W—Hp] 'Ti(W)
~
r(W)), (10)

x(w) —= 1—(r(w) i vir(w)). (11)

The factors Ar(W) always cancel in practical calculations.

II. QUASIPARTICLES

Ke begin by reviewing the parts of A which form our
present starting point.

Consider a Hamiltonian H, which is split into an un-
perturbed part Ho and an interaction V. We shall Dot
be too specific about the system considered, although
some methods used in this paper need revision for more
than two particles. It will be assumed that Ho has only
continuum eigenstates, which are characterized by the
energy E&0, and perhaps also by other variables
(angular momenta, isospins, etc.) labeled by an index pi:
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It was also observed in A that a formula similar to (8)
would arise in a theory in which the actual interaction
were V~, but in which IIO had. a discrete "elementary
particle" eigenstate. The operator Ti(W) corresponds
to the sum of "proper" graphs excluding one-elemen-
tary-particle exchange (in the s channel); (I'

~
Ti corre-

sponds to the complete proper incoming vertex; 6 to the
complete unrenormalized elementary particle propa-
gator; and Ti~r) to the complete proper outgoing
vertex. Equation (8) has the obvious significance that
any graph either belongs in T&, or it arises from one-
elementary-particle exchange. Except for an over-all
normalization factor, formula (9) for the propagator
A(W) is the same as would arise in a theory in which
there actually was an elementary particle (with infinite
bare mass). Hence, we refer to the steps leading to (8)
and (9) as the introduction of a quasiparticle into the
theory. 4

The point of introducing the quasiparticle is that the
new potential V& may be sufficiently weak for the con-
vergence of the new Born series

T,(W) = Vi(W)+ Vi(W) [W—Hp]
—'Vi(W)+ .

, (12)

which can be used with Eqs. (8)—(10) to calculate T(W).
The bound state pole in T(W) then must arise in the
propagator A(W). To make (12) converge, it is clear
that we must try to adjust ~I') and (I'~ so that the
original interaction V is well approximated by the
separable interaction U

~
P)(I'~ V.

It is also shown in A that the Fredholm determinants
corresponding to (3) and (6) are related by

D(W) =Di(W) 6—'(W). (13)

The qus, siparticle (or "Schmidt" ) method, therefore,
separates out )ust one troublesome factor from the
Fredholm determinant.

III. CONVERGENCE OF THE BORN SERIES

Our task in this paper is to show that the introduction
of quasiparticles in close correspondence with real bound
states or resonances can always succeed in making the
Born series converge. As our starting point, we shall

prove in this section that the Born series (5) or (12) will

converge if and only if the kernel has no eigenvalue out-
side the unit circle. This is essentially the criterion al-

ready given by Jost and Pais' for the special case of a

4 A similar approach is followed by M. T. Vaughan, R. Aaron,
and R.D. Amado, Phys. Rev. 124, 1258 (1961).A somewhat differ-
ent way of making composite particles seem elementary is being
developed by A. Salam, Nuovo Cimento 25, 224 (1962), and to be
published. See also J. C. Howard and B. Jouvet, ibid. 18, 466
(1960), and R. Acharya, ibid. 24, 870 (1962).For other interesting
comments on the relation of bound to elementary particles, see F.
K. I.ow, ibid. 25, 678 (1962) and E. G. P. Rowe (to be published).
These authors are all primarily coIIcerned with questions of
principle about the meaning of elementarity, rather than with the
point that seems to me to be most vital, that the representation of
composite particles as if they were elementary can make perturba-
tion theory work.

s R. Just and A. Pais, Phys. Rev. S2, 840 (1951).See also W.
Kohn, Rev. Mod. Phys. 26, 292 (1954).

local short-range potential; in this section we will
extend this theorem to almost any interesting two-body
interaction.

We define the set of eigenvalues rl„(W) and eigenstates
~iP„(W)) by the equation

The same theorem applies to the reduced interaction
Ui(W). The convergence is "relatively uniform, "' a
term explained below. Properties of the ri„(W), and their
composite-particle interpretation, are discussed in
Sec. VI.

The necessity of condition (15) for any sort of con-
vergence is obvious, because the series (5), when applied
to any eigenstate, gives

This clearly diverges if
~
r)„(W) ~ 1.

In order to prove that condition (15) is sufficient as
well as necessary for convergence, we need to use the
Fredholm theorems to study the behavior of the T
operator for interaction XV:

T(W, X) = XV+XVt W —Hsf 'T(W, X), (17)

as a function of the complex coupling parameter X. The
most convenient condition I know which would allow
some form of Fredholm theory to be applied to a given
kernel E is that E be "I,'," i.e., that TrEE f be finite. ~

In our case, this condition becomes r (W) & oo, where

r(W) —=Tr V2

/
W—Hs['

(Eei V'fan)
(18)

/

W E['—
We will show in Appendix A that r (W) is actually finites

E. H. Moore, New Haven Mathematical Colloquium (1910)
(unpublished), pp. 1—150.

~ All results needed for such kernels may be found in standard
works, such as Intef;rc/ Equations, by F. Smithies (Cambridge
University Press, New York, 1958); see particularly Secs. 2.5, 2.6,
and Chap. VI. Other names sometimes given to such kernels
include "Hilbert-Schmidt kernel, " "Fredholm operator, " etc.

Originally I thought r (8") was infinite, and the preprint of this
paper was based instead on the assumption 7.2(R')(~, where
r&(W) Lpreviously called r(W)g is deiined by Eq. (B1) in Ap-
pendix B.I am very grateful to Professor N. Kroll for bringing this
mistake to my attention, because considerable simplifications were
thus made possible. It is conceivable that for some V, r2($')

I:W—Ho) 'VIP (W))=n. (W)14, (W)), (14)

with the understanding that
~
lt „(W)) must actually be

in the Hilbert space, i.e., have finite norm. For the time
being, we keep W negative or complex, although W will
later be allowed to approach the positive real axis. We
shall prove that the series (5) for T(W) converges at
energy W if and only if the eigenvalues satisfy



QUASIPARTICLES AND BORN SERIES 443

(i) Each matrix element (Enl T(W, X) IE'n') is a
meromorphic function of P, with poles at the "charac-
teristic" values, ) =r)„'(W), the rl„(W) being defined

( )
by (14).

(ii) At least for I) I
'r (W) & 1, the matrix elements of

T(W,X) are given by the (absolutely) convergent series

for the full three-dimensional scattering problem with a
local potential V(r) if and only if

I V(r) I

'd'r & ~ .

If we restrict ourselves to a single partial wave, the
trace is finite if and only if (Enl T(W, ) ) IE'n')

I
v(r) Isrsar&~.

I V(r) I
'dr & ~. (20) = Q X"(Enl V{LW—Hs]-'V)"—'IE'n'). (23)

m-I

These conditions for validity of the Fredholm theory (iii) For ) &ti„'(W), the resolvent is itself an L'
may be contrasted with those given by Jost and Pais' for kernel, i.e., o (W,X) & oo, where
the three-dimensional case,

I V(r)
I
rdr& ro; r'V(r) bounded, dE dE'

or by Newton'" for partial waves x l(Enl T(w, ~) IE n) I /I w —El . (24)

I
V(r) Ir~r &

I
V (r) I

dr & ~ . (22)

Our conditions are very much weaker. In particular,
(20) holds even for the Coulomb Potenfiat, where (22)
certainly does not. More important, condition (18) is
applicable even to a nonlocal interaction; only the high-
energy beha, vior of (Eel V'I En) is relevant in deciding
whether the Fredholm theorems hold. Presumably the
reason previous authors had to impose such restrictive
conditions, and then still had to go through all the
trouble of reproving the Fredholm theorems, was that
they insisted on taking 8' real and positive throughout,
whereas we stay o6 the positive real axis until the end.

LBut a cloud on the horizon should keep us from
expecting too much from the Fredholm method; the
trace r (W) turns out to be infinite as soon as we turn to
three-body processes. I shaH show in the next paper of
this series that the Fredholm method does, in fact, break
down in the multiparticle case, and that the quasi-
particle method survives untarnished. ]

Assuming that Lw —Hp] 'V is an L' kernel, we may
now apply standard theorems~ to find the properties of
its resolvent, which is just X 'I W —Hp] 'T(W, X). In
this way we learn that

The proof of. our theorem is now almost obvious; we
need only recall the classic theorem that a function of
X analytic within some circle

I
X

I
&Xt is given in that

circle by its Taylor series expansion. From (i) we see
that the radius of the circle of convergence is just
Xr——Irir '(W) I, where rfr(W) is the eigenvalue of greatest
modulus. And from (ii) we see that the Taylor series for
T(W, X) is just the Born series (23).

We are also interested in the uniformity of the con-
vergence, so it will pay us to go through this argument
in detail, "and to actually set an upper bound on matrix
elements of the remainder of the Born series,

R' '(WX)—=T(w)) —P X V(t W—Hs]—'V)" '. (25)

Suppose that IXI & lr)r '(W) I, and let C be a circle
I
s

I

= p, with radius p chosen so that

I) I «. In.
—(w) I

The matrix elements (Enl T(w, s) IE'n') are analytic
inside and on C, so Cauchy's theorem gives

might be finite and v (8') infinite, because Appendix B shows that
v.2($') (v (8'). In this event, all important results could be proven
as in the preprint by performing a nonunitary similarity transfor-
mation of PW Hp] 'U into the kerne—lE(W) de6ned by Eq. (78),
by using reference 7 for E(W), and then transforming back. I have
just received a preprint by I.. Brown, D. I. Fivel, B.W. I ee, and
R. J. Sawyer, in which precisely this is done in potential theory.' See reference 5; see also N. N. Khuri, Phys. Rev. 107, 1148
(1957).

' R. Newton, J.Math. Phys. 1, 319 (1960).The effort expended
by Newton and by Jost and Pais in proving the convergence of the
Fredholm numerator and denominator is made unnecessary by use
of the theorems described in reference 7.

= (En
I

R&"&(W,X) I
E'n'). (26)

LThe term arising from the pole at v=0 can be deter-
mined by inspection of (23) to be the matrix element of

"We follow the treatment of E.J.Whittaker and G. N. Watson,
3foderN Anolysis (Cambridge University Press, New York, 1950),
4th ed., p. 93.
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the sum in (25).]This has the upper bound

j(EB[R& &(W,X) ~E'S')
[

[(E~~ T(W p; ) ~E'~') ~ve;
(27)

2~(p —~X~) p

which obviously vanishes as P-+ ~. So (23) holds
within the circle of convergence

~

X
~
&

~
gati '(W)

(
. Condi-

tion (15) ensures that the actual coupling parameter
X=1 lies within this circle of convergence, so (15) is a
sufhcient condition for convergence of any fixed element
of the Born series.

We can now also use (27) to determine the uniformity
properties of the convergence. From (iii) and the
Schwarz inequality, we see that

unless, there were an energy eigenstate at E for the
coupling constant X, i.e., unless Xg„(E+ie)= 1 for some
i,' and this is impossible, because X& ~gi ~. (Similar
arguments can be used to justify all of the Fredholm
results for e —+ 0.)

To summarize: Condition (15) is necessary and suffi-
cient for convergence of fixed matrix elements of the
Born series at any fixed 8'. The convergence is uniform
Lin the sense of (29) and (30)] with respect to the state
vectors defining the matrix element. It is uniform in 8"
in any closed region within which (15) holds and T(W, X)
exists. Our basic assumption is the existence of r(W),
defined by (18).

All these results apply equally to the reduced Born
series (12), if we substitute Vi(W) everywhere for V.
The trace r(W) must be replaced by

Tr V, (W) V,t(W)
[W—Ho['

nnl
dE'I(E~I&'"(W X) IE'e') I'/I W

&op'M'(W p); (28)

= r(W) —2 Re(I'(W)
I

V' VI I"(W))
[W H,/'—

M(W, p) =— 0.(W,pe")d8.
+(I'(W)

i
V Vi I'(W))(1'(W)

i
V'i I'(W)).

f
W—Ho)'

In other words, fW —Hp) 'R& '(W, X) is itself ei times
an L' kernel independent of I'. Such convergence is
called "relatively uniform. "' The most important con-
sequence is that for any pair of wave packets

~
ip.) and

~Pi,) normalized according to

the matrix element of the remainder R(~' has an upper
bound

((P. ~
LW—Ho] 'E'P'(W, ~) )f»~ ~~i~(W, p), (30)

which vanishes as I' ~ ~, and which is independent of

ly.) and le�».
Ke must now show that these results can be extended

to scattering problems, where W =E+i,e, with E)0 and
e ~ +0. At first we might anticipate trouble here, be-
cause r (E+ie), 0 (E+ie, X), and 3II(E+ie, p) all become
infinite for ~ =0. But this is misleading. We have already
shown that the true radius of convergence at E+is is not
r 't'(E+ie), but the generally larger value

~
rti(E+ie)

~

and this approaches a finite limit almost everywhere as
e —+ 0. (The only exception arises at E=0 for long-range
forces; see Sec. VI.) To see that this limit is the radius
of convergence of the limit of T(E+i,e, X), we need only
set W=E+ie in (27) and let e —+ 0. All arguments go
through as before, provided that fixed matrix elements
of T(E+ie, X) for Xg p& ~qi '(E+i~)

~
approach finite

limits as e —+ 0. Whether or not this is the case lies out-
side the scope of our work, but on physical grounds we
should expect T(E+ie, X) to stay finite as e —+0+,

If r (W) exists, then usually so will this; at any rate this
point can always be checked easily by direct calculation.

where
A(W, y ')=0, (33)

A(W, X) —=1+(I'(W)
~
VLW —Ho] 'T(W, X) (

I'(W)). (34)

/If the interaction were XV, the T operator would be
T(W,X), and we shall see that the propagator would be
h(W, X).]

(B) All g„(W) f'or which

(I'(W)
i V)@„(W))=0, (35)

or
(36)

To solve (32), we note that it can be written as an

IV EFFECT OF THE QUASIPARTICLE

We now know that a divergence of the Born series
occurs when the kernel LW—Hp] 'V has an eigenvalue
outside the unit circle, and that it will be cured by the
introduction of a quasiparticle if the resulting reduced
kernel PW —Ho]Vi(W) does not have any eigenvalues
outside the unit circle. So we are naturally led to study
the spectrum of the eigenvalues y of the reduced
kernel, de6ned by

LW—Ho] 'Vi(W) IC') =xlC') (32)

We will now show that these eigenvalues x form two
classes:

(A) All roots of the equation
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inhomogeneous integral equation

xlc)=c(w)l w —a,g-'vll (w)&
+Lw —a,)-ivlc»,

where
c(w) = —&I (w) I vie».

There are then just three familiar possibilities:

(38)

~ See, for example, reference 7', p. 50.

(A) The eigenvalue x is not one of the q„(w). Then
Eq. (17) shows that (37) has the unique solution,

IC)=C(W)l W—Ho] 'T(W,x ')ll'(W)). (39)

This satisfies Eq. (32) if (38) holds. Substituting (39) in

(38), we see that if C(W) and
I I) are not to vanish then

x must satisfy (33).
(81) The eigenvalue x is equal to some p„(w), and

C(W) =0. Then (37) shows that IC) must be just

IC&= l~.(w)) (40)

This solves the eigenvalues problem if (38) vanishes,
i.e., if (35) holds.

(82) The eigenvalue y is equal to some q„(w), but
C(W) &0. Then it is well known" that (37) has
a solution if and only if the inhomogeneous term
Lw —Poj—'V

I
I'(W)) is orthogonal to the eigenvector of

&LW—Hoj 'V&t with eigenvalue g, (W), which is just
V I+„(w*)&;hence, (37) has a solution if

0=&+.(W*)
I ULW —Hpj 'V[I'(W))

so (36) is sufhcient for a solution to exist. That (36) is
necessary follows by taking the matrix element of (37)
with &4', (W*)

I
V. If C(W) [CO) is some particular solu-

tion of (37), then the general solution is

lc'&=c(w)LIC, &
—Z„' „le„(w)&j, (41)

where the sum is restricted to p such that g„(W)=g„(w).
Equation (38) can always be satisfied by choosing that
a„as solutions of

P„'&I'(W) [ V[+„(W)&~„=&I (W) I
V [Co&+I

unless all &I'(W)
I V[%'„(W)& vanish, in which case we

are back in case 81.Q.E.D.
We also promised to show that A(W, X) is the propa-

gator for an interaction XV. To see that this is true for
lI = 1, we note from (8) that

&I'(W) I T(W) I
I'(W) )= &I'(W)

I Ti(W) I
P (W) )

+S '(W)&I'(W)
I Ti(W) II'(W)&'h(W).

Using (9) and (10) we can eliminate the (I"
I
Ti[1'& and

E, and obtain

6(w) =1+&1'(W)
I
VLW —H j—'T(W)

I
I'(W)). (42)

If the interaction were XV, and the reduced interaction
were XV~, then the propagator could be derived from

(42) by substituting

V —+ XV, T(W) —+ T(W,X),

This then gives (34).
Ke could have anticipated our solution of this eigen-

value problem. For the operator Ti(W, X
—') obviously

has a pole when y is one of the eigenvalues of the reduced
kernel. 8ut then we see from (8) that either the propa-
gator A(w, x ') must then vanish, or T(w,x ') will also
have the same pole, in which case x would have to be
one of the g„(w).

Formula (34) for 0 (W,X) becomes particularly simple
if the vertices happen to be chosen as linear combina-
tions of a set of nondegenerate eigenvectors 0 „:

ll'(W)&=K g.(w) I+.(W)), (43)

(44)

For then we can use the orthogonality relation

&@„(W*)
I
Vl+„(W))= b„„h„(w), (45)

since (14) and its adjoint Lwith Eq. (87)] show that

=&+.(w*)
I v(w —e,)- v Ie„(w))

=q„(w)&@„(w*)I Vl+„(W)&.

Applying (43)—(45) to (34) we see that

where

G„(W)q„(w)
d (W,h)=1+X Q

1—Xg (W)
(46)

G„(W)=0. (48)

Hence, the spectrum of the reduced kernel depends
solely upon the coefficients G„(W). If there are p non-
zero G„(W), then the reduced eigenvalues are all q„(w)
except the p for which G„(W)&0, plus the p roots of
Eq. (33); hence, no eigenvalues are lost or gained. A
choice (43), (44) of bare vertices is acceptable if all roots
of (33) lie within the unit circle, and if all g, for which
G„=O are already inside the unit circle. Two possible
such choices are offered in Secs. 7 and XI.

G„(W)=g„(w)g.(w)h„(w)

&+ (w*)[v[1'(w)&&1'(w) I VI+.(w)&

&e.(w*)[v[e'(w)&

&4'.(W*)
I
V (W) Ie„(w)&

(47)
&@.(W*)

I
V I+„(w))

LA typical function 6(w,x ') is plotted for real x in
Fig. 1.7 Our previous result may now be stated: The
eigenvalues of the reduced kernel are the roots of
A(w, x ') =0, plus any g, (w) for which g„(W)or g„(W)
vanishes, or, in other words, for which
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IX = —1
I

I
I

I

I

I
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I

I

I

I

I
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I

IX=~1
I

I

I

I

I

I

I

I

I

reduced interaction is

vl I' (w)&&+ (w*)
I
v

Ui(W') = V—
&+ (w")I vl+ (w))

(54)

p= 1

0 ~)&
G„(W)=

and the coefficients G„(W) are, therefore, given by (47)
as

Fro. 1. The propagator n&W, x ') as a function of x, for some
typical energy TV(0. The dashed line corresponds to the "ideal"
choice of Sec. V, and the solid lines correspond to some choice
which is nearly ideal, and which does succeed in rendering the Born
series convergent. The open dots indicate the original eigenvalues
q„(S'), while the black dots denote the eigenvalues y„(g ) of the
reduced kernel. The original Born series (5) diverged here because
q»1, but the reduced series (12) converges because ~x„~ &1 for
all s. The point X=0 is shown as an open dot because it is a point
of accumulation of the q„,. for this reason it is too difficult to
represent what happens in the shaded region. We have drawn this
diagram for a typical attractive interaction. A repulsive interaction
would have all q„negative, while an interaction neither purely
attractive nor purely repulsive would have g„on both sides of q =0.

Before closing this section we must note that the
actual propagator is

rI„(W)
g(W) =1++G„(W)

1—q„(W)
(49)

We can see from (49) or (42) that A(W) has poles at the
bound-state energies —8, which are determined by the
condition that for some p

rt„( 8)= 1. — (50)

V. THE CHOICE OF BARE VERTICES

Together with Eq. (14), this says that I%'„(—8)) satis-
fies the usual Schrodinger equation,

LHo+ v] I
+„(—8))= —8 I@ „(—8)).

It is also possible in scattering problems for rl„(W) to
pass through the unit circle, in which case it will be
complex, and IO, (E+ie)) will represent a resonance.
These matters are discussed fully in Secs. VI and VII.

The introduction of a quasiparticle with such vertices
has the following advantages:

(a) The greatest eigenvalue rti(W) becomes zero for
the reduced kernel Ui(W) LW Hp] ', other eigenvalues
remaining the same. LUse (33), (46), and (55).]Hence,
if there originally is just one culpable eigenvalue outside
the unit circle, the introduction of a quasiparticle ac-
cording to (54) cures the divergence of the Born series.
)If the original Born series diverges because several
eigenvalues rl„(W) are originally outside the unit circle,
then the divergence can be cured by introducing an
equal number of quasiparticles, with reduced interaction

Vle. (w*)&&'Ir, (w) I
U

Vi(W) = V—P . (56)
I., I oi &e„(w*)

I vl e„pv)&

This more general case can be easily handled, but we
shall not discuss it further here. 7 If the Born series
originally converges, then introducing the quasiparticle
just improves the convergence.

(b) It could justly be remarked that the task of
finding I+i(W)& is not much easier than the complete
solution of the original I ippmann-Schwinger equation.
But it must be realized that there is no necessity to
construct II'(W)) and &I'(W)

I
exactly according to

(51)—(53). Assuming rti(W) to be the only original
eigenvalue outside the unit circle, the divergence of the
Born series will be cured as long as Gi(W) is sufficiently
close to unity, and the other G„(W) are sufficiently
small. (Just what "suKciently" means here depends
partly on how far within the unit circle the nonculpable
eigenvalues lie. ) Furthermore, there is a direct and
practical procedure for constructing a

I
I') and (I'I for

which the coeKcients 6, are arbitrarily close to the
"ideal" values (55). Simply start with any initial trial
I
I'Isi& and &I'I"' I, and calculate

The "ideal" choice of bare vertices is

li'(w)) - l~.(w)&,

&I'Pv)
I &e,(w*) I,

II'(w))- I (w —H,)-'v]~lr&. I(w)),

«(W) I
"&I'"(W)ILV(W —H,)-]s(51)

(52)
For then the G„(W) will have the p dependence

(56)

(57)

with normalization and phase chosen so that
G (W) ~rim pv)G Io&(w) (58)

&I'(w)
I
v

I
I'(w) &

= 1. ( )
and by choosing M large enough we can make

I
G, (w) I

Here 4'r is the eigenvector corresponding to the eigen- arbitrarily large compared with the other IG„(w) I

value rlr(W) of greatest modulus. With this choice the Also, we should still normalize II'& and (I'I according to
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the prescription (53):

(I (W) I Vl I (W)&=1.

For then according to (43)—(45) and (59):

(59) 1(~.(W)
I
VIP(W)&l

G„(W)ri„(W)= $(W) (64)
(@„(W)I {W—8's)

I +„(W)&

Q„G,(W) =1, (60)

A (W) =
I

1—rfr (W)j '. (61)

But the rf„(W) are real analytic functions in the cut
W-plane (see Sec. VI) and, hence, so is A(W). Again,
these analyticity and reality properties are necessary
to preserve the appearance of quantum-mechanical
consistency.

(e) If we choose the vertices exactly according to
(51)—(53), then with the aid of (14) and (61) we can
write Eq. (8) for T(W) as

Vl~, (W)&(~,(W*)
I
V

T(W) = Ti(W)+ (62)
(+r(W*)

I
V I+i(W)& 1—gi(W)

Continuing in this way we could, if we wished, develop
T(W) as a series of separable terms like that in (62).

The rest of this section is devoted to a proof that (55)
represents the best possible set of G„(W) that we can
have for 8'&0 if we want to retain the Hermiticity of
Vi(W). Requiring A(W) to be analytic in the cut
W plane then forces us to (55) for all W.

We begin by showing that if Vi(W) is to be Hermitian
for W&0, then all of the G„(W) must be real, and all of
the G„(W)rf„(W) have the same sign. LThe reality of
rf„(W) for W&0 is shown in Sec. VI.] If Vi(W) is
Hermitian we must have

«(w) I =~(W)«(W) I, (63)

where $(W) is real. It follows then from (47) and (14)

so that Gi(W) will be close to one, and the other G„(W)
much less.

(c) For W real and negative, the Vi(W) given in
Eq. (54) is Hermitian. rs This is necessary if we want the
theory modified by the introduction of the quasiparticle
to appear acceptable by the usual standards of quantum
mechanics. LBut, of course, the modified theory is just
a written version of the original one, and hence, auto-
matically acceptable whether or not V& is Hermitian. In
fact, Eq. (54) gives a non-Hermitian Vi(W) for
W= 8+fe.]

(d) The propagator A (W) is given by (49) and (55) as

So since 8"—H0 is a negative-definite operator for 8'(0,
the G„g„must be real, and all must be of opposite sign
to $(W).

Now, the new eigenvalues x (W) of the reduced kernel
are given by (33) as the zeroes of h(W, y '), where the
propagator h(W, X) is given by (46). With all G„rf„real
and of the same sign, this function has the properties:

(A) When x is complex or real so is A, since

G„(W)if„(W)
ImA(W x ') = —(Imx)P lx-.,(w) I

(65)

All terms in the sum have the same sign, and, hence,
can not cancel.

(B) For real x, h(W, y ') either increases (for ()0)
or decreases (for )&0) monotonically with x, since

d G„(W)rf„(W)—~(W,x ')= —E.
~x I:x—~.(w)l'

(66)

All terms in the sum have the same sign. Between
adjacent ri„with G„&0, A either rises from —oo to + co

or drops from + eo to —oo.

From (A) we see that for W&0, all zeroes y(W) of
A(W, x ') must be real. A typical function A(x ') with
property (B) is shown in Fig. 1 for real x, in the case
where )&0, and where there is just one rfi) 1 and no
rf„&—1. We see that the subtraction in Eq. (54) pulls
all eigenvalues to the left, lowering the culpable eigen-
value rft. (Had we chosen f)0, all eigenvalues would be
pulled to the right, increasing the culpable eigenvalue
rfr, and worsening the divergence. )

The new eigenvalues g all lie below the corresponding
q's, but above the next lower g. Clearly, the best we can
do is to lower all of the positive eigenvalues down all the
way to the next lower p, and to lower the negative eigen-
values not at all. (The solid lines in Fig. 1 show a choice
which almost accomplishes this, and which does succeed
in making the Born series converge. ) In order to ac-
complish this aim exactly, we must succeed in making
each q„except g~ an eigenvalue X, ~ of the reduced
kernel. This requires that all G„except G& are zero. In
this case the single remaining eigenvalue X„of the re-
duced kernel is given by (33) as

X„(W)= rent(W) L1—Gi(W) j. (67)
'3 R. Blankenbecler has pointed out in a private communication

that if V is approximated by Us=V~1')(V~ V, and if Us is Her-
mitian and normalized according to (59), then an error of known
sign is made in phase shifts and binding energies. This point is now
being explored by R. Blankenbecler and M. Sugar. It would be
interesting to see whether a similar result holds for our "ideal"
choice of ~I') and (I'~, which does not give an Hermitian Vs in
scattering problems. However, whether or not the error is of known
sign, it may always be reduced as much as we like by using {8) to
(11) with the series (12).

So we see that (51)—(53) does represent the ideal choice
of bare vertices.

Actually the speed of convergence of the Born series
(12) for Ti(W) depends only on the magnitude of the
greatest x. (This is just a guess, and certainly not always
true. ) Since the choice Gs ——0 ensures that the next-to-
greatest original eigenvalue g2 is an eigenvalue X~ of the



STEVEN WE I N B ERG

VI. EIQENVALUES OF THE KERNEL: BEHAVIOR
AND INTERPRETATION

We have seen that any discussion of the convergence
of the Born series must center upon the eigenvalues
rf. (W) and the eigenvectors j+„(W)) of the kernel

LW—H,] 'V. For the Born series diverges whenever
some eigenvalue rf„(W) lies outside the unit circle, and
the divergence can be cured by introducing a quasi-
particle with bare vertices not too diferent from the
"ideal" choice (51)—(53), and hence, approximating the
eigenvector 4'„(W).

In order to facilitate the diagnosis and cure of the
divergence of the Born series, we shall, therefore, first
discuss the physical interpretation of the rf„(W) and
%,(W), and then treat some of their general properties.
A few particular examples are given in the next section.

The eigenvalue problem is

j W —H,j-'Vj+„(W))=rl, (W) j%,(W)). (14)

Here t/t/' can be anywhere in the complex plane, except
on the positive real axis. j In scattering problems we
deal with W =E+ie, with 0&e«E. See, e.g. , Eq. (4).j
This can be rewritten as a modified Schroedinger
equation,

reduced kernel, there is nothing particular gained by
arranging that X„be zero. The reduced Born series will

converge equally well for any G& such that jX„j( jr'& j,
or, in other words, for any G& such that

j1—Gi(W) j
& j»(W)/~r(W) j.

But the choice G&=1 is particularly convenient, since
we can always use the procedure outlined above under

(b) to get sufficiently close to (55) for the reduced
Born series to converge.

state with binding energy —W for the actual interaction
V. When

Req„(E,+r'e):1,—Imq„(E,+s.)«1, (7o)

1 d' I(I+1) V(r)—
+ + tt„(r; IF)

2m dr' 2mr' rf„(W) = Wf. (r; W), (71)

and the condition that j%',) be normalizable yields

f„(r;W) ~r' '+r -+ 0,

~esker r ~ QQ
7

where k is determined by

(72)

(73)

W= k'/2m; Irnk) 0. (74)

(We omit the index l everywhere. ) "Short range" is
taken to mean that for some a&0

for some Eo&0, then there is an energy eigenstate
with energy +Ee for a non-Hermitian interaction
V/rf(Es+ie) which is almost the actual interaction. In
this case the propagator d (Ee+ie) given by Eq. (42) or
(49) (and, hence, also the S matrix), becomes very large
at energy Eo. We call this a resonance or a virtual state,
depending on whether Rerl(E+ie) passes one as E
passes Eo, or just approaches it and then recedes. We
shortly see that in potential probleIns, the wave func-
tions f„c ont ai nonly outgoing waves, agreeing with the
intuitive idea of a resonance as a decaying particle. The
behavior of the phase shift is discussed later.

A special case of particular interest is that of a spinless
nonrelativistic particle of mass m moving with orbital
angular momentum l in a local central short-range
potential V(r). In this case (69) becomes

Leo+a„- (W) VHj+, (W)) = Wje. (W)&. (69) r
j V(r) j

e"i~dr & ~ (75)

It is understood that j+,(W)) must be normalizable;
rf, (W) is determined by the condition that such a solu-
tion exist. Of course, if the "interaction" g, 'V is
Hermitian then such "bound states" can only exist for
real W&0; hence, all rf„(W) must be complex for W
complex. j In particular, rf. (W) is always complex in
scattering problems; j%'.(E+se)) is normalizable for
6nite e, but not for e= 0.7

Equation (69) allows us to describe rl„(W) as a number

by which the interaction V may be divided in order to
have a bound state at energy W. We, therefore, conclude
that the Born series (5) at energy W will converge if and
only if there exists no bound state at 8', not only for the
actual interaction V but also for any weaker interaction
of form V/rf, with j rl j

—1.If V is a repulsive interaction,
or if W is complex or positive, then there can be no
actual bound state at energy S', but the Born series may
still diverge because of some bound state that would be
at W if the interaction were V/rl, with

j rf j
) 1.

When'„(W) =1 for some W&0, then there is a bound

The "range" is the greatest lower bound of a satis-
fying (75).

For IF(0 we get k =is with «)0, and so P„(r; IF) has
the correct behavior as r + ~ for a bound state wave
function. For W= E+ie with E)0, k becomes real and
posi tirade, and so f„(r,k) is a wave function with outgoing
waves only. Of course such solutions never exist for
Hermitian potentials, but they can and do exist for the
complex potentials V(r)/rf„(W).

The wave function f(r,k) for a potential XV(r) is
given by

f(r,k,X) ~ f(—k, X)f(r,k,X)—f(k,X)f(r, —k, X), (76)

where f(k,X) is the usual Jost function, '4 and f(r,k,X) is
that solution of Schrodinger s equation which ap-
proaches exp( —ikr) as r —+ ~. Hence, we see that the
eigenvalues rf„(W) for potential XV may be defined as

"For general l, see R. Newton (reference 10).
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the roots of the equation

f( Ip,—X/iI) =0. (77)

E(w)= —(Hp —W) '"V(Hp —W) '",

which for W&0 is Hermitian. It follows that

(78)

(C) The g„(W) for W&0 are all real. Also, since the
trace of E(W)E (tW)is fi'nite (see Appendix B), we
have

This will be useful when we come to discuss the behavior
of the g„(W) in potential theories.

We shall now describe the properties of pI„(w) for a
general interaction V. No attempt will be made at
extreme rigor, but our conclusions are plausible, and
are borne out by the examples presented in the next
section.

We begin by recalling from Sec. III that for S' not
real and positive, the iI„'(W) are the poles of a mero-
morphic function, the resolvent T(W,X). It follows
immediately that for such W:

(A) The iI„(w) form a discrete set.
(B) At most a finite number E(w) of eigenvalues

pI„(W) lie outside the unit circle. For if an infinite number
of the ri„(W) had

~
iI„(w)

~
& 1, then the iI„'(W) would

have to have a limit point at some 6nite X within the
unit circle; this is impossible for the poles of a mero-
morphic function. [Both (A) and (B) follow also from
the fact that the g„'(W) are zeroes of an integral func-
tion, the modified Fredholm determinant. 7

Result (B) is vital to our program, since it shows that
the introduction of a finite number JI', (W) of fictitious
elementary particles can always cure the divergence of
the Born series at a fixed W. [However, we see in Sec.
VII that K(W) can only be expected to be a bounded
function of W for short-range forces. ] Alternate proofs
of (B) will be given as we go along.

We shall next study the iI„(w) for negative real W;
the results obtained will then be extended to all W by
analytic continuation. The q„(w) are the eigenvalues
of an operator E(w):

0= {+„(W)
~
[(Hp —W)g„(w)+ Vj ~+„(W))

dW

= (@„(W)i (Hp —W)iI„(w) i
+.(W)).

dW

Hence,

1 diI„(W)

q„(w) dW

{+(w) I+ (w))
(82)

{+„(W)i (Hp W) i+„(—W))

But Hp —W is a positive-definite operator for 8'&0,
and so

1 dg, (W)
-&0.

i Wi g(W) dW
(83)

If &iI„(w) is positive at any point Wi &0, then (83) tells
us that it will increase for all W&W~, and of course,
therefore, stay positive. Letting Wi ~ —pp, we get (E).

We have already noted that bound states occur when
one of the iI„becomes unity. [See Eq. (50).]So (E) tells
us that only the attractive eigenvalues yield bound
states, and then only when

iI„(0)~ 1. (84)

There is just one bound state for each eigenvalue iI„(w)
satisfying (84). The fact that such eigenvalues increase
with W just corresponds to the fact that any bound state
is always deepened by strengthening the interaction.

A general interaction V will have both repulsive and
attractive eigenvalues. But things are simpler in special
cases.

creasing or negative and decreasing over the whole
range from W= —~ to 5'=0. These two cases will be
called "attractive" and "repulsive" eigenvalues, respec-
tively, for reasons which will be made clear under (F).
To see that these two possibilities are, in fact, exhaus-
tive, we note that for W&0, (69) gives

[(Hp —w)iI„(w)+ vli@,(w))=0,
and

{0„(W) i [(Hp —W)iI„(w)+ Vj=0,
so that

(D) Then pI, (w) for W&0 obey the sum rules

Q„iIP(W) =7~(w), (X=2, 3, ),

where r~(w) is finite, and given by

p.~(W) =Tr{K~(W)),
or using (78)

rip. (w) =Tr{[(W—Hp) 'VjN).

This shows that as u —+

(F) A purely attractive or repulsive interaction V has
(79) only attractive or repulsive eigenvalues. For (14) gives

{@„(W)i V(W—Hp)
—'Vi@„(w))

iI„(w) = (85)
{@„(W)i V i+„(W))

and so for W &0 the sign of g„(W) is always the same as
t atof

—(e (w) I vie„(w)). (86)

v'IPg (W) —& 0 (81)

which provides an independent proof of (B). We shall
now prove the more surprising property,

(E) Each pI„(w) for W&0 is either positive and in-

The fact that all eigenvalues are repulsive for a repulsive
interaction tells us the obvious fact that no repulsive
interaction can ever yield a bound state.

We shall now leave the real axis and treat the pI, (w)
for complex W.
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(G) Each g„(W) is analytic in the complex W plane,
cut along the real axis from 8'=0 to 8'= ~. This is
apparent upon inspection of Eq. (14). The only excep-
tion expected would arise if several i1„(W) became equal
at some lV; we assume this doesn't happen.

By analytic continuation of (C) and (D), we see that
(H) The t1„(W) satisfy

r1„*(W)=g„(W*). (87)

r1„(W)=
" i.(E)

&E.
E—8' (90)

Equation (88) follows from (C), (G), and the Schwarz
reQection principle. It can also be derived using time
reversal rather than analyticity arguments. If we apply
the anti-unitary time reversal operator 0 to (14), we get

I
W*—&o]-'«I+.(W))=n.*(W)~I+ (W)& (88)

This yields (87), and also

&le„(w))= l~, (w*)). (89)

(I) The i1„(W) obey the sum rule (79) for complex W
as well as for IV&0.

(J) An attractive (repulsive) eigenvalue i1.(W) has
positive-definite (negative-definite) imaginary part in
the upper half of the complex 8' plane. For we have
already remarked that Imt1„(W) never vanishes for
complex W, since when i1„(W) is real the operator
Ho+t1. '(W) V is Hermitian, and hence, can only have
real eigenvalues W. So the imaginary part of r1, (W)
stays positive-definite or negative-definite throughout
the region ImW) 0. But at a point W= Wo+i8 (where
Wo(0 and 0(8((l Wol) we have

i1, (Wp+i8) = ri, (Wp)+ill. '(Wo).

The derivative t1„(Wp) is positive definite (or negative
definite) for an attractive (or repulsive) eigenvalue, so

g„(W) has positive-definite (or negative-definite) imagi-
nary part at We+i', and, hence, everywhere in the
upper half 5' plane.

(K) The i1„(W) vanish in the limit IWI —+ ~, and
have the spectral representation

Here p„(E) is real, and positive (negative) when g„ is an
a.t tractive (repulsive) eigenvalue. The vanishing of
r1„(W) as W ~ —oo follows from (I); if ri(W) exists at
all it clearly must vanish as TV~ —~. The spectral
representation follows then rigorously by use of (G), (J),
and the Herglotz theorem. " One consequence of the
vanishing of t1„(+oo+ie) is that the Born series always
must converge at sufficiently high energy. "

Nothing else can be said about the individual i1, (W)
without putting further restrictions on the interaction
V. This is demonstrated clearly by the erst example
presented in the next section, which shows that for any
given gr(W) having the above properties, an interaction
V may be constructed which yields i1i(W) as one of the
eigenvalues.

But in the problem of scattering by a short-range
potential Las specified by (71)—(75)j it is possible to say
considerably more about the p„(W).

(I ) The function g„(W) has only one singularity in
the complex W plane, a branch point of the gW variety
at W=O. For it is obvious from (77) that the singu-
larities of the y„when written as a function of
k= (2iriW)'" must be the same as those of the Jost func-
tion f( k, X). He—nce, g„(k) may be extended from
Imk) 0 (the physical W sheet) to the larger region"

p (E)~CEl+ (92)

This can be seen by noting from (90) and (85) that

orp„(E)= Imri„(E+ie)
1(EI VI+.(E+i )) I'

(93)
(e„(E+ie) I Vle„(E+ie))

In potential theory this becomes

Imk )—1/(2a),

and so i1„(W) is analytic in gW on the physical sheet.
(We will see in the next section that the same result
holds for the Coulomb potential, except that a pole 8' '
is superimposed on the branch singularity gW. )

(M) For E~ 0 the spectral function of rl, (W) has
the behavior

j i(kr) V(r)f„(r; k)rdr V(r)l P„(r; k)l'dr ,

and the result (92) follows upon use of (72) and (75).
It follows from (90) and (92) that for small E

.V=1; in this case it says that

i1„(E+ie) g„(0)=B„E+iirC—„E'+&, (95) P i1„(W)= —2imk r'V(r) j&(kr)hi&'&(kr)dr (96).
where B„and C„are real. So (95) tells us that this
difference is essentially pure imaginary and grows as
QE for S-wave scattering, while for higher partial
waves it grows as E and is essentially pure real. (See
Figs. 4 and 5.)

(N) The sum rule (79) holds for all W even with

» J. A. Shohat and J. D. Tarnarkin, The ProMerg of moments
I'American Mathematical Society, 1943), p. 23. Without using I'I),
the Herglotz theorem alone would show that q„(8")=OQV) for
Q~oo.

"C. Zemach and A. Klein, Nuovo Cimento 10, 1078 (1958);
A. Klein and C. Zemach, Ann. Phys. (N. Y.) 7, 440 {1959);W.
Kohn, reference S.
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The convergence of the integral is guaranteed by (75),
so we can get (96) for W(0 by the same arguments
that gave (79), and for all W by analytic continuation.

(0) The phase shift for the I-th partial wave at
energy E is

&(E)=Z. ~(.) (E) (97)

0&&()(E)&~

while for a repulsive eigenvalue we have instead

—7r&()(,)(E)&0.

(99)

(100)

This follows trivially from (J) and the definition (98).
For a purely attractive (repulsive) potential U(r) this
shows that the full phase shift (1 (E) is positive (negative)
for all E.

Other results dealing with the high- and low-energy
behavior of the elemental and full-phase shift are
presented in Sec. VIII, and are used there to give a new
proof of Levinson's theorem.

(Q) The i)„(W) can be determined from the elemental
phase shifts ()(,) (E) by the formula

"~(.) (E)
1—q„(W)=exp —— dE .

E—8' (101)

If there is a bound state at energy —8 this must be
modified to read

8 1 " ()(„)(E)
1—i)„(W)=I 1+—exp —— dE . (102)

W o

where the "elemental phase shift" ()(„)(E) is defined by

() („)(E)= ar—g(1 g„—(E+ie)) . (98)

This follows immediately from Eq. (172) for the
Fredholm determinant:

D(W) =g. [I—g.(W)],
if we recall that 5(E) is just the phase of D*(E+ie).The
convergence of (172) and (97) is ensured by (96).
[Actually, the convergence seems to be quite rapid. The
first few ()(„)(E) for 5-wave scattering by the Hulthen
potential are shown in Fig. 4, for a particular energy E
and coupling parameter X. Ke see in this case that
() (i) = 127') () (2) —13', 5(3) 3', and 8(4) = 1', so ()= 144'.j

(P) For an attractive eigenvalue i)„(W), the corre-
sponding elemental phase shift stays in the range

(R) At most, a finite number of eigenvalues i)„(W)
ever leave the unit circle for any t/t/'. For we have already
seen in (B) that the number of

I g„ I
)1 is a finite number

X(W), except perhaps for real positive W. But then
(L) and (M) shows that X(W) is finite everywhere, and
bounded uniformly in t/t/'.

This result is important to all our future work, since
it shows that perturbation theory can be made to work
at all energies in strong coupling problems by the
introduction of a fixed number of quasiparticles.

We close this section by summarizing the behavior of
the g„(W) as W rises along the real axis from —~ to 0,
and then continues just above the real axis, from 0+ie
to ~+'Le

Any attractive eigenvalue )I„(W) rises monotonically
from zero at 8'= —~ to some finite positive value
))„(0) at W=O. Then as W increases further (with
W=E+ie, E)0) g„(W) becomes complex, with positive
imaginary part. (This rise into the complex plane is
initially vertical for S-wave scattering by a short-range
potential, and horizontal for higher partial waves. )
Eventually for E—+ ~, g„(E+ie) returns through the
upper half of the complex plane to the origin. (This
behavior is shown graphically for special cases in Figs. 4
and 5.) When some g trajectory leaves the unit circle,
we have a bound state (for W(0) or a resonance (for
W= E+ie, E)0). In the latter case the elemental phase
shift is increasing through a,n angle less than ir/2; if (70)
hoMs the resonance will be narrow and the angle almost
ir/2. The Born series begins to diverge at the lowest such
energy, and stays divergent until the last q trajectory
re-enters the unit circle. The elemental phase shift is
then less than ir/2.

We have noted in this case that if g„(0))1, then there
is one bound state for this trajectory. If )I„(0)(1 the
bound sta, te is absent, but if g„(0) is only slightly less
than one then the p trajectory will still leave the unit
circle, giving a low-energy resonance. This conclusion
does not hold for 5-wave scattering, since there i)„(E+ie)
rises vertically for small E, and need not intersect the
unit circle. In fact, it is well known that a purely
attractive potential never does yieM 5-wave resonances.

The same behavior holds for —g„(W) in the case of a
repulsive eigenvalue. However, the intersection of an

p trajectory with the unit circle is not associated here
with an actual bound state or resonance, but instead
with one that would exist if the interaction were —V.

These formulas can be derived in the same manner as
the more familiar formulas relating the full Fredholm
determinant to the full phase shift. [The simplest
procedure is to apply the Herglotz theorem" to the
functions

VII. EIGENVALUES OF THE KERNEL: EXAMPLES

The simplest possible example is that of a separable
(and hence nonlocal) interaction,

in[1 —i)„(W)j or ln

and use (98) and (90).$

1—q„(W)

1+8/W
I f)—=2 dEf-(E)

I
EN&.

(103)
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with eigenvalue

2 f-(E) IE&)
O' —E ~

"
p (E)

r)i(W) = dE,
p E—8'

In this case there is an eigenvector

(104)

(105)

W{eV)
13.6

3.4—

3.4-

25,

35,3p

—lg(w) I

pi(E) =)t Z I f-(E) I

' (106) 3s,3p,

All other eigenvalues are zero, so this is the physical
phase shift.

It is easy to check that (A)—(K) and (N)—(R) are all
correct in this case. However, (L) and (M) need not
hold. By 6ddling with the functions f„(E),we can make
pi(E) virtually anything we like. In particular, the cut
from 8'=0 to S'= can be made a natural boundary
rather than a branch line.

All other examples that we treat will deal with local
potentials. The simplest such is the Coulomb potential

V (r) = —Ze'/r. (108)

Here rf„(W) is determined by (71)—(73), except that we
allow the exponential in (73) to be multiplied by a
polynomial in kr. The exact solution for P„(r) is familiar:

P, (r W) =r'+'L, +P'+'( ikr)e'""—(109)

where I, is the usual Laguerre polynomial, and v is an
integer greater than l. For this to actually satisfy (71),
we must have

rl„(W) = iZe'm/vk =Ze'/2v( 2W/m)—'~' (110)

It is easy to check that (A)—(K) hold here, but not
(L)—(R); the spectral function p„(E) in Eq. (90) is

p„(E)=Ze'm/vk.

As v —& oo, rf„—+ 0, but too slowly for (96) and (97) to
converge. Instead, we have

gee~
8(E)=

and elemental phase shift

"
p (E')

alii (E)=arctan s.pi(E) 1—P dE' . (107)
E—El

13.6—

Fro. 2. Absolute values of the eigenvalues v„(W) vs W, for the
Coulomb potential —e /r. The Born series begins to diverge at the
lowest bound state (small circles) and continues to diverge
(darkened curves) until all v„(W) have re-entered the unit circle
(small squares). For W&0 the v„(W) are positive, while for W&0
the phase is +i.

state energies,
k„=iZe'm/v, (112)

which yield the not unfamiliar formula,

W, = —mZ'e4/2 v'. (113)

The Born series for T(W) diverges for a given partial
wave l as long as one of the

~
rf. (W)

~

with v&l+1 lies
to the right of the line g= 1. Hence, the S-wave series
diverges from W= —13.6 eV to W= 13.6 eV+ie; the
I'-wave series diverges from 8"=—3.4 eV to 5'=3.4
eV+ie, and so on. (When we refer to the Born series
here, it should be understood that we use it to calculate
(E

~
T(E+ie)

~

E') in each partial wave, then sum over l,
and only then set E=E'.)

But the important point is that these divergences can
be cured. For example, if we introduce a 6ctitious spin-
less elementary particle corresponding to the is bound
state, then the l=0 Born series will be rendered con-
vergent, except in the energy range —3.4 eV to +3.4
eV+ie. The Columb potential has the unfortunate
property that every p trajectory gets outside the unit
circle for some small S', and hence, if we wanted to make
the Born series convergent for a/l 8", we would have to
introduce an infinite number of fictitious elementary
particles.

However, this difficulty is happily absent for short-
range potentials. To illustrate this, we consider afinal
example, the S-wave scattering by a Hulthen potential':

where y=0.577 . Also if„(0) is infinite, so that (M)
and (R) cannot hold here. Clearly, the failure of
(M)—(S) for the Coulomb potential is wholely due to its
long range.

The ~rf, (W)
~

for the Coulomb potential are plotted
against W in Fig. 2, for the case Z=+1. The r)„(W) are
positive for 8'(0, and so the intersections of these
curves with the vertical line

~
rf

~

= 1 determine the bound

V (r) = — [e"'—1)—'.
2ssc

This looks like the Coulomb potential (108) for r&(a, if
we identify

Ze'= X/2ma (115)
'~ L. Hulthen, Ark. Mat. Astron. Fysik 28A, No. 5 (1942);29B,

No. 1 (1942).



QUASIPARTICLES AND BORN SERIES

but for r))a it is cut o8, approaching the exponential
potential

V(r)—— exp( —rja).
25$C

It is well known" that the exact Jost function here is

f(k,X) =g 1—
v (v+ 2ika)

and so the roots of Eq. (77) are

(117)

!

2
—Reg

X
&I„(W)= (v~ 1)

v (v —2ika)
(118)

v (v+ $ 8m—Wa')»')

For example, the exact solution of (71) for v=1 is

(r I&,)—ersr (I e rle)—
The spectral function of the &I.(W) is

) (8mEas)»'
p. (E)=

&r v(v'+8mEa')

(119)

(120)

and the elemental phase shifts are

tani&(„& (E)=
v(v' —X+4k'a')

(121)

V=3 V

W
3B-

V=2

2B—

-2B—

—3B-

' See reference 4.

Fxo. 3. Absolute values of the 6rst three S-wave eigenvalues
r&„(W) vs W, for the Hulthen potential

V(r)= — Le"&~—Ij '.
'A

2m'

}Here 8 is the energy (grno2) '.j We have drawn these curves for
) =2, but the g, just scale with ) .The Born series begins to diverge
at the bound state (small circle) and continues to diverge
(darkened line) until vr(W) has re-entered the unit circle (small
square). For W(0 the v, (W) are positive, while for W)0 they
are complex.

Frc. 4.Trajectories of the first four S-wave eigenvalues v„(W) in
the complex plane, for the Hulthdn potential

I'(r) =—
} e"—I?'.

21Ã$

! Here )I as usual is defined as (2raW)»'. g We have drawn these
curves for &&=2, but the r&„(W) just scale with &&. The arrows indi-
cate direction of the trajectories as g increases from —00 to
ao+r', e The B. orn series begins to diverge at the bound state (small
circle) and continues to diverge (darkened trajectory) until »&(W)
re-enters the unit circle (small square). The angles shown by small
double arcs near q= 1 are the erst few "elemental" phase shifts
5&„&(W) at ko = i; we see that 5 o& is somewhat less than e (actually
127') while the other s&„& are close to zero. }This geometrical
construction was suggested by some work of C. Lovelace fNuovo
Cimento 25, 730 (1962)] on Regge poles. }

For ka))v these formulas revert to the Coulomb ones.
For finite u, we may easily check that at/ of the proper-
ties (A)—(R) hold here.

We have plotted ~&I.(W)( versus in Fig. 3. The
number of p-trajectories that leave the unit circle at any
energy is {~)&

~

'"},and hence, this is the precise number
of fictitious elementary particles that must be intro-
duced if we wish to render the S-wave Born series
convergent at all energies.

We have also plotted in Fig. 4 the trajectory of the
complex numbers &I„(W) for W rising from —&e to 0, and
then becoming W=E+ie, with E rising from 0 to + eo,

in the special case X=2. The dark lines indicate the part
of the p trajectory on which the Born series diverges; in
this case the series diverges from W= —8 —(8ma') '
(the bound-state energy) to W= 38+is No resona. nces
can occur for the S-wave, so we have plotted in Fig. 5
a guess at what the p-trajectories look like for /=1.
Again, the Born series diverges along the dark lines.

VIII. LEVINSON'S THEOREM

We have studied the eigenvalues &I„(W) in order to
gain insight into the failure and repair of perturbation
theory. Unexpectedly, the information assembled in
Sec. VI turns out to be suQicient to provide a new proof
of Levinson's theorem. Ke present it here not because
it is a better proof, but because it makes clearer the
relation between the behavior of phase shifts and the
convergence of the Born series.

It has been shown in Sec. VI that the phase shift il(E)
for scattering by a short-range potential in the l-th
partial wave is the sum of "elemental" phase-shifts
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where 7)„'(0)&0; hence, in this case

li(„)(0)=7r, (129)

and we regard this as a zero-energy bound state.
So we see that (124) holds if we let I be the number

of bound states, including zero-energy bound states for
1/0, and counting an 5-wave resonance at zero energy
as half a bound state. This is the full Levinson result. '

Frc. 5. A guess at the form of the trajectories of the first four
P-wave eigenvalues q„(g ) in the complex plane, for some typical
attractive short-range potential. The arrows indicate direction of
the trajectories as W increases from —00 to ~+is. Here there is
both a v =1 bound state (small circle) and a v =2 sharp resonance
(small triangle). The Born series diverges (darkened trajectories)
until 7)r(W) and 777@V) both re-enter the unit circle (small squares).

~(,) (E):
&(E)=Z &()(E)

()(„)(E)= arg—)1 71„(E—+is)) (98)

5( ~)=0. (122)

For finite E we saw in part (J) that each 71„(E+ie)stays
in the upper (or lower )half plane, and for E—+ 0 the
7)„(E+ie) approach positive (or negative) constants
7)„(0) /parts (E), (M)j. It follows then from (98) that

For E—& co it was shown (part E, Sec. VI) that all the
rl, (E+ie) vanish and, hence,

IX. CONDITIONS FOR CONVERGENCE

We would like to be able to use either experimental
information or a knowledge of the interaction to decide
directly when the Born series diverges, and when the
divergence has been cured. Our condition (15) is all very
well, but it does not accomplish this aim. Unfortunately,
we do not know any complete solution to this problem,
but we will present some partial answers here.

Suppose 6rst that we measure the phase shift and all
binding energies, and would then like to know whether
the original Born series converges at a given 8'. For
S'&0 with a purely attractive interaction the answer is
trivial; the Born series diverges from S'= 0 down to the
lowest bound state, and converges below that. For
scattering problems (where W=E+ie) there is no
simple answer, unless we are willing to assume that the
full-phase shift 5(E) arises mostly from the biggest
elemental phase shift l) r (E). In this case we can calculate
the biggest eigenvalue 7)r(E) from (101) (assuming no
bound state) and we get

i
7)r(E+ie)

i

'= 1—2F (E) cos() (E)+F'(E)

0 q„(0)&1
~(.)(0)=

~„(0)&1
(123)

P 00

F(E)=exp —— ~(E')
dE'

jV~ jV

(130)

and so

r(o) = ~~, (124)

where 7r is the number of 7)„(0) greater than one. But the
remarks after part (E) in Sec. VI made it clear that
there must be precisely one bound state for each such
71„(0),so that 77 is the total number of bound states.

The one special case not yet accounted for arises if
some eigenvalue has

71„(0)= 1. (125)

For S-wave scattering, Eq. (95) shows that as E~ 0

71„(E+ie)~ 1+i7rC„E'",

where C„&0;hence, in this case

(126)

li (,) (0)=7r/2, (127)

71„(E+ie)—+ 1+7)„'(0)E, (128)

and we speak of an S-wave resonance at zero energy. On
the other hand, for scattering with lQO, Eq. (95) and
part (E) show that as E +0—

We must check whether this ~7)r~' is less than one if we
want to decide whether the original Born series con-
verges; however, the series dehnitely diverges if cosh~&~

is negative, i.e., if 8 b(~) and if

~/2&)S(E) ~(~. (131)

'9N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1947).

'0 V. Bargmann, Proc. Nat. Acad. Sci. 38, 961 (1952)."J.Schwinger, Proc. Nat. Acad. Sci. 47, 122 (1961).

These conclusions apply only to the Horn series for
T(W); the presence of 6ctitious elementary particles
invalidates them for Ti(W).

Now suppose instead that we know the interaction
V or (Vi), but do not have any experimental information.
The complete problem of fj.nding when the Born series
converges is certainly at least as hard as that of locating
all bound states. But it is possible to be sure for some
values of W&0 that the Born series converges. (This
was 6rst realized by Hargmann, " and elaborated by
Schwinger. ") For if we calculate rs(W) Lsee (80)) and
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find that for some 8'&0,

r2(w) (1, (132)

Suppose we choose the bare vertices well enough so
that the Born series (12) for Ti(w) converges. Then it
is reasonable as a first approximation to estimate

8& (ra'/8m') d'rV'(r) (132)

then we can be sure from (79) that none of the it.2(w)
are greater than one; the Born series, thus, converges at
W, and, hence, at all lower energies. The sum rule (79)
also tells us that the number of bound states below 8' is
less than r2(W). LThis is a somewhat improved version
of Schwinger's proof; Schwinger converts (14) into a
self-adjoint eigenvalue problem by defining

z'(w) =
I
UI»2(w —a,)-iI UIii2

and using the fact that the Born series must converge
for V if it does for

I
V I. Our trick of defining E(w) by

(78) avoids the troublesome business of defining
I
V

I
for

a general interaction. $
It should be emphasized that if r2(w)) 1 then the

Born series may still converge, since a few eigenvalues
smaller than one may still conspire to give a large 72. If
we suspect that this is the case, we should calculate
r4(W), r6(W), , since if all

I it„
I

are less than one then
this sequences must eventually reach a value less than
one. But of course we do not know where to stop.

Unfortunately, there does not seem to be any com-
parable decision procedure available for scattering
problems, where the eigenvalues q„(E+is) are complex.
Perhaps one exists, but I have not been able to dis-
cover it.

Another possible way of learning that the Born series
converges is to compute the trace r(W) Lsee (18)j and
find that it is less than one. The discussion of Sec. III
makes it clear that this is a su%.cient but not a necessary
criterion for convergence; in particular it is useless for
scattering problems where r (E+ie) is infinite. However,
it leads to an amusing result for bound states. If
r(W) (1for some W&0, then the Born series converges
at and below 8", and hence, lV must be less then the
lowest bound-state energy —B. Using (A2) and (A3)
(Appendix A), we obtain an upper bound on the binding
energy in potential problems,

Ti (W)=Vi (W). (133)

Inserting this in the exact formulas (8), (9), (10), we get

T(w)—Vi(W)

+X '(W) 0 (W) Vi(W)
I
F (W) )(F(W) I

Ui (W)

J(W)= v+ vI F(w))(F(w) I v,
1—J(W)

(134)

and

y(w)=iv- (w)(F(w) I
v, (w) v, (w)

I
F(w))8'—Hp

=(F(w)
I
« IF(w)).8'—Hp

(135)

J( 8)= 1. — (140)

We will apply these results to the case of a spinless
particle of mass ns moving with orbital angular momen-
tum / in a local central potential U (r). In this case (135),
(138), and (139) become

LTo get (134) and (135), we have used the identities

Vi(W) I
F (W)) = )V(W) V

I
I'(W)), (136)

(I'(w)
I
v (w) = (F (w) I

«E(w). (137)

All factors X(w) just cancel out, as promised in Sec. II.j
With (134) and (135), we can calculate the S matrix

I
see Kq. (4)] as

J(E+ie)
S„„(E)—S„„e(E)—2~i

1—J(E+ie)
x(E&'I UIF(Egin))(F(E+i6)

I
VIE~) (»8)

where S is the S matrix in the usual Born ap-
proximation,

S- -'(E)= ~"-—2~i(E~'
I
V IE~)

Also, if there is a bound state, its binding energy 8 can
be calculated from (135) as the root of

which may be useful in conjunction with the lower
bounds on 8 provided by variational calculations.
Equation (132) may be used with any local potential
V(r) for which the integral exists, and holds for all
bound states.

X. PRACTICAL CALCULATIOHS

Our ultimate goal is to be able to perform relativistic
strong-interaction calculations by perturbation theory.
But it seems appropriate at this point to pause and show
that the methods developed so far can be used in
practical nonrelativistic calculations of binding energies
and phase shifts.

J(w) = —2imk dr dr'I'(r, W) V(r)
p p

Xrji(kr&)k&"'(kr&)r'V(r')F (r', W), (141)

J(E+i&)
e""e'=S(E)=S (E)—4mki

1 J(E+ie)—

drI'(r, E+ie) V(r)rj i(kr)

&( drrj i(kr) V(r)F(r, E+ie), (142)
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Sn(E) = 1—ski r'j '(kr) V(r)dr. (143)

Here k is defined, in general, by (74); it should be taken
real and positive in (142) and (143), and equal to
i(2rNB)'I' in (140). Also

Our guess at the form of the bare vertices must also be
conditioned by the requirement that they approximate
the eigenvector 0 ~. For example, in potential problems,
we know that Pi(r, W) must have the properties (72) and
(73) so as a first crude guess we may try

(r
~
I'(W))=—I'(r, W),

(I (W) ~r)=1(r,W).

(144)

(145)

I'(r, W) =C(W)r'+'e""

I'(r W) = I'*(r W*)=C*(W*)r'+'e'"'

(147)

(148)

It only remains to describe how we guess at a choice
of ~1'(W)) and (I'(W)~. In general, we will always
choose their normalization to agree with that of the
"ideal" choice, i.e.,

(F(W) i V)1'(W))=1,

I Equation (148) follows from the fact that (244sW*)'l'

must be chosen to have positive imaginary part, so tha&

it equals —(L2mW]"')*.]The normalization condition
(146) then gives

or in potential problems y2l+2esi sr V (y)dy
C (W)C'" (W*)

(149)

I'(r, W) V(r)I'(r, W)dr=1. (146)
so inserting (147)—(149) in (141) and (142), we get

J(W)=—2imk dr dr'rl+'e""V(r)j l(kr()hi&" (kr))r"+'e""'V(r') r"+'e"s"V (r)dr (150)

J(E+is) —-
e"' lE& =S(E)—S~(E)—4irisk

1—J(E+ie) p

dre's "r'+'V(r) J l (kr)

dresses

rys i+2 V (y) (151)

J(W) = (156)
2 (1—ika) 2 (1—i(2ma'W$"')

With these formulas we expect to get a fair approxima- we can calculate (150) easily, and get
tion to the lowest bound-state energy, and to the phase
shift 8(E) for any energy for which not more than one
eigenvalue 41,(E+is) is outside the unit circle. In par-
ticular, the scattering length as is defined by

S(E) +1—2i a-sk+'.
E~p

The binding energy 8 of the deepest bound state is given
by (140) as

Comparing with (151), we get lla= —1 a= (2nZB)"'
2

(157)

asB
as=

1—J(0)

where asB is the Born approximation value

asB r"+'V (r)dr.
(2)+1) I ls

(153) The coupling strength required to give a bound state
with zero energy is Xp= 2, as compared with the exact
value" 'Ap=1. 68. The agreement looks even better in
Fig. 6, where we plot aa versus X for the exact answers"
and for Eq. (157).

The Born approximation scattering length (154) in
this case is

asB= —Aa.

(159)

~ J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949)."R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. SB, 991
(1938).

~We have used results of Blatt and Jackson, reference 22,
extrapolating slightly.

V(r) =
2tnar

(155)

Equation (153) is expected to be a fair approximation
as long as the potential is not so strong that it (or Our corrected scattering length (153) then is
—V(r)) can give more than one bound state, whereas
the presence of any bound states would certainly make
asB a very bad aPProximation to the scattering length. Both values are plotted in comparison with the exact

These formulas seem to do well on comparison with vaiues24 ln Fig. 7; our new Born approximation (1.59)
exact calculations. For S-wave scattering by a Yukawa
potential,
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FIG. 6.The lowest S-wave bound state, for the Yukawa potential

U(r) = — e "&'X

2m'
as a function of X. (Here the binding energy is es/2m. ) We compare
the exact answer (EX) with the result of using the erst Born
approximation (QB) after insertion of a quasiparticle with the bare
vertices (147)-(149).

) /a= 2mZe'

In this case (156) gives

2tsZQ g

(160)

certainly does much better than the original Born ap-
proximation (158).

For infinite range c, the Yukawa potential goes over
into the Coulomb potential (108),provided that we keep
) /u constant and equal to

EX~
QS

Fn. 7. The S-wave scattering length az, for the Yukawa
potential

U(r)= — e "~X

2tÃQr

as a function of X. We compare the exact answer (EX), the
ordinary Born approximation (OB), and the Born approximation
(QB) used after the insertion of a quasiparticle with the bare
vertices (147)—(149). The short vertical arrows at X=1.68 and
X=2 mark the points where uq becomes in6nite because of an
S-wave resonance at zero energy, for the cases (EX) and (QB),
respectively.

In order to improve the range of validity and the
speed of the convergence, we can try to make a better
guess at our bare vertices. A particularly promising set
for 5-wave scattering by a potential of finite range a
)see (75)] is

J( B)=- .. Ze'(rrs/2B)'ls (161)
2 (1+L2rrsgsB]1/2) a~w I'(r, W) I'(r, W) e'"(1—e '~). (163)

The binding energy of the lowest bound state is then
given by (140) as

(162)

which is exactly the right answer. This striking success
in calculating the hydrogen atom binding energy in
first-order perturbation theory is just due to the fact
that our guess (147) and (148) happens to be the
"ideal" choice for the Coulomb potential, since it equals
the exact solution (109) for v=I+1.

It must be realized that these crude results are capable
of infinite refinement. All that is needed is to keep
successively higher terms in the series

Ti(W) = Vi(W)+ Vi(W)LW —Hp] 'Vi(W)+ ~, (12)

and substitute them in the exact expressions (8)—(10).
This sequence of approximations will converge for a
range of energy and coupling parameter which may be
conditioned by the choice of bare vertices, but will
certainly be much wider than the range of validity of the
ordinary Born approximations. No matter how crude
the choice of bare vertices Land our choice (147) and
(148) is far from ideal for short-range forces] this scheme
of successive approximations will give exactly correct
answers where it converges at all. (Of course, each suc-
cessive approximation depends on the choice of j

I') and
(I' ~; only the final answer does not. )

This has a number of advantages:
(a) It has exactly the right asymptotic behavior

Lsee (72) and (73)] both for r —+0 and r-+ po. The
previous choice re'"" made in (147) and (148) behaves
correctly at r —+ 0, but it is not quite right for r —+ 00,

except of course for the Coulomb potential, where it is
perfect.

(b) We remarked in Sec. V that any choice of ~i')
can be improved by applying the scattering kernel
t'W —Hp] 'V to it. If we try to improve re'"" in this
way, we get (163) for S-wave Yukawa scattering.

(c) Comparing with (119), we see that Eq. (163)
gives the exact wave function fi(r, k) for the Hulthen
potential. This means that the equation J(—B)=1
when evaluated to first order in Vi(W) will yield the
exact binding energy of the deepest state bound by the
Hulthen potential, just as (147) and (148) gave the
right answer for the Coulomb potential. More impor-
tant, it means that (163) will not be very different in
form from the ideal bare vertices for any reasonable
potential of range a, including the Yukawa potential
(155). Thus, it should give rapid convergence for all
energies and coupling constants such that all but one
eigenvalue il„(W) lies well within the unit circle.

A program of calculation of phase shifts and binding
energies based on Eqs. (140)—(146) and (163) has been
begun, and will be reported in a later paper.
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n»(W)
G.(W)= II

»wv, » &» g„(W)

G„(W)=0

(p(p) (164)

(»)p). (165)

XI. THE FREDHOLM CHOICE

Ke have seen in Sec. V that if the reduced interaction
V& is formed by subtracting a sirIgle separable inter-
action Ve ——Uil')(I'~ V from V, and if Ve is subject to
certain Hermiticity and analyticity conditions, then the
most we can do to improve the convergence of the Born
series is to choose Vq so that the greatest eigenvalue q~

of the original kernel is reduced to zero. Now we shall
show that if the Hermiticity condition on U& is lifted
then a sirlgle Ug can be chosen so that any elmber of
eigenvalues are reduced to zero; this is essentially the
Fredholm method.

Suppose we want the first p eigenvalues of the reduced
kernel to be zero, and the others to be the original
eigenvalues )t„(W) with») p. We will now show that the
unique choice of G„(W) which accomplishes this is

whose solution is (164). The propagator d, (W) is easily
derived from (167), since

( I —1

A(W)=d, (W, 1)=e(W,1) g~ 1— . (169)
v&»( g„(W)

Using (168) then gives (166).
It is never possible to get the coefficients (164) and

(165) with an Hermitian reduced interaction Vi(W),
since then for W(0 all of the G„(W)/g„(W) would have
to be of the same sign. But (167) and (168) show that
for p) 1,

8
e(W,X)= —2 G, (W)/v, (W) =0, (»0)

v(y

which would then be impossible.
When V is a short-range potential, the rl„(W) vanish

for» ~ ~ rapidly enough so that the products (164)
and (166) converge in the limit p —+ ~. [See Eq. (96).]
Then we see that there is a unique choice of the coeK-
cients 6„:

Furthermore, with such a choice of bare vertices, the
propagator is

q„(W)-
G.(W)=II

q„(W)
(171)

A(W)= g [1—q„(W)] '. (166)
v&y

Proof: We showed in Sec. IV that (165) is the necessary
and sufficient condition for the rl„(W) with») p to be
still eigenvalues of the reduced kernel; if (165) holds
then the other p reduced eigenvalues are the roots x of
a pth order polynomial in X D (W) =6 '(W) =+„[1—q„(W)]. (172)

.such that all eigenealues of the reduced kernel are sero.
The reduced kernel Vi[W —Ho] must then have
Fredholm determinant unity, since all its powers have
trace zero. It follows then from (13) that the original
Fredholm determinant is just

e(W,.)=~(W,x ') ll 1—
&» rl„(W)

Our argument is nonrigorous, but the answer is certainly
correct.

It should be mentioned that if the biggest eigenvalue
G„(W)&„(W) t'ai(W) is very much larger than the next biggest &2(W),

1+P g 1—
~

(167) then (171) gives
v &» x—q„(W) ~ &» rI„(W)l

[See Eqs. (46) and (33).]These p roots will be zero if and
only if Q(x) is just proportional to x". The constant of
proportionality can be determined by noting from (167)
that

so the necessary and suKcient condition for the first p
reduced eigenvalues to be zero is

(168)

G (W) = 1+Oh. (W)/. (W)],
G„(W)=0[F2(W)/gi(W)] »W1.

(173)

Hence, in this case the Fredholm choice gives essentially
the same coefficients G„(W) as did the "ideal" choice
of Sec. V.

For a long time it has been implicitly known that the
Fredholm method can be understood as a special case of
the quasiparticle method, at least for short-range
potentials. The scattering kernel in position space in the
lth partial wave is

(r
~
G(W) V

~

r') = —ikrr' ji(kr()hii') (kr&) V(r'), (174)

But (167) and (168) are equal if and only if they are
equal at the p points g„(W)(»(p). This gives the p
equations

q„(W)- q, (W)~—G.(W) II 1— = II—
» &», »& g»(W)»&» )7»(W) I Gi(W) =G(W) —Ge(W), (176)

G(W) = (W—Ho)
—'. (175)

We may define a reduced kernel as Gi(W)V, where
Gi(W) is
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Gs(W) being the separable operator defined by"

(r
I
Gs(W) V

I
r') = —ikrr'ji(kr)hi&'i(kr') V(r'). (177)

It is easy to see then that the reduced kernel must have
Fredholm determinant unity, since its matrix elements
are

(r I Gi(W) V
I
r') = —i krr'0(r —r') j&(kr')h&&'i (kr) V (r'),

APPENDIX A: CALCULATION OF c(W)

Ke consider first the three-dimensional problem of a
particle of mass m being scattered by a local potential
V(r). In this case the trace r(W) is given by (18) as

r(w) =4~' d'q(ql v'I q)/lk' q'I' (A1)

r (W) =I (W) d'r V'(r)

and obviously all its powers have zero trace. Qy the where k'=2mB'. In position space this becomes

same algebra that gave (42), we can show here that the
propagator of the quasiparticle corresponding to (176) is (A2)

A(W) = 1 ik— dr dr'r'h&"& (kr') T(r', r) r j&(kr), (179)
0 0

where as usual
T= V+VGT.

This is identical to one of the formulas" for the
inverse of the jost function f(—k). But the Fredholm
determinant D(W) of the original kernel is given by
(13) as A '(W), since Di(W) = 1. This proves the well-
known result" that

I(W) =
I
4m'/(2m. )'] d'q(1/

I

k' —q'
I
')

=m'/2~
I
Imk

I
. (A3)

So r (W) is finite if (19)holds, and if W is off the positive
real axis.

To go over into the partial-wave problem for a central
potential V(r), wemaynote that IW —IIOI 'becomesin
position space

D(W) = j'(—k). (180)

It is not at all clear to me how the choice (177) corre-
sponds to the formula (171) for G„(W), nor how in a
more general problem we can make such a felicitous
guess.

Which choice of bare vertices should we aim atapproxi-
mating, the "ideal" choice of Sec. V or the Fredholm
choice described in this section? It is not at all clear
which choice gives the most rapidly convergent reduced
Born series (12),but there is a different sort of reason for
preferring the "ideal" choice. We showed in part (b) of
Sec. V that we can always make any trial bare vertex
F "& more and more "ideal" by repeated multiplication
with the scattering kernel LW—II0$ 'V. There is no
equally general procedure for approximating the Fred-
holm coefficients (171), though we have seen that there
is'a trick available in potential theory which makes the
reduced kernel of the Volterra type, and which must
therefore yield (171).Until we learn how to use this trick
more generally the choice of Sec. V is to be preferred; it
makes only one reduced eigenvalue zero, but for just
that reason it is easy to approximate. And let us stress
once again that even a very rough guess at a more or less
ideal li') and (I'I will enable us to get exact results
by using more and more terms of the reduced Born
series. We make no claim that this is the best way of
solving two-body problems, but we hope that it may be
a way (and perhaps the only way) of solving harder
problems.

'5 For S waves, see R. Jost and A. Pais, reference 5. For general l,
see R. ¹wton, reference 10.

"See reference 10, Eqs. (4.4) and (4.8).

m2 p&akpIml, (A4)
k p

where k is the square root of 2mB' with positive
imaginary part, and p= Ir—r'I. Using the well-known
partial-wave expansion of e'~p/ikp, we find that

XP, (r" r')I, (r,r'; k); (A5)

Ii(r,r', k) = (4m'/Imk')

XIml ik ji(kr&)h&ii& (kr&)). (A6)

Hence, the trace r(W) is given by a sum of partial-
wave traces

where

r(W) = Q (21+1)r(W,/),
L=O

(A7)

r(W, l) = V'(r)Ii(r, r; k)r'dr (AS)

It is easily seen that I&(r,r; k) approaches a constant as
r —+0, but behaves like r ' as r —+ ~, so that ri(W)
exists if (20) holds and if W is not real and positive. For
W(0, k=is, where a= (2nz

I
W I)"')0. In this case, the

partial-wave trace stays finite, because the numerator
a,s well as the denominator of (A6) vanish. For example,
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the S-wave trace is

2m'
r(W, O) =

Imk' p

~g2ikr

V'(r) Im
f

dr, (A9)
zu

so that

r, (W) (r(W). (83)

For example, for the Yukawa potential (155)., (B1) gives

and when k —& i~ this becomes
r2 (W) = (V/4~4) d'q d'q'

r(W 0) = (m'/»') V'(r)L1 —e '""(1+2»r)7dr. (A10)
)&1/

f
q' —2mWffq" —2mW

f
L1+a'(q —q')'g'.

This is finite, even for the Coulomb potential, for which
we get

r (W,O) = 2Z'e'm'/»' (A11)

APPENDIX B: CALCULATION OF s2(W)

It is easy to see that the operator E(W), defined by
(78), is an L' kernel whenever LW—Hp7 'V is, because
the trace r&(W), defined by

r2(W) =Tr(E(W)Et(W)) = Q dE
nn'

X f
(E~

f
V

f

E'~')
f
'/

f
E—W

f
fE' —W f, (B1)

ma,y be written as

r, (W)=r(W) ——', g dE dE'f(E~f V fE'«)f2

&& f f
W—E

f

'—
f
W—E'

f

—']' (82)

In this particular case the actual radius of convergence
of the Born series Lgiven by fbi f

'; see Eq. (110)) is
greater than v='~' by a factor of V2, in accordance with
the general remarks of Sec. III.

On the other hand, r(W) is given here by (A2) and
(A3) as

r (W) =X'/4»a (B5)

which verifies (83).The fact that r (W) becomes infinite
as ~ —& 0 does not imply that the Born series breaks
down there, because Sec. VI shows that q„(0) is finite;
in fact, we even see from (B4) that r2(0) is finite.

Note added im proof We ha. ve observed in Sec. III
that the scattering kernel E is not L' for the full three-
dimensional Coulomb-scattering problem. However, it
can be shown that the kernel here is completely con-
tinuous Pin the sense of functional analysis) because
(EtK)' has a finite trace, and that, therefore, all the
important theorems of this paper hold even in this
case. However, for Coulomb scattering there are serious
mathematical difficulties associated with the limit e —+ 0
in Eq. (4).

With 8'( 0, the integral can be done in closed form;
we get

r2(W) =X2/2(1+2»a); »= (—2mW)ii2. (B4)


