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Gravitational Radiation from Point Masses in a Keplerian Orbit
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The gravitational radiation from two point masses going around each other under their mutual gravita-
tional influence is calculated. Two different methods are outlined; one involves a multipole expansion of the
radiation field, while the other uses the inertia tensor of the source. The calculations apply for arbitrary
eccentricity of the relative orbit, but assume orbital velocities are small. The total rate, angular distribution,
and polarization of the radiated energy are discussed.

I. INTRODUCTION

HE linearized version of Einstein's general theory
of relativity is strikingly similar to classical elec-

tromagnetism. In particular, one might expect masses
in arbitrary motion to radiate gravitational energy.
The question has been raised, ' however, whether the
energy so calculated has any physical meaning. Ke shall
not concern ourselves with this question here; we shall
take the point of view that the analogy with electro-
magnetic theory is a correct one, and energy is actually
radiated.

In Sec. II we outline briefly two methods which can
be used to calculate rates of emission of gravitational
energy from a system of masses on which no net external
force acts. Only enough details are presented to enable
them to be applied to other problems; derivations and
proofs are omitted. In Sec. III these methods are applied
to obtain the total rate of radiation by two point masses
going around each other in the familiar Kepler ellipse.
In Sec. IV we discuss the angular distribution and polar-
ization of the radiation.

II. GENERAL METHODS

A. Inertia Tensor

If one linearizes the equations of general relativity,
setting' 4

gd ~= o~++hdd» ( I
~~td~ I

&& )

with g'= 32~G, one obtains

The energy density in a plane wave

1s

Jtddr = hddr= tteddp cos(tot —k'X)

U = -'c'~'a'
2 (2)

provided e„v is a unit polarization tensor, obeying the
conditions

1 1
et (xx ——j—g) e—s ———(Xg+jx).

v2 W2

One can now solve (1) for the radiation from a system
of masses undergoing arbitrary motions, and use (2) to
obtain the power radiated. The result, ' assuming source
dimensions are small compared with the wavelength
("quadrupole approximation"), is that the power
dP/dQ radiated into solid angle 0 with polarization e;; is

dP G d'Q
e;;~,

dD 87rcs dts

where Q;; is the tensor

e„„=e„„, e»= 0, k„e„„=0, e„„e„„=1.

Just as in electromagnetic theory, we can work in a
gauge in which e„„is spacelike and transverse; thus, a
wave traveling in the z direction has two independent
polarizations possible:

eddy SttTddrd ;t P.rtt.x.,x——.;, (4)

where
~@V—hpV

—
2~pVhXXy

and T„„is the total stress-momentum-energy tensor of
the source, including the gravitational Geld stresses.

the sum running over all masses m in our system. It is
to be noted that the result is independent of the kind
of stresses present.

If one sums (3) over the two allowed polarizations,
one obtains
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Greek letters run from 1 to 4; a„b„=a4b4—a b. Roman 2 k tits dts dt'
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G is the usual gravitational constant =6.67)&20 8cgs units. The total rate of radiation is obtained by integrating
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(5) over all directions of emission; the result is

G d'Q;;d'Q, , 1 O'Q;, d'Q, ;i
5c' dt' dP 3 dt' dt' l

(6)

B. Multipole Expansion

The radiation h„„(x) can be decomposed into multi-
poles, ~ each with a definite total angular momentum

(J) and s component of angular momentum (M). For
a given J and M, there are two independent types of
radiation, distinguished by their parity; we call them
"electric" and "magnetic" to emphasize the analogy
with electromagnetic theory.

We analyze the source and field into Fourier com-
ponents, and treat each separately. If the source is

T„„=ReT„„e—'"',

Q,, are

FiG. 1. Coordinate system used in calculation,

Q„=pd' cos'P

Q» ——iid' sin'P,

Q,„=Q„,=pd' sing cosP,

then the amplitudes of the electric and magnetic multi-
pole radiation are

where p is the reduced mass brims/(risi+ms).
For Kepler motion, the orbit equation is'

&JM=—
ZKM

d'xf~sr'(x): T (x),
a(1—e')

)
1+e cosf

(12)

mJ~=— d'xf jsr (x):T(x)',
while the angular velocity is given by

LG (sgl+ 7gs) g (1 s2)]1/2

(13)
where A:J3 means A;;8;;, and the fqsr' are given in
reference 5. In the quadrupole approximation, the

ominant type of radiation is «magnetic quadrupole»; Using (12) and (13), it is straightforward to calculate

in this limit, (8) with 7= 2 becomes the dsQ;;/dts; the results are

where

m2~=
10

d'x r'I'ssr (Q)P (x),

p= Repe —'"'

xx
—=P (1+e cosP)'(2 sin2$+3e sing cos'P),

dP

~v = —P(1+e cosP)'

is the mass density in the source.
The total power radiated is given in terms of the

multipo!e amplitudes (7), (8) by

(10)

(14)
XL2 sin2$+e sing(1+3 cosQ)],

d'Q. s d'Qs*
= —p(1+e cosf)'

dt' dt'

XL2 cos2$ —e cosf(1—3 cos'f)],

4G'r~sr'rise'(rrsi +ries)

gs(1 s2)s

III. TOTAL RADIATION

Let the masses mr and riess have coordinates (di cosp, d, where p is defined by

sing) and (—d&cosf, —d&sing) in the xy plane, as in
Fig. i. The origin will be taken to be the center of mass, p2-
so that

ms ( mr

km, +m, km, ym,
The total power radiated is now given by (6);

8 G' nzrsmss(risr+m, )
The simplest way to compute the power radiated is to P= — (1+e—cosiP)4

use the method of Sec. II A, above. The nonvanishing 15 &' &'(1—&')' (15)

s J. Mathews, J. Soc. Ind. Appl. Math. 10, 768 (1962). This
expansion into multipoles is not to be confused with general
multipole expansions usually given. See, for example, Gravitation,
an Irrtroductiorl, to Current Research, edited by Louis Witten
(John Wiley 8r Sons, Inc. , New York, 1962), Chaps. 5 and 6.

XI 12(1+ecosf)'+e' sin'P]

a is the semimajor axis and e the eccentricity of our ellipse.
Note that we have chosen the x axis to be the direction of vs~ at
its closest approach to m2 (periastron).
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In (15), P is, of course, the retarded position of the sys-
tem. The a~erage rate at which the system radiates
energy is obtained by averaging (15) over one period
of the elliptical motion; one obtains in this way

32 G' nt t'nss'(tnt+ tns) 73 37
(P)=—— 1+—e'+—e'

~. (16)
5 cs as(1 e')r—/s 24 96

Thus, the average power equals the power radiated
from a circular orbit of equal semimajor axis (or total
energy) times an enhancement factor

1+(73/24) e'+ (37/96) e4

(e) =
(1 es) 7/2

(17)

Figure 2 shows f(e) plotted against e. Note that
f(0.6)-10, f(0.8)~10', f(0.9) 10'. The power radi-
ated is a steeply rising function of the eccentricity e.

The same result follows from the method of Sec. II 8,
but the formalism is rather different. We must evaluate
the rnsM of Eq. (9). In terms of the Q;, defined by (4),

0
0 2 4 6 8 IO I2 I4 I6 I8 20 22 24

n

FIG. 3. g(n, e), the relative power radiated into the nth harmonic
for e=0.2, 0.5, and 0.7.

The Fourier analysis of Kepler motion is well
known (to astronomers at least!), so we simply give
the results. The components of frequency ~0, where
o/o= LG( rnt+m s) /a' ji/s is the average angular velocity,
are

zffoP 15 't' 2
rns~s(n) = pa-

1e8 32~

zIf~3

m2+2= (Q**—Q.'~»Q. s),
1043 32~

teggg= 0)

iso/s(—5
SS&0 g~ yy

1(h/3 (16m.

2
X J„s(ne) 2eJ—„ i(ne)+ J„(n—e)

n

+2eJ„+i(ne) J~+s(—ne)

W (1—e')' 'LJ„s(ne) —2J„(ne)+J„+s(ne)j
zKGO 5 4

nsss(n) = tea' J„(ne)—
1093 16m n'

(18)

32 G' rnPms'(nst+nss)I (n) = g(n, e),
5 c' a'

(19)

where

The power radiated in the nth harmonic is, from (10)
and (18),

!0R

f(e}

g(n, e) =— J s(ne) —2eJ i(ne)
32

2
+—J„(ne)+2eJ„+i(ne)—J„+s(ne)

+(1—e')LJ s(ne) —2J (ne)+J„+s(ne)j'

IO + LJ„(ne)]' . (20)
3n2

I
0 .2 .6 .8

1+(73/24) e'+ (37/96) e'

Z g(n, e)=f(e)=
(1 es) 7/sn=l

In Fig. 3, we plot g(n, e) against n for e=0.2, 0.5, and
0.7.

If (16) and (19) are to agree, we must have

Fro. 2. "Enhancement factor" f(e) plotted against e. This is veri6ed in the Appendix.
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That the radiation should depend so strongly on the
eccentricity is not surprising. As with electrogmagnetic
radiation, the power radiated increases for increasing
accelerations. Thus, the bodies will radiate most at
their closest approach, and for Axed energy the higher
the eccentricity, the higher the power radiated will be.
This also explains why the higher harmonics dominate
the radiation for e near 1; Fourier components of large
n must be present to give such a peaking of the radia-
tion at one part of the path.

The corresponding results for polarization 2 of (21)
are

dP2 G
—$4C'+ (A —B)') cos'8

d0 8mc' 4

1
+—L4C' —(A —B)') cos'8 cos+

+C(B A) co—s'8 sin+, (24)

97 49
I
2+—e'+—e' cos'8

16 64

IV. ANGULAR DISTRIBUTIONS AND
POLARIZATION S dI'2 1 G' mPmP(nsg+m2)

In this section we only use the method of Sec. II A, dg ~ c~ ~5(1 e2)&n
as it gives the answers directly without the need of sum-
ming over all harmonics.

Let us label the two polarizations

1.. 1.
e,= (88—jj)—, e2 (——gj—+j8),

v2 v2
(21) 25

+ e' cos'8 cosQ
128

where 8 and g are conventional polar coordinates. We
shall abbreviate the d'Q, ,/dt' of (14) by A, B, C: The total power radiated into both polarizations

may be obtained either by adding (23) and (24), or by
using (5) directly. The result is

(22)
d'Q

w d'Q. *
=C

dP dt3

+—'(A' —10AB+B'+12C') cos'8

dt dt dI' G

The power radiated into polarization 1 is obtained by dQ 87rc'
substituting (21) and (22) into (3);we omit the algebra
and quote the result:

dPj G
'(3A'+2AB—+3B'+4C') (1+cos48)

dO 8mc'

—
s (A'+6AB+B' —4C') cos'8

——'(A' —B') (1—cos'8) cos2$

', C(A+B) (1——c—os48) sin2P

+~ (B' A') (1—cos'8—) cos2&

', C(A+B) (1——cos'8)sin2&

+—,', $(A —B)'—4C') sin'8 cosQ

+4C(A B) sin'8 sin4$—}. (25)

The average of (25) over the orbit is

The result of averaging (23) over one period of the
motion is X{f-',j(99/64) e'+ (51/256) e') (1+cos'8)

+t 3+ (289/32) e'+ (145/128) e4) cos'g

+ (13/32)e'+ (1/16)e4) (1—cos48) cos2&(
dP& 1G'mPm2'(m&+m2)- 1 99 51

—+—e'+ e'
~

dQ vr c' a'(1—e')"' 2 64 256

+—'L (A —B)'—4C') (1+cos'g)' cos~
dE 1 G'mPmP m& m2

+ C (A —B)(1+cos'8)' sin+}. (23)
dQ s. c' a'(1 —e')"'

95 47
X (1+cos'8)+(1+—e'+ e' corn'11

32 128

13
+ —e'+—e' (1—cos'8) cos2$

32 16

25
e4(1+cos'8)' cosQ

512

—(25/512) e' sin48 cosQ}.

The basic results of this section, Eqs. (23), (24), and
(25), are quite complicated. The quantities A, B, and C
are given by (22) and (14) as functions of f, the re-
tarded orientation of the line joining the mass points.
We may extract some rather simple results from our
formulas, however.

For example, in the case of circular motion (e=0),
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the formulas become

dPi 1 G' m12m22 (mi+m2)
(1+cos'8)' sin'2 (Q—P),

dQ m c' a'

dp2 4 G ml m2 (ml+m2)

dQ x c' g5
cos28 cos'2 (P—f),

dp 1 G' mi'm2'(mi+m2)
L4 cos28+ sin'8 sin'2 (g —P)j.

dQ x c' g5

The averages over the orbit are now quite trivially
done:

LJ„'(ne)$2, by use of the recurrence relations and
Bessel's equation. Prime denotes differentiation with
respect to the argument. This gives

n4 J2p 4q2 (4 ' 2J J'
g(n, e) =—

I
2——

~
+J„"~—4e +

32 n' 5 e21 ke 'g

4 )4 y )4
e2 J2

e' &e ) he' i
J."p 4 ' 2J.J.' )4~+(1-")
n' &e' n kej

dpi 1 G' mi'm2'(mi+m2)
(1+cos'0)'

dQ 2x c' u5

dP2 2 G' mi'm2'(mi+m2)
cos'0,

dQ m c' g5

dP 1 G4 m12m 2(m, +m2)
(1+6cos28+ cos'0).

dQ 2m c' a'

Another aspect of Eqs. (23)—(25) is that the total
power may be obtained by integrating over solid angle,
and the result for the total power shouM agree with
(15).Carrying out the integration over all directions, we
obtain

pi ——(G/120c ) (11A —6AB+ 11B+28C )

P2 (G/120c') (5——A' —102B+5B'+20C') (26)

P= (2G/15c') (2' AB+B2+3C2)—
The corresponding averages over the elliptical orbit are

32 G m12m22 (mi+m2) 7 683 347
(Pi)=—— —+ e'+ e4, (27)

5 c' ap(1 —e') /' 12 384 1536

32 G m12m22(mi+m2) 5 485 245—+ e'+ e4 . (28)
5 c' a'(1 —e')"' 12 384 1536

It is straightforward to verify that (26), with A, B, C
given by (22) and (14), agrees with our previous result
(15), and that the sum of (27) and (28) is just the value
(16) for (P) given earlier.
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APPENDIX

Ke now show that the sum over all harmonics e of
g(n, e) is the same as f(e), where g(n, e) is defined by
(20) and f(e) is given by (17).

We first reduce the right-hand side of Eq. (20) to
terms containing only I J (ne)]2, J„'(ne)J (ne), and

XI —4 + J' . (A1)
he' 3n'

If we differentiate (A2) successively with respect to e,
we can form series with terms such as sin(nM)J„',
sin(nM)nJ„, sin(nM)n'J„', and sin(nM)n'J„We h. ave
made use of Hessel's equation to eliminate terms with
a higher than 6rst derivative of J„.If we multiply two
such series together, say,

O'E 1 BE ' 4(1—e') ~
+— = P Q sin(nM)

Be2 e Be n=1 m=1

X sin(mM)nmJ„(ne) J (me),

and integrate both sides with respect to M from 0 to 2m,

we get on the right-hand side

4(1—e2)22r

P n2J„2(ne),
e4 n 1

which is one of the expressions needed to sum (A1).
The integral on the left-hand side is straightforward.
The formulas obtained in this manner which are
necessary to sum (A1) are

00 e'y
P n'J '(ne)= 1+—

~,
n=p 4(1—e')'" 4//

e2

3
g npJ '(ne) J„(ne)= 1+3e'+—e'

~,
n p =4(1—e')'" 8 )

QO 1
P n4/J '(ne)]'=

p 4(1 e2)11/2

39 79 45
X ~

1+—e'+—e'+—e, (A3)
4 8 64

A solution of the equation M= E esinE for—E(M,e)
is given by the Fourier expansion

sin(nM)
E(M,e)=M+2 Q J (ne).

n=1
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P r44J '(sse)=
n=o

e' ( 37 59 27
~
1+—e'+—e4+—es

4(1—e')Isi'k 4 8 64

00 38 'l
Q rs'P&. '(«) j'= 1+

4(1—e')"' 4 J

series (Al) yields

g g(ss, e)=
n=l

73 37
1+—e'+—e4

24 96

(1 es) 7/s

Substitution of (A3) into the sum of the reduced which is the same as f(e) as calculated in (17).
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Perturbation theory always works in nonrelativistic scattering theory, unless composite particles are
present. By "composite particle" is meant a bound state or resonance, or one that would exist for an
interaction of opposite sign; in fact, this provides a precise definition of resonances. It follows that if fictitious
elementary particles (quasiparticles) are first introduced to take the place of all composite particles, then
perturbation theory can always be used. There are several ways of accomplishing this, one of which cor-
responds to the X/D method. In order to prove these results it is necessary to make a detailed study of the
eigenvalues of the scattering kernel, and as a by-product we obtain new proofs of the applicability of the
Fredholm theorems to scattering theory, of the convergence of the Born series at high energy, of the
Bargmann-Schwinger theorem on the number of bound states, of the Pais-Jost theorem on the identity of
the Jost function with the Fredholm determinant, and of Levinson's theorem. We also give explicit formulas
for binding energies and phase shifts in potential theory, using first-order perturbation theory after insertion
of a single quasiparticle; these formulas work well for the lowest bound state and the S-wave scattering length
of the Yukawa potential, and give precisely 13.6 eV for the hydrogen atom binding energy.

I. INTRODUCTION

~HIS is the second of a series of papers, in which we

hope to develop a practicable method of calculat-
ing strong interaction processes.

In our erst paper' it was proven that any given non-
relativistic Hamiltonian Bcan be rewritten to introduce
fictitious elementary particles (quasiparticles) which did
not appear in H. The new Hamiltonian H yields pre-
cisely the same physical predictions as H, provided that
when we put the quasiparticles into the unperturbed
part, we also modify the interaction term according to
certain rules. These matters are reviewed in Sec. II.

We also remarked in A that such quasiparticles can be
introduced very freely, without any reference to physi-
cally real particles, and also without any point. But
their introduction can be the crucial step in practical
calculations, for such calculations can always be done

by perturbation methods unless composite particles are
present. If we introduce a quasiparticle corresponding
to each composite particle, then we get a new (but
physically equivalent) theory in which there are no
composites, but only real and fictitious elementary

~ Research supported in part by the U. S. Air Force Office of
Scientific Research.

t Alfred P. Sloan Foundation Fellow.
' S. Weinberg, Phys. Rev. 130, 776 (1963); this article will be

referred to as A.

particles, so that perturbation theory works. What
actually happens is that the modification of the Hamil-
tonian forced upon us by the introduction of a quasi-
particle weakens the original interaction enough to
remove the divergence of the Born series associated with
the corresponding composite particle. Seen in this way,
the strength of a given coupling should never make us
despair of applying perturbation theory; a very strong
interaction merely gives rise to many composite par-
ticles, and, hence, forces us to introduce a large number
of quasiparticles before we start using the Born series.

I believe that this approach will make perturbation
theory universally applicable, even to the full rela-
tivistic series of Feynman diagrams. ' The purpose of
this paper is to demonstrate that this conjecture is,
indeed, correct within the limited proving ground of
nonrelativistic two-body scattering theory.

It is shown in Sec. III that the Born series will diverge
if and only if there are composite particles present, and

~ A more general approach to the problem of obtaining a con-
vergent perturbation series has been suggested by M. Rotenberg
(to be published). Our approach seems to correspond to his if the
operator he calls "J—1"is chosen to be separable; otherwise the
quasiparticle interpretation is inapplicable.

'Some preliminary steps in this direction are reported by
S. Weinberg, in ProceeCings of the 1P6Z Annnc/ International
Conference on High-Energy Physics at CERÃ, edited by J. Prentki
{CERN, Geneva, 1962), p. 683.


