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noneven. Its validity for the Klein-Gordon phase shift
follows from the foregoing proof as well as from the
relation" between the Dirac and Klein-Gordon phase
shifts at high energy. It also follows in virtue of (4.22)
that q"' and, therefore, also the first-order phase shift,
8&'&, is a good approximation for the phase shift at high
energy in case of nonsingular potentials. This is in agree-
ment with the results of reference 7, where the higher
order phase shifts were estimated by the %KB approxi-
mation. It was also shown there that for nonsingular,
noneven potentials the first-order phase shift was
sufhcient to derive the leading term in the asymptotic
expansion of the scattering amplitude. As far as the
calculation of the amplitude for nonsingular potentials
at high energy is concerned several questions remain
unsettled: (i) Is the higher order WEB approximation
of the phase shifts justified? (ii) Is rlo& also in the case
of even potentials a good approximation of the phase
shifts? In order to answer the first question satisfactorily
a more detailed analysis of the asymptotic behavior of

the phase shifts is necessary. This can be made by a
more systematic use of integration by parts than made
above. As for the second question we recall that the
asymptotic amplitude for a noneven potential has been
derived essentially from that part of the phase shift
which depends on f in the form (see reference 7)

)polynomial in (l+-,')]X/(1+1),
where f is the logarithmic derivative of the gamma
function. On the other hand it has been shown in
reference 7 that for an even potential the 6rst-order
phase shift does not depend on f(1+1).From the first

part of the last section of the present paper it follows
that this is true to all orders. Therefore, to answer the
second question one has to derive an amplitude from
phase shifts which do not depend on $(1+1).

ACKNOWLEDGMENTS

One of the authors (S.T.) would like to express his
gratitude to Professor I . Spruch for useful remarks.

PHYSICAL REVIEW VOLUM E 131, NUM BER 1 1 JULY 1963

Opening Angles of Electron-Positron Pairs

HAAKQN OLsEN

Institute of Theoretical Physics, Eorges Tekniske Hggskole, Trondheins, , Norway

(Received 11 January 1963)

The cross section for production of a high-energy electron-positron pair of opening angle 0 and electron
energy e, d o (H, a)/dHdsr is calculated. Comparison with available experimental data shows good agreement
with the present theory. The cross section d'0 (H, ~r)/dHder is shown to be closely related to the cross section
for an angle Hr between the photon and the electron, d'&r(8&, e~)/dH&de& At high p. hoton energies the functional
dependence of d'a(H, e&)/dHde& on the variable w= (e&es/k)8 is very nearly the same as the functional depend-
ence of d'0 (8&,ar)/dHder on the variable ac= e&8&. The experimental method of estimating the energy of a
photon creating a pair from the opening angle of the pair is discussed. Formulas for the most probable
photon energy for a measured opening angle, including the e6'ect of multiple scattering, are given.

1. INTRODUCTION

HE distribution of the opening angle between the
electron and positron of pairs produced by gamma

rays has been the subject of many experimental in-
vestigations. ' " In all cases it has been found that the
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experimental distribution is considerably more narrow
than the theoretical distribution of Borsellino" to which
the experimental results customarily have been com-
pared. The solution to this puzzle is that Borsellino's
cross section does not give the distribution of opening
angles for a fixed value of the energy partition between
the pair particles, but is rather the distribution function
of a certain combination of opening angle and energy
partition, viz. , the invariant pair energy.

%e calculate here the high-energy pair-production
cross section as a function of opening angle and energy
partition. The resulting distribution of the opening
angle is found to be in good agreement with the experi-
mental distributions.

The good agreement between theory and experiment
gives one renewed confidence in the method in current
use of estimating photon energies by measurement of the

"A. Borsellino, Phys. Rev. 89, 1023 (1953).
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FIG. j.. Angles occurring
in pair cross section.

where I= e1tII1, v= &202, e1 and ~2 being the electron and
positron energies, respectively, and 81 and 02 the angles
between electron and photon and between positron and
photon, respectively. p= (1++') ', t)= (1+v') ', ti=k

Pa —yt —p2, tI,= —n —v, and F(q) is the atomic form fac-
tor. Energies are measured in units of mc2, and mo-
menta in units of mc.

In order to obtain the cross section as a function of the
angle 0 between the electron and the positron I should
be integrated over angles 01 with 0 fixed. Expressed in
terms of 0 and 01, q& and e are given by

and

qz = (k/et) {B+R 2'Nw—cosset)

'v = (k/e]) {(62/k) Q +w 2(ep/k)lto cosset)q (4)

2m (1—I (q))'
g (w) = IdQthP =— dptudN

612. DIFFERENTIAL PAIR CROSS SECTION

where to= (etep/k)8 and @t is the angle between the
yt —k plane and the pt —p& plane (see Fig. 1).

opening angles of electron positron pairs. The method Replac;ng dQ by dQ edgd~ we have the;ntegral
is discussed in some detail including the effect of mul-

tiple scattering.

The diGerential high-energy pair-production cross
section, summed over polarizations of electron and posi-
tron and averaged over photon polarization is in the
Born approximation given by"

+ { (et +e& )&lqi +2etep(8 —ri)), (5)

and the cross section is given by

with

and

do = (o p/2s')I detdQxdQp,
k'

Q tt'Zcp)p

mcp mcE Ac)

I=—{(eP+ eP) $gq„'+2e&ep($ —t))')1 1—I7(q) )', (2)

d~ (to, e&) = (op/2~')g (to) (de, /k)todto.

3. THE CROSS SECTION de(w, e)
FOR NO SCREENING

The integral g(w) in Eq. (5) is most conveniently
divided into two regions q 1 and q 1/k. The integra-
tions are considerably more cumbersome than the in-
tegrations over 01 with 82 6xed. For the case of no screen-
ing the result may be written

d61 t 2etep el el e2 e2 el +e2 )
dd'(w et) =o'p todto{p&& 21 ln ——ln——ln—— 1(et +eP+«telo'{ )

k k k k k 2k' )
(clap(el ep) ep el +e2 i '7 (elep t(etP+ ep')P'+41

1
(7)

2kP I sinhp k k )

We have here introduced {'=(1+w') ' analogously
to the definitions of $ and r„and p is given by

cosh(y/2) =k(4etep{) '". (7a)

In order to check the result Eq. (7) we integrate the
cross section Eq. (7) over to, which gives

A1 26162
do(6t) = 0'p (eP+ e2 + ele2) in-

k' 2

'3 See, for instance, Haakon Olsen and L. C. Maximon, Phys.
Rev. 114, 887 (1959) Lnote Eqs. (3.20), (4.5), and (4.10)j.

which is the well-known energy distribution. of the pair
particles. Another check on Eq. (7) is obtained in
Sec. 4.

4. BORSELLINO'S FORMULA

The formula given by Borsellino" may now be de-
rived for the high-energy case by integrating the cross
section Eq. (7) over the electron energy et, keeping the
invariant pair energy

4Q (el+62) (pl+p2) k / (etep{ )
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fixed. In this way we And k

do (Q) = dw derbfw —(4Q'e] es/k' —1)' 'j

with

d'o (w, er) dQ
X =4«F, (8)

dwder Q'

P= ln (k/Q) fI.(2+2/Q' —1/Q4) —6 (1+1/Q') )—(L/6) (16+21/Q' —17/2Q')+ (6/12) (28+ 17/Q')

where I = cosh 'Q and 6= (1—1/Q')'t' This is Borsel-
lino's formula" for the high-energy case as corrected by
Hart et a/. ' This provides an additional check on the
correctness of Eq. (7).

It is now clear, however, that the cross section Eq.
(8) is the distribution of Q and not of w. In other words,
in order that Eq. (8) could be compared with measure-
ments of zv, experimental values of m and e~ should be
combined in the quantity Q= (k/2)(eresl) '12 for all
possible values of w and er giving the same value of Q.
The resulting distribution of Q might then be compared
with do(Q) Eq. (8). Thus, Borsellino's formula cannot
be compared with the measurements of references 1—11
in which 8 and e~ are independent variables.

5. COMPARISON WITH THE DISTRIBUTION OF THE
ANGLE BETWEEN PHOTON AND ELECTRON

It may now be shown that the w distribution Eq. (7)
is almost equal to the I distribution, the distribution
of the angle 0, between the electron (or the positron) and
the photon. The latter is given by'

26y62
d (u, ,)=, ~duP (,'+,') 2lr —1)ks k

26'&
+2ere2 1+4u2P ln —2 . (9)

The main term in Eqs. (7) and (9) is for large k the
ln(2eres/k) term; neglecting for a moment all but this
term, Eq. (7) becomes

d6y
do (w, e&) =2o e wdwf' in(2ere2/k) (er'+es'+4eresw'p),

ks

and Eq. (9) reduces to

d61
do (u)er) = 2o e uduP ln(2ere2/k) (er + e2 +4eresu P).

The main terms in the m and I distributions are, thus,
identical, and since most of the contribution to the cross
section for high energies comes from the in(2ere2/k)

"Reference 13, Eqs. (10.4) and (6.23), (6.29), and (6.34).

FIG. 2. The case of almost coplanarity of k, p&, and p2.
H2 ——2/Pr=g/P2, and, therefore, H=Hq+Hs=u(1/Pq+1/P2) =uk/e~e2,
thus, N=m.

term, we conclude that the two distributions are almost
equal.

This fact that the main terms are identical may be
understood by considering the integral Eq. (5). We show
below that this is true also when screening is inc1uded.
This allows us to deduce the effect of screening on
do (w, er) from the cross section da(u, er) with screening
included which is known from earlier work. '4

The main term in the cross section, the term con-
taining in(2eres/k) for no screening comes from small
values of the momentum transfer q, q 1/k. Now the
component of g along k, q, =3/g is alway s of the order
1/k." Here 3=k/(2ere2). If also the component of ti
perpendicular to k, qr, is to be small of order 1/k, yr,
y2, and k must be almost coplanar and u-o is of the
order 1/k"

From Eq. (3) then follows that also e-w and gr are
of the order 1/k (see also, Fig. 2),

qP= (k/er)2((e —w)2+wsyrsj,

and from Eq. (4)

u' —e2= (k/e, ) (u' —w')

(10)

Now the integral Eq. (5) is in the region q 1/k, with
p= (k/er) (u —w) and P= (k/e~)pr found to be given by

27PN

8(w) = L1—J'(q)3'
dp dy

x((el'+e2')pqr +2eles($ —2)) ) (12)

where q and $—
21 are from Eqs. (10) and (11)

q2,—p2+ w2$2+ (6/f. )2

$—
21=2''2y.

"H. Olsen, L. C. Maximon, and H. Wergeland, Phys. Rev.
106, 27 (1956).
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8'(I) =
62

dgsdii

X'j (ei +e2 )Pql +2ele2($ ri) jp

where now q and $—zl are given by

and
q2 p2+zPgs2+ (8/P)2

f—zl = 2N pv.

Comparing now Fqs. (12), (13), and (14) to (16),
(17), and (18) we see that the integrand of Eq. (12) is
identical to that of Eq. (16), when. in the former u is
substituted for w. Therefore, g(w) is obtained from

g'(e) by substituting in g'(I) w for zi and multiplying
with (es/k)'. We, thus, find from Eq. (15) the contri-
bution to the cross section do. (w, e,) from the region

q-1/k
do (w, ei, q-1/k) = (op/2zr')g'(w) (dei/k)wdw,

which shows that the distributions of m and I are iden-

tical in the region q 1/k.

On the other hand, the I distribution is obtained by
integrating Eq. (1) over dQs keeping e and ei fixed

do (N&ei) = (0'p/2zl )~J (B)(dei,: k)NdB, (15)
with

2zr $1—F(q)j'
r|'(I)= Idflsdyi ——— dys~dz

2 g

X(("+ ')hnq'+2 R—n)'} (16)

In the region q 1/k rj'(I) reduces to, with P=N —v,

It should also be noted that the main term in the dis-
tribution of the angle 8 is obtained from the 81 distri-
bution by multiplying the argument ei8 of rl'(ez8) by
es/k. In particular then for the case of even energy par-
tition ei ——es ——k/2, the distribution da (8,ei) is twice as
wide as the do. (8i, ei) distribution. A conjecture of
Bradt et al." is, thereby, proved. At extremely high
energies they equated the Incan value of the angle be-
tween the electron and positron to twice the mean
value of the angle between the electron and the photon.

That the cross section da(zi, ei) and do (w, e,) have al-
most the same angular dependence also for 6nite values
of k is shown in Fig. 3, where the two cross sections are
plotted as functions of I and m for a photon energy
k(mc') =50 MeV.

p = »(2ezez/k)+ &(8/l ) (part. scr.) (19)

for partial screening, where P(8/1") is given earlier. 'z In
particular for complete screening"

li = ln (111Z '~'/f'). (compl. scr.) (20)

In general then, from Eq. (7)

6. THE CROSS SECTION da(w, ai) WITH
SCREENING INCLUDED

As the result of the previous section is true for any
amount of screening, and since screening only affects
the cross sections for q 1/k, it follows that the effect of
screening on do (w, ei) is the same as on do (u, ez). Thus,
screening is included in do(w, ei) by substituti'ng for
In(2eies/k) in Eq, (7)

dpi. f el ei ez es ei + e2

do (w ei) =0 p wdwl X 2~ p ——ln———ln— LeP+ ez +4eaesl (1—l )]
k' k k k k k 2k'

+8eie.l (1—f')
61&2 61 62 62 &1 62

1n—— —1
k' e1 2k'

7
(eP+ ez')i—'+4, (21)

sinhy k

with li given by Eqs. (19) and (20) for partia, l and corn- where cosh y/2=&'ts, and

piete screening, respectively. 7 is defined in Eq. (7a).
ln(k/2), (no screening),

p=' ln(k/2)+F(2/kf), (partial screening)

.ln (111Z '"/| ) (complete screening).

7. EQUIPARTITION OP ENERGY

For comparison with experiments the case of equal

energy sharing between the electron and the positron,

ei ——es ——k/2, is of special interest. In this case the cross

section Eq. (21) becomes

f
2)

(23)

wdwP (fi+ln2)L1+2l (1—1')$
k'

The form of the cross section as a function of m, the
m distribution, does not change much with the energy of
the photon as shown in Fig. 4 for the case of equiparti-
tion of energy.

In Figs. 5 and 6 the w distribution Eq. (22) is com-
pared with experiments. From the work of Schopper"
it is seen that even at a photon energy as low as k=6

'6 H. L. Bradt, M. F. Kaplon, and 3. Peters, Helv. Phys. Acta
7 23, 24 (1950).

Lz+3l (1—i))— (3+2w') ) (22) "Reference 13, Eqs. (6.31) and Table I.
4 sinhy ' Reference 13, Eq. (6.34).
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MeV the agreement between theory and experiment is
very good.

Finally, in Fig. 7 it is shown that the form of the m

distribution does not change much with energy parti-
tion. Therefore, the curves of Fig. 4 may be used for
comparison with experiments in which pairs of energy
partitions different from e&

——t.2 are included. It may, in
fact, be shown that the cross section Eq. (21) integrated
over all energies e~ with m kept fixed,

"—' -do-(w, e,)-

(it
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FIG. 4. VarxatIon of m dIstrIbutIon vrIth photon energy for

ez ——
e&

——k/2. Photon energies given are in units of IIIP. The curves
have been normalized to the same value at w—=ka/4= 0.6.

cl,5
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L
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15 U or w

pzo. 3. d'0((v, e&)/dwdsz and d'0(N, ez)/dldsz for no screening
for &=50 MeV and equipartition of energy e&=&~=A/2. The
curves have been normalized to the same value at I=m=0.6.

differs only little from the m distributions for equiparti-
tion of energy Fig. &.

It should on the other hand be noted that although
the form of the cross section does not depend strongly on

w, the dependence on Q= (k/2)(ezesf) '" is very pro-
nounced. In fact, the more the energy partition departs
from equipartition, the more do. (Q, ez) is shifted towards
larger values of Q, which explains why the Borsellino
distribution Eq. (8) is always broader tha, n the experi-
mental distribution do (w, ez).

for no screening, and

zr 15 ln(888Z '")—s
(w) =-—

2 16 ln(182Z zz') —1/24
(26)

30-

for complete screening.
In Fig. 8 curves for (w) are shown for Z=1, 8, and

90. The values for (w) for intermediate screening have
been obtained using values of F(6/ f) give'n before. zr In
Fig. 8 also the available mea, sured values of (w) at high
energies have been plotted. The agreement with theory
is reasonable above k=25 5/IeV, when it is considered
that multiple scattering and experimental uncertainties
always will tend to increase the experimental value of
(w).

This is indicated for the measurements of Hart et al. '
where the multiple scattering theory of Appendix 8
has been used to correct for multiple scattering and ex-
perimental resolution (points marked "theory" in
Fig. 8). The experimental resolution has been assumed
to be Gaussian with widths as given in the paper of
Hart et al. '

(w) =
-do. (w, ez)-

K'8'N

o 88)

-o (w, e,)-
4K' (24)

8. THE MEAN OPENING ANGLE

The mean opening angle between the electron and the
positron defined by

0
l

c10—

is found from Eq. (22) for equipartition of energy to be
given by

z 15 ink —41/30
(w) =-—

2 16 ln(k/2) ——,
'

FzG. 5. Theoretical m distribution, Eq. (22), for k=50 MeV
(25) compared to experimental w distribution of Hintermann (refer-

ence 7).
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20-

4 W

FIG. 6. Theoretical m distribution, Eq. (22), for k= 100 MeV
compared to experimental m distribution of Baroni et al. (refer-
ence 6).

Below k=25 MeV the theory gives a too high value
on (w), in spite of the fact that even for k=6 MeV the
agreement with the distribution of m is very good."The
reason for this is that in (w) relatively large angles are
important. For these angles, however, the high-energy
approximation applied here becomes poor.

In Appendix A the large angle contribution to (8) is
calculated approximately. The correction is only im-
portant for so low values of k that screening is unimpor-
tant. The mean value (w) Eq. (25) is multiplied with the
large angle correction factor (1—24/5k),

x 15 ink —41/30 24
(w) =—— (2~)

2 16 ln(k/2) —
s 5k

This correction factor is taken into account in curve (b)
of Fig. 8. The agreement with experiments is now good.

9. PHOTON ENERGY ESTIMATE BY OPENING
ANGLE MEASUREMENT

The experimental method of using the opening angle
of electron positron pairs to estimate the energy of the

I I I I I

photon creating the pair was introduced by Bradt et al."
The good agreement between experiment and theory of
Secs. 7 and 8 gives one new confidence in this method.
In order to apply the theory of the preceding sections
to this method, we must 6rst integrate the cross section
over all energies ~~ with 0 fixed and secondly, the effect of
multiple scattering must be taken into account.

The result of the integration over c~ is shown in
Fig. 9. The xo distribution of the integrated cross sec-
tion da'(ws)/dwp with ws ——k8/4, is seen to be very
close to the distribution for equipartition of energy
d'o (w, e,=k/2)/dwde, .

It is clear that the ws distribution, do (ws)/dws, when
normalized, represents the probability distribution, for
a given value of 8, that k has a value k = 2ws/8. The most
probable value of mo is according to Fig. 9 xo, „„=0.8.

Iw)-

2.0—

I & I I I I I I II I I I I & I I I I I& I I I i I I I [ Ill

theory

Z=90
—Z=s

Z=1

1.5—

al.

Roaisvig

0 Hart et a', ~

e Schopper ff

p5 & I s I'
lp 20 30

i & I t I I I I I I I I I I I I I I I . I I I I I I I I I I I I l I I

50 100 200 500 1ppp 2000 5000 10000 20000 50000
it(in units of mes)

The most probable value of k for a measured opening
angle 0 is thus

k=3.2/8,

pro. 8. (w) as a functon of k for ~\, =fs=k/2. Curve a is cal-
culated for no screening, Eq. (25). In curve b are included, for
energies above about 4=40, corrections for screening and for
energies below about k=100, corrections for large-angle contri-
butions )Eq. (27)j. In the experiment of Hart et al (reference 9).
the pairs were created in hydrogen vapor; in all the other experi-
ments, the pairs were created in photographic emulsion. Points
marked "theory" are calculated values of (rs) for the experiment
of Hart et al. (reference 9) including'multiple scattering and ex-
perimental resolution.

L

1.0e
O

~~

Vl

aO
V 6) j(/2

&i 31'/4
g ~wit

1

or, since k is measured in units of mc',

kM, v ——1.6/8. (28)

a'= (-', )(8,s) (k/4)'l. .

Multiple scattering will change this value of k.
According to Appendix B, the quantity determining
the effect of multiple scattering is

O.S 1,0 1.5 'IN (g, g~/g) tg

Fio. 7. Variation of m distribution with energy partition for
the case of no screening for a photon energy k=50 MeV. The
curves have been normalized to the same value at m=0.6. For
the case eI=k, it is assumed that e2((k, but still e2))1.

When a((1 multiple scattering gives only a small cor-
rection to the most probable value of k, Eq. (28). On the
other hand, if a))1, then the pair opening angle is
mainly determined by the multiple scattering of the
electron and positron.
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Ql

l.5

~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ s ~ e ~ ~ ~ ~

considerably smaller value of kM.&, than the formula
in common use" kM v=L(o)sts/d(„).
An interpolation formula for values of L for which
Eqs. (32) and (33) fail to be valid is given by

1.0 where
kit,v ——2 (0.62+a') 't'(1+ 6)/8,

1+19.4u'+62. 7a4
6=0.017

1+4.27cts+7 9a4+6.12tts

(35)

b
It might be shown that the simple formula

kM.v=2(L(» jd(») (0.62+a')'" (36)

(8,s) may be found from curves" computed from
Moliere's theory. "Less accurate but simpler formula for
tt' might be found using the formula for (8,s) given in
Rossi's book"

a'=0.21(Z'/A) (Iny)L«&, s&, (30)

where y is the smaller of the two numbers, 196(ZA) "'
and L268Z 'tsk]"', Z and 2 are the atomic number and
atomic weight of the scatterer, respectively. L in Eq.
(30) is given in g/mc'. For pairs created in photographic
emulsion one finds, using a scattering constant of 26,"

(31)a'=2.2 10 'L(„))

where L(„) is given in microns.
Using the formula (B5) of Appendix B, we find for

not too large values of L, the most probable value of k

for a measured opening angle 0,

kMev = 1.6(1+-'a')/8. (32)

Correspondingly from Eq. (B7) we get for large values
of L,

kM,v =2ctL1+ (ln2a'+ 1.29)/4a'$/8 (33)

It should be noted that for pairs created in photographic
emulsion this gives using Eq. (31)

kM.v=o 094(Li»'"/d(»)
&&{1+Lln(L&»10 ')+2.77j/(8. 8)&10 sLt»)), (34)

where d&» (measured in tt) is the distance between the
electron and positron at a dista, nce L~„) from the origin
of the pairs. For large values of Lt», Eq. (33) gives a

"Helge Pveras, CERN Report 60—18, 1960 (unpublished).
'P G. Moliere, Z. Naturforsch. Ba, 78 (1948).
2'B. Rossi, High-Energy Particles {Prentice-Hall, Inc. , Engle-

wood Cliffs, New Jersey, 1952) Lnote Eqs. (4) and (5), p. 67).
~ See, for example, K. Gottstein, in ICosmische Strahlung,

edited by W. Heisenberg (Springer-Verlag, Berlin, 1953), p. 515.

0.5 1.0 1.5 w.=kW+

Fio. 9. Cross section d'o(tt, e&)/d8de& numerically integrated
over energies e& as a function of rop ——htt/4 (curve a) for complete
screening. For comparison, the cross section d'0-|,'8, e&)die& for
equipartition of energy ei ——ep=h/2 (complete screening) is also
shown (curve b). The curves have been calculated for Z=1, but,
for the purpose of Sec. 9, they might be used for any element with
negligible error. The curves have been normalized to the same
value at up ——0.7.

gives the most probable value of kM,g for all values of
L with an error which is less than 10%.

Finally, we consider brieQy the degree of confidence
which might be given to the values of k obtained from
Eqs. (32)-(36).

For not too large values of L, the mo distribution
might for the present purpose be approximated by, as
discussed in Appendix 8,

P(wp) = 2wp(1+wp') —',

and the value found from Eq. (32) is with the uncer-
tainty &,Ak given with the confidence

(Ig+6k) 8/4

c(zk) =
tlg —6k) 8/4

r (w, )Zw p= &L1+0.64(1—~k/k) sg-'

—L1+0.64(1+6k/k)'7 '). (37)

and the confidence is

C(hk) =exp/ —rs (1—d,k/k)'j
—exp| —-', (1+6k/k)'j. (38)

For &k/k=-,' the confidence is here 45% and for
&k/k=4, 75%. From the experiment of Hintermannr
we find for 135 measured pairs of photon energies be-
tween 10 and 1000 1VIeU for LS/k= —,', a confidence of
55% and for Ak/k= 4, a confidence of 70%, which are
close to the values of C(hk/k) from Eqs. (37) and (38).
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For hk/k=s the confidence is 45% and for Dk/k=as,
62%.

Correspondingly, for large values of L the zo distri-
bution is approximately

E(wp) = tt 'w pe """"
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APPENDIX A. PAIR PRODUCTION
AT LARGE ANGLES

(A) The Angle between Photon and Electron

It is easy to see that the error in the cross section
do(e, e~) Eq. (9) at large angles and high energies is of

the order 1/k'. Thus, the correction to the average angle

(8) from large angles will be of the order 1/k.
Indeed, from the work of Hough'4 we have the large-

angle high-energy cross section for an angle 8~ between
the photon and the electron at a given energy partition

d61
do (8~, e~) =choo sin8~d8~ (1+y')/cot'(~8~)/sin'(~8~)] ln(2e&e2/k)+(y/4) (5—2y)/sin4(-', 8~)

—(y2/4p2) (2+y)/sin4 (~~8q)+ Ly —2 1n (1+y)j/sin (~8q)

+[(1+y)/2p')L3p' —y(2+y)] lnL(p+y)/(p —y)]/sin'(-, '8q), (A1)

(2~~~2)
do (8&ex) =oo

~ ~

2 (&P+&2')»I
I

—(~~—~2)'
k' kN') k k sing~d8& inkdO'y(8, 6y) = 80'0

k'

with y= e2/oq and p'=y'+4(1+y) sin'(~8q). It is term with e~ and o2 interchanged. There is also a third
easy to see that Eq. (A1) as 8& —+0, and Eq. (9) as term, f(8&e&), which secures that the small angle limit
I=~~8~~ ~, approach the same limit coincides with the large w limit of Eq. (7). f(8, e&) is,

however, very small at large angles. Ke find

The two cross sections may, thus, be used for cal-
culating the average (8~) for all angles. The result is for
~g ——e2

——k/2
~ 15 ln(k/2) ——;( 12)

2 16 ln(k/2) ——', 5 5kj
(A2)

where the last factor is the correction from large angles.

(8) The Angle between Electron and Positron

The integration of the Bethe-Heitler formula with
the 6xed angle 8 between the electron and the positron
large, is considerably more complicated than the cor-
responding case under (a) above. We only calculate the
correction to the term ln k in (8) and assume that tbe
correction to the constant term —41/30 in Kq. (25) is
the same.

By inspection of the diGerential Bethe-Heitler cross
section it is seen that the term containing ln k in Eq.
(A1)

cot'8/2
~ L(1+~)+(1+~-)i . +f(8, ,),

sm'8/2

(Ey E2 32
f(8,e~) =

~

—+——for 8 small.
(62 tl 8

f(8,o~) 1/k' for 8 large.

It may easily be shown that for small angles Eq. (A4)
approaches the same value as the ln k term of Eq. (7)
approaches for large m.

For e&= &2=k/2, do&(8, e&) is for large angles exactly
equal to twice the ln k term do. (8&e&) Kq. (A3). Thus,
the correction to the ln k term of (8) is exactly twice that
of the correction to ln k term of (8), that is,

(1—24/Sk).

Assuming that the correction to the term —41/30 is the
same we obtain

do g(8geg) =-,oo sm8gd8g(1+y')
k'

&(Lcot'(-'8~)/sin'(-'8~) j ink, (A3)

x 15 ink —41/30 24)
(~)=-— 1——i.

2 16 ln(k/2) —-', 5kJ
(AS)

like in the case of small angles 8~ comes from integration
over 82, the positron angle for which the electron, posi-
tron, and photon are almost coplanar. Moreover, since
the angle 8~ is assumed to be large, the only case of
coplanarity giving contributions to the cross section of
order 1/k' is when y2is almost parallel to k (See Fig. 10.)

Turning now to the cross section for an angle 8 be-
tween the electron and the positron do (8qeq), the 8 dis-
tribution of the ln k term must be the same as that of
Eq. (A1), since when y2 is almost parallel to k, 8 and 8&

are almost equal. Since, however, with 8 fixed either y&

or ym may be parallel to k we must add to Eq. (A3) a

APPENDIX B. EFFECT OF MULTIPLE SCATTERING

As a result of multiple scattering of the electron and
positron the apparent opening angle will be increased. ~

The apparent opening angle is given by

8=d/L,

where d is the distance between the tracks at a distance
L from the point of production of the pair.

From Fig. 11 it is seen that when multiple scattering

'4 P. V. C. Hough, Phys. Rev. 74, 80 (1948).
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is taken into account the distribution of angles is given
by

d'~ (w) d'~(w')
Pb, a)

where"

XP(~ y+(w —w')L~, b)w'dw'dy'ydydy„, (81) FzG. 10. Case of almost
coplanarity for large values of
81. p2 is almost parallel to k and
0=81~

P(y, a) =~ 'a 'e—&'/—"— (82)

is the probability for a deviation y from the undisturbed
electron (or positron) path, and d'o/dwde, is given by
Eq. (21).

Quantities which have been corrected for multiple
scattering are denoted by an index m. In what follows
we take the case of equal energy ei ——e2= k/2. Then the
width of the distribution in the same units as z& is given
by26

'= b'= (l)&0.')(&/4)'~, (83)

f(w) = (d'cr„/dQde, )/(d'o/dQdei)

where (0'e) is the mean square spatial single scattering
angle.

Since do/dQ as a function of w does not diRer much
from the function const XP, we shall in this section for
simplicity replace d'o/dQdei by const XP. The multiple
scattering correction thus obtained, will then represent
the multiple scattering correction to do/dQ in a fairly
good approximation. A check on this approximation is
given below. Note that since the distribution of angles
after integration over ei (Sec. 9) diRers little from the
distribution for equal energies, the multiple scattering
corrections obtained here will be valid also for the cross
section integrated over ei, do. (wo)/dwe of Sec. 9.

In this way we find from Eq. (31), performing the
integration over y and introducing the new variable
W=&2a(w' —w), the multiple scattering correction
factor

factor, keeping only the lowest order of a',

w,,„,„/w .= 1+-',a'+O(a'). (85)

Here

X 1+ g(w) —e '@"+1+ +O(1/4a')
2a 2g

(86)

g(w) =Ei(—1/2a')+Xi(w/2a') —C—ln(w/2a')

If we had kept not only P but the whole expression
P+2f'(1 —P) multiplying ln2k we would have obtained
instead of Eq. (85)

w, , /w, =1+2.2a', +O(a'),
which shows that our approximation is suKciently
good. In the same way it might be shown that other
terms which we have neglected, for instance the term
ln(1+w2) in the case of complete screening, will have
negligible effects on the multiple scattering corrections
factors.

Correspondingly, we find for the case that multiple
scattering is large (a))1)

f(w) (2~a2P) r' w&/2a2— —

=(2ma'f2) ' dy' w'dw'(1+w") '
where Ei(s) is the exponential integral, 2r and C=0.577.

The value of x for which the distribution is a maxi-
mum is for large values of a

(w —w')'
Xexp

2a
dy' WdWe ~'

X[1+w'+2a'W'+2V2aW wj '

For small values of a2 we obtain, expanding in terms
of a'

'~ Reference 21, Eq. (8), p. 71.' Reference 21, Eq. (8), p. 71 and Eq. (12)p p. 72.

f= 1+4a {(2—3{)+24a'l'(3—12{+10{')+O(a) (84)

As a result of this correction the value of m for which
the cross section is a maximum will have the correction

)/& )=1+(-;) —(-;) +O( ). (Bg)

For. the mean value it is possible to 6nd an exact ex-
pression for any value of a'. To this end we note that
since the distribution function d o /dQdk depends only
on the magnitude of m, the mean value of the projected
angle

~
w,

~

differs from the mean value of w only by a

"W. Magnus and F. Oberhettinger, Formell used Satire fur die
speci ellen FuektionerI der mathematischen Physik (Springer-
Verlag, Berlin, 1948), 2nd ed. (note p. 127).

w, =a{1+[in(2a')+1.29]/4a'+0(1/4a')}. (8'7)

For the mean value (w ) we find for small values of a'
from Eq. (84)
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constant factor

ZO =— K'~
2

'
n to ~+~ is, therefore,The multiple scattering correction

the same as to (lw, l).
to the projected distribution d 0- zv

multiplying by z „anb d and integrating over m„and w, „:
w.) = [d'o (w,)/dw, dk)/[d'o (w.)/dwgk)

(2as~)—1/s(1+w s) 8/s

FIG. 11.Effect-of mul-
tiple scattering. Open-
ing angle for undis-
turbed electron and pos-
itron paths is re' (with
angles measured in units
of e,e~/k). At a distance
L from the origin of the
pair the distance be-
tween these paths is
zv'L. Multiple scatter-
ing causes deviations
from the undisturbed
paths of magnitudes y
and y+(w w')L. —The
distance between the
electron and positron is
thereby changed to mL

From this the correction to the mean vn value of w,
l

is
(w )/&w) = (2a')' 'e""Wr/s, r/s (1/2a'),m

is the Whittaker function. '8

W ), fi dfo 11Using the properties of" 8"~~2,~~2 s, we
a' the asymptotic expansion

= (2a's-) —'/' dw, '(1+w,")—s/'

&w-)/&w) =1+la'—sa'+Aa' —", (B10)

= (2a's) '"
y exp[ —(w,—w, ')'/2a'j

d W exp —W'/2a'

the 6rst three terms coincide with q.'h E . Bs).
of ' h follo i gfo 1For not too small values o a e o

usefuP'.

dx(x —W)(1+x') "',

e have introduced the new variables S' and x by
=x—O' The x integration is

elementary and gives

&&(2 ') " '[4( +1)+4( +2)

—f(N+-')+in(2a') j, (B11)

& I
w.

l -&/(I w.
I &

= (2a'~) "" dWe w'/s~'(1+ W')'"
where P(s) =d[lnI'(s) j/ds.

= (2a's-)-'/' d] ] r/s(1+))t/se /,/sa-2—' Reference 28, p. 115.
+ Reference 27, p. 116.


