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The gross energetics and sizes of the stable nuclei are accurately reproduced by a simple model of nuclear
structure using Thomas-Fermi approximation. Saturation is obtained by taking the (spatially Yukawa)
two-body interaction to be (quadratically) momentum-dependent. Coulomb effects and neutron-proton
mass difference are included. The two coupled nonlinear integral equations for neutron and proton spatial
distributions are integrated. The system of equations is made unique by the choice of only four input
parameters, and these parameters are optimized by requiring a best fit of the solution to the binding-energy-
per-nucleon and neutron-proton-ratio curves as a function of A. The optimum parameter values are reason-
able. The Yukawa force range is found to be about 40% of ft/(rn c). A small but definite excess of neutron
radius over proton radius is found, and also a slight depression of the central proton density for the heavier
nuclei. Satisfactory agreement with measured radii and surface thicknesses is obtained.

er =e„r e„r, (1a)
' R. G. Seyler and C. H. Blanchard, Phys. Rev. 124, 227 (1961).' Application of "the" Thomas-Fermi method to nuclear

structure has been varied and largely con6ned to studies of the
nuclear surface. Work closely related to the present work is
reported by Y. Hara LProgr. Theoret. Phys. (Kyoto) 24, 1179
(1960)j whose paper refers to most of the previous nuclear-
structure work in Thomas-Fermi approximation.' J. S. Bell, in lecture Notes on the Many Body Problem, edited
by C. Fronsdal (W. A. Benjamin, Inc. , New York, 1962) has
shown that it is possible to eliminate the hard-core part of a
two-body interaction in favor of a quadratically momentum-
dependent interaction (plus many-body corrections, which we
Qg ggt ConSideI here),

INTRODUCTION

~ ARLIER work, ' hereafter referred to as I, investi-
~ gated a degenerate-fermion-gas nuclear model in

"classical" (Thomas-Fermi) approximation. ' Two-body
forces were assumed, with a Yukawa dependence on
relative position and, to produce saturation, a quad-
ratic' dependence on relative momentum. In I it was
found that the integral equation for the spatial distri-
bution of nucleons could be solved; and that a saturated
inner region of the nucleus and a surface region of the
correct sizes are predicted for reasonable values of the
input parameters. We here report on an extension,
involving interpenetrating neutron and proton distri-
butions, to take into account Coulomb effects and
produce a realistic nuclear model.

We regard the neutrons (protons) in the ground
state of a nucleus as a degenerate gas. At each point
of configuration space, neutron (proton) momentum
space is assumed to be 61led as densely as allowed by the
Pauli principle: two neutrons (protons) per momentum
state, up to the Fermi momentum for the neutrons,
pF„(protons, p»). We consider only spherical nuclei,
in which case the Fermi momenta depend only on the
distance r(= ~r~) from the center of the nucleus:

pp„=pl „(r)and p» ~ ps „(r)The ——total nuc. leon spatial
density will be the sum of the neutron and proton
densities,

where
N„(r)= 2 (2')s) s (4sr/3) LP» (r) js, (1b)

and
ss„(r)=2(2mA) s(4w/3)LPss, (r)]s. (1c)

Since we assume that the two-body interaction is
momentum-dependent, our model will give a mo-

mentum-dependent nucleon-nucleus potential energy
function4 (momentum-dependent optical-model po-
tential'). We introduce an average (over the spin states
occurring) nuclear interaction, which, in spite of the

presumed charge independence of nuclear forces, can
be expected to be of diferent strength for the unlike

(rip) and like (rsrs and pp) interactions.
To calculate the potential energy of a neutron with

momentum p at the position r, one must erst add the

energy contributions of the neutrons' interaction with

all those neutrons having momenta within the Fermi
neutron sphere (FNS) at r', and the contributions of
the neutrons' interaction with all those protons having
momenta within the Fermi proton sphere (FPS) at
r', and second add the contributions from different r'

throughout the nuclear volume (NV):

2
U„(r,p) = —Us F~

Nv k rD (2vrh)'

dpG]
(p

Ns ( PD

f~~p
—p

(»
Ps i' PD

where Uo is a 6xed positive energy giving the strength of
the like-nucleon interaction and k is the ratio of. the
unlike to like interaction. Thus, kUo is the strength of

' V. F. Weisskopf, Nucl. Phys, 3, 423 (1957),
s F. Percy and B.Buck„Nucl, Phys. 32, 353 (1962).
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and

P(x) =
x p

xp

x 0

(e '* " e—'*+"')LV(y)+Its'(X)]+t3

(e ' "'—e '*+"')(P(y)L1—8'b)]+&~'(X)l:1—k~'b)])X@+«.

xp

Pb) (x+X
l
x —

Xl )y—dX

(21)

(Same denominator)

These two coupled equations are our basic working
equations. Their solutions determine, through the use
of Eqs. (10) and (1), the nucleon density distribution.

Physically, xo is the distance (measured in units of
rn) beyond which the nucleon density is zero. Thus,
to be physically reasonable both &p(x) and P(x) must
vanish for x&xo. This, of course, does not preclude
the possibility of one of these functions having already
vanished at some value, say, xi, less than xo (this will
turn out to be the case for f, the proton distribution).
Therefore, we proceed to seek two functions which
satisfy one of the working equations for x(xo, and the
other equation for x&xi(&xo) and which are taken to
be identically zero for x)xo and x& x&, respectively.
For example, p and P may satisfy (20) for x& xo and (21)
for x(xi&xo Lwhere xi is determined by the solution
of (21)].In this event we would complete their defini-
tions by taking p(x) and 1t (x) to be identically zero
for x&xo and x&x&, respectively. It is seen that func-
tions defined in this manner for all x still satisfy Eq.
(20) for x(xo and Eq. (21) for x(xi. But since Eq.
(20) for x&xo and Eq. (21) for x&xi are not satisfied
by these functions it would appear that we cannot
conclude that the energy is minimized by these func-
tions. However, as pointed out in connection with the
energy variation procedure, Eqs. (20) and (21) occur
multiplied by common factors, in particular cp(x) and
g(x), respectively. Thus, one of the functions
being zero (instead of the corresponding working equa-
tion being satisfied) is also a sufficient condition for an
energy extremum.

We now have a procedure valid for all xo (assuming we
can solve the coupled equations in the appropriate
regions of x) for obtaining the desired nucleon density
distribution and have the assurance that the density
function, thus calculated, is physically meaningful in
that it minimizes the energy of the nucleus and exhibits
reasonable behavior for x)xo.

Before attempting to solve the working equations
for a particular value of xo we count the number of
free input parameters in our theory. The spirit of the
calculation is to treat the dimensionless parameters k,
C~, and Cg, characterizing the interaction strengths,
as independent of the size of the nucleus, xo, but permit
the Lagrangian multiplier, X (the total energy of the
most energetic nucleon) to depend on xo. The depend-

ence of X on xo (or A) implies, through Eq. (19a), that
the neutron and proton Fermi levels, E~„and E~„,
(or the dimensionless er and «„)will depend on A.
If we define D as the difference between the Fermi levels
and ma, ke use of the difference of Eq. (19a) we see

D=Ep„Er—„=Mc—' P'Mc'—
= (M„—M„)c'='1.3 MeV. (22)

Thus, the difference between the Fermi levels is
independent of A. Defining the dimensionless difference

D/(pD'/2M)—,

we have using (19b)
1.3 MeV

6@~—6p&= S=
pn2/2M

(23)

Upon examination of the working equations L(20)
and (21)) there would appear to be five input
parameters, k, C~, C~, ep„, and ep . However, the
method of solution employed will, for each value of
xo selected, determine a value for e p„and,hence, knowl-
edge of the constant pD, in (23), would give the value of
eg„for that xo. Thus, specification of the four parameters
k, C~, Co, and pn permits solution of the working
equations for the functions q (x) and P(x) for arbitrary
values of nuclear radius xo.

The question then arises as to whether these four
parameters )and the solutions p(x) and P(x)] are
sufficient for determining all derived quantities such
as the total energy of the nucleus, nuclear radius, etc.
For example, looking at Eq. (13), we find, in addition
to the above four parameters, the quantity rD, and
Eqs. (2) and (3) involve the quantity Uo. Not all
these quantities are independent. In fact, of the five
quantities C&, Co, pn, rD, and Uo only three are
independent as can be seen from Eqs. (10b). Thus, we
have exactly four free irtput parameters in our theory: k
and any three of the five quantities C&, Co, rn, pn, and
Uo, with which to attempt to fit nuclear energies,
neutron/proton ratios, radii, and surface thicknesses
over the whole range of nuclei (excluding the lightest,
which are not expected to be subject to such a purely
statistical theory).

Suppose for definiteness we select the input parameter
set: k, rD, C~, and Co. The other quantities pii and U,
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are then expressible, through the use of Eqs. (10b) as

Pi, = (3~A. /8Me') (C,/re'),
(24)

Vp ——(2e'/r D) (Civ/Ce).

Ke could guess values for the four input parameters,
solve the working equations and compare the values of
the derived quantities, e.g. , total binding energy, with
the experimental values for the same nucleus, then
repeat the process with new guesses for the parameters.
The disadvantage of this direct approach is the lack
of a priori knowledge concerning the approximate
values of the free parameters, in particular C~, Pi~,
and k. An alternative is to attempt to relate some of our
free parameters to more familiar quantities. The
quantities employed in I, in describing infinite nuclear
matter, are convenient for this purpose.

To obtain such relations, we examine our working
equations L(20) and (21)] in the limit of nucleons being

dynamically equivalent. That is, we retain the possi-
bility of placing four nucleons in the same momentum
state but set

Cc=o

("protons" are now chargeless), and

(25a)

(25b)

(neglect tsp mass difi'erence).
From Eq. (22) we see that P=1 implies Er„=Er„so
we can write just ep for both ~p„and ep„.For dy-
namically equivalent nucleons we expect the neutron
and "proton" spatial densities to be the same, and upon
examining Eqs. (20) and (21) we see that in the limit of
Eq. (25) either equation is just the other equation with

pp and P interchanged. Thus, the coupled equations do
indeed permit the symmetrical solution P(x)= &p(x),
where q satisfies the single equation

pp'(x) =

(1+k)Civ
(
- *-"— ""') '(y)L1 —l '(y)]ydy+

(1+k)Civ
(e

—
I * p I e

—(~—+v) )ps (y)ydy+ 1

(26)

This equation with (1+k)C&——C is the equation
studied in I. There the equation was applied to in6nite
nuclear matter, i.e., to nuclei with arbitrarily large radii
and uniform density. In this limit Ly being a constant,
say, p„(=p,„/pD), sr= eF and xp~ ~] Eq. (26)
can be simplihed and rearranged to give

steps: First, substituting Eqs. (27) and (28) into (31)
results in the equation

C~= 2LSpp„(1+4)(1—2q„')]'; (32)

second, substituting this result back into Eq. (28)
where, with the help of Eqs. (29) and (30), we find

er-= ~-' 2(1+7p)C~V—-'u (8/5) p-'] —(27)

Also, the ratio of the total energy to the total number of
nucleons is in this same limit,

1—0.103796E„rp„'
2=

(18/5) —0.207592E„rp„'
(33)

e-= (3/5) p.'—(1+&)C~p -'I:1—(6/5) p -'] (28)

where, in analogy with (19b), we have defined

e„—=E„/(pDs/2M), (29)

(9~q'~' iti

p.=I —
I

« 8 i r,
„

(30)

Thus far, we have introduced four new quantities,
er„,e„,or E„,p„,or pF„,and rp„,and only three new

equations, (27), (28), and (30) relating them. The
necessary fourth equation is provided by the Hugen-
holtz —Van Hove theorem, ' which states that

4/erm= 1. (31)

We accomplish our immediate objective in three
P N. Hngenholtz and L. Van Hove, Physics 24, 363 (1958).

E„being the average energy per nucleon in nuclear
matter. We introduce a length rp, the radius of the
volume per nucleon in infinite nuclear matter. In the
usual fashion

= (0.0448394 F ')rD'/(rp„tp„). (34)

From these three equations it is easily seen that C~ is
determined by k, rp„,and E„;while C~ is determined by
r~, rp„,and E„.Thus, we have found a new set of four
parameters, namely, k, r&, rp„, and E„which are
equivalent to the original set, k, r&, C&, and Cz.

The advantage of using the new set of input
parameters is made clear by the following two obser-
vations: (i) rp„ is the coefficient of the "2'~s law" in
nuclear matter and, although not precisely known, has
the approximate value 1.2&0.2F, as suggested by
Hofstadter's nuclear density experiments, " (ii) E„
corresponds to the coeflicient of the volume term in
the semiempirical mass formula and is given by Green"

I R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956)."A. E. S. Green, Phys. Rev. 95, 1001 (1954).

(where E„is in MeV); and third, using Eqs. (10)
and (30),

3 e'
p 8 ~'~s 2M res

2 m&9m] A' rp„(p„
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where

f'"(x)—= (c I
x—wl c

—ix+vi)[(p(t) (y)]8

x (1——;[~i'&(y)]'}y&y,
Zp

gi&) (x)= (c
—l~—ul c

—i*+a&)g iO(y)]3

ki'& (x)=-
2x

x (1——:9&'& (y)]'jydy,
Xp

(*+y—I*—y I )3 '" (y) 7'ydy,

vi&& (x)= (p
—l2:—wl c

—i~+w&)[(p(ii (y)]3ydy

and

w "&(x)—= (c
—

I ~—wl c—(*+wi)g, (ii (y)]3ydy

The hope is that with increasing t (successive iterations)
y'"(x) f'"(x), and er &'&(xo) approach definite limits,
which are to be taken as the desired solutions &p(x),

P(x), and er (xo), respectively. "The definition of the
iteration procedure is completed by specifying the
initial guesses, pro&(x) and f"&(x) (for x(xo), and by
requiring the larger of p"&(x) and P&'&(x) to become
zero at x= xo, thus determining er„&'&(xo). The smaller
of p&'&(x) and f"&(x) will then become zero for some
value of x, say, xi, ((xo) and will be taken as identically
zero for all x between xy and xp. Having obtained y&')

and /&i& in this manner, we repeat the procedure to
find p&'&(x), f&'&(x), and ep„o&(xo).This procedure is
iterated until two successive iterants are within a pre-
specified tolerance (we used 0.02%) of each other for
all x(xp.

'2 R. Ayres, W. F. Hornyak, I.. Chan, and H. Farm, Nucl. Phys.
29, 212 (1962)."A typical calculation requires 15 to 20 iterations.

as —15.74 MeV. One is tempted to use this value and
treat E„asknown, thus reducing the number of free
parameters to three. However, Ayres ef al." have
recently indicated that this value may be uncertain by
as much as 2 MeV per nucleon. In any event Green's
value provides us with an initial guess for the parameter
EQQ ~

We are now ready for the central problem of this
work, the solving of the coupled integral equations, (20)
and (21), for finite values of xp aild x(xo.

Employing an iteration method of solution we
rewrite the working equations, (20) and (21), for a
particular value of xp, as

f&'&(x)+kg&'&(x)+ er '"(xa)
[v '""(x)]'= (35)

vi'& (x)+kw&'& (x)+1
and

kf&" (x)+g&" (x)—k "&(x)+ ep„'"(xo)+ n
[P(i+i) (x)]2-

kvi" (x)+w'" (x)+P
(36)

We select the constant q„[given by Eq. (33)] as
our first guess. Thus, for x&xp,

~"&(x)=0"&(x)= ~-.

RESULTS AND DISCUSSION

Before reporting the numerical results" we submit an
outline of the procedure followed for the purpose of
"optimizing" the input parameters, k, rD, rp„,and E .
The routine employed was: (i) Choose arbitrary trial
values for the input parameters (we started with k= 1,
rr& 1.4——F, ro„=1.2 F, and E„=—15 MeV/nucleon).
(ii) Use Eqs. (23) and (24) to calculate K) and Eqs.
(32)—(34) to calculate C~ and Cc. (iii) Substitute k, 5),
C&i, and Cc into the iteration Eqs. (35) and (36). (iv)
Select a value of xo (a particular nucleus) and with the
aid of a digital computer solve these equations for the
functions y(x), f(x), and the constant cr„(xo). (v)
Compute the binding energy per nucleon for the nucleus
by substituting (another computer operation) the
solutions p(x), P(x) into Eqs. (11)—(13) and calculating
the negative of the ratio of Eq. (13), Er, to the sum of
Eqs. (11) and (12) (total number of nucleons in the
nucleus considered). (vi) Find the ratio of neutrons to
protons by dividing Eq. (6) by Eq. (7). (vii) Repeat
steps (iv)—(vi) for various values of xo, thus obtaining
theoretical curves for the variation of binding energy
per nucleon and the neutron-proton ratio as a function
of the nucleon number, which can be compared to
available experimental curves. (viii) Repeat steps
(i)—(vii) with a different choice of parameter values ';
and continue this procedure in search of inpu t parameter
values which "best fit" the experimental data in the
sense of a least-squares computation. "

The search produced the following best input
parameter values

rD=0.56 F,
rp„=1.20 F,

k= 1.35,

8„=—15.6 MeV.

(38)

The effective Yukawa force-range r~ is less than half
(40'Po) of the value (A/m c) expected on the basis of a
purely single-pion exchange picture of the nucleon-
nucleon force. It suggests that multiple-pion exchanges
may be important, and is consistent with the fact that
hyperons, which cannot interact with nucleons by
single-pion exchange, nevertheless seem to be bound
in hypernuclei to nearly the same extent as a nucleon
would be bound. The radius of the volume per nucleon
in nuclear matter, rp„,is quite of the expected size. The

'4 In the following, for brevity, the predictions of the present
model will be referred to as the "theoretical predictions. "

' The method of choosing different parameter values consisted
of employing a simple variation of the "grid search" technique.' The sum of the squares of the differences between theoretical
and experimental values divided by the number of compared
values.
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unlike-nucleon effective force is about —', as effective
(k= 1.35) as the unlike one, but we know of no rationale
for a ratio near —,.

The asymptotic energy-per-nucleon (E„=—15.6
MeV) is close (within 1/o) to the Green" value, and
suggests that the fears expressed" about this number
may be somewhat alarmist. Our value of E„is uncertain
by about 1%because the best fit to the experimental
data is not very sensitive to E„.T'he uncertainty in E„
causes the other parameter values also to be uncertain,
as can be seen from the following list of the values of
the parameters for three different good fits:

E ra r oce

it is assumed that the energy of a nucleon with mo-
mentum P can be expressed as

E(f)=f'/2M+V +(P/P. )'V .

Evaluating Eq. (2) in the limit of nucleons being
dynamically equivalent, p(x)= p„and xs —+ ~„we
find

Vs= 2(—1+4)C~Tp„p„(1', y—„'-),
(42)

Vt= 2(1+0)C~Tp„rp„'.
Introducing the eGective nucleon mass, 3f*, defined
such that E(p) =p'/2M*+ Vs, we find for the ratio of
effective to free mass

—15.8
—15.6
—15.4

1.335
1.348
1.355

0.553
0.564
0.572

1.174
1.202 (39)
1.229.

M*/M= (1+V,/Tp„) '= L1+-2(1+k)C~q„']'. (43)

The values given in Eq. (40), when substituted into
Eqs. (42) and (43) give

Cc=0 01866

Tp„——p p„'/2M=33.33 MeU,

pD'/2M =82.6 MeV,

Up=379.3 MeV.

(40)

Note that the critical momentum pii is substantially
larger than the Fermi momenta involved (q and f are
well below unity) so that "the amount of momentum
dependence needed in the interaction is not large. "
We are probably not in a position to distinguish, for
instance, between G(q)=1—q' and exp( —q'), which
momentum dependence would not change the inter-
action from attraction to repulsion for any relative
momentum.

As in I we can compare our results in the infinite
nucleus case to the nuclear matter eGective-mass
approximation of Weisskopf4 and Mittelstaedt, ~ wherein

'7 Another serious limitation on the accuracy of the parameters
is accuracy of the solutions p, iIt of the working equations. To hold
down the computer time needed, we settled on a one-hundred
point division of the interval x0 for purposes of numerical
integration.

The best fit corresponds to the middle set of values, as
given before, but the fits obtained with the other two
sets of values are nearly as good. That is, the mean
square deviation, based on the deviations from the data
(binding energy and neutron/proton ratio) computed
at five or six points (spaced between A equal roughly
40 and 200), was slightly lower for the middle set of
values. When only a few points of comparison are
employed (as was done) to determine the mean-square
deviation the resultant value will be somewhat
dependent on the particular comparison points chosen.
Thus, a more accurate determination of the optimum
values of the parameters wouM necessitate the use of a
larger number (=20) of comparison points. 'r

Using the values of the four parameters, Eq. (38),
we 6nd

q„=0.6351,

C~——1.388,

V,= —104.6 Mev,

VI=55.7 MeV,

M*/M =0.375.
(44)

These values differ only slightly (since we found
T~„——33.33 compared to their input value of T~ ——38
MeV) from the values given by Weisskopf and Mittel-
staedt for the case of vanishing rearrangement energy
(6=0) which is the same as separation energy equal to
the negative of the Fermi energy (8= Ep). —

A comparison with the optical model is afforded by
writing Eq. (41), using the values in Eq. (44) as

E(P) = T 104.6+55.7—T/T p„, (45)
where T is the kinetic energy p'/2M. Now consider a
nucleon (neutrons and protons dynamically equivalent
again) of zero total energy in nuclear matter where it
sees an optical potential, "whose real part we call V,
and has kinetic energy T= —t/'. We can calculate V
by setting E=O in Eq. (45), substituting Tp„——33.33
MeV, as given by Eq. (40), and solving for T which
gives T=39.2 MeV and, therefore, we have"

V= —39.2 MeV,

which is roughly 7% below the current 42-MeV estimate
based on low-energy neutron scattering. '

Table I shows some of the properties of the solutions
y(x), P(x) for various values of xs (all x values are
measured in units of rii ——0.564 F)."Column 2 gives the

"A. E. Glassgold, Progressin XNclear Physics, edited by 0.R.
Frisch (Pergarnon Press Inc. , New York, 1959), Vol. I, Chap. 4."For comparison the 6rst and third sets of parameter values
given in Eq. (39) would yield optical potentials of 41.0 and 37.6
MeV, respectively.' In I the range of investigation of x0 was from 4.5 to 10. The
para, meter rD was not determined by the work in I but was
arbitrarily taken as the Compton wavelength of the m meson
(=1.4 F). This assumption implied that the range of x0 corre-

sponded to 30(A (1100.The smaller value of rD determined by
this work (0.564 F) forces a rescaling of the distance (r = AD) and
indicates that the actual range of A studied in I was only from
approximately 4 to 76. The absence of saturation for "low" A
noted in I is now better understood in view of our present knowl-
edge as to how "low" A really was.
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TABLE I. Properties of the solutions q (x) and P(x) for various
values of gp (nuclear radius). All lengths are given in units of rz.

/f Ir(0)/ v„p(0)/p„zerodiff x„„xl/2 +Oe

16 241.43 1.029 0.884
15.5 219,87 1.030 0.893
15 199.43 1.031 0.902
14.5 180.10 1.031 0.911
14 161.88 1.032 0.920
13.5 144.77 1.032 0.928
13 128.77 1.033 0.936
12.5 113.87 1.033 0.944
12 100.03 1.033 0.952
11.5 87.26 1.033 0.959
11 'l5.53 1.033 0.966
10.75 70.05 1.033 0.969
10.5 64.83 1.033 0.9'l2
10.25 59.85 1.033 0.976
10 55.11 1.033 0.979
9.75 50.61 1.032 0.982
9.5 46.35 1.032 0.984
9.25 42.32 1.032 0.987
9 38.52 1.032 0.990
8.5 31.57 1.030 0.994
8 25.46 1.029 0.998
7.5 20.16 1.027 1.001
7 15.62 1.023 1.002
6.5 11.77 1.019 1.002
6 8.57 1.011 0.999
5.5 5.97 1.000 0.991

0.96 2.72
0.93 2.75
0.90 2.79
0.87 2.83
0.70 2.87
0.675 2.92
0.650 2.96
0.625 3.00
0.48 3.04
0.46 3.09
0.44 3.13
0.43 3.15
0.315 3.17
0.3075 3.18
0.30 3.19
0.2925 3.20
0.285 3.21
0.2'775 3.22
0.18 3.23
0.17 3.23
0.16 3.22
0.075 3.20
0.070 3.15
0.065 3.09
0 2.99
0 286

13.75 13.80
13.29 13.31
12.83 12.83
12.37 12.35
11.91 11.86
11.45 11.39
10.98 10.91
10.52 10.43
10.05 9.95
9.57 9.48
9.10 9.00
8.86 8.77
8.62 8.53
8.36 8.29
8.15 8.06
7.91 7.82
7.67 7.59
7.43 7.35
7.19 7.12
6.70 6.65
6.22 6.18
5.73 5.72
5,25 5.26
4.76 4.80
4.27 4.34
3.78 3.88

"M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).

total number of nucleons )Eqs. (11) plus (12)j in the
nucleus. Column 3 indicates that the neutron density
PEqs. (1a) and (10a)$ near the center of the nucleus is
saturated, since q (0) is essentially independent of the
size of the nucleus, at a value slightly above the neutron
density of an infinite (with no Coulomb effect and no

np mass difference) nucleus. Due to the Coulomb re-
pulsion, we would expect the addition of protons to a
nucleus to cause the inner protons to spread out,
lowering the density. That this is the case is shown by
column 4 where it is seen that for large A the inner
proton density becomes significantly less than the
"proton" (=neutron) density in infinite nuclear matter.
Column 5 lists the difference in extent (in units of rii)
of the neutron and proton density distributions. Since
we divided the distance xo into 100 parts for the numeri-
cal computatio~, the point at which the proton density
vanishes is known only to within a scale division
(0.01xs). Thus, the figures in column five are uncertain,
in particular, each value is only known to lie between
the value listed, and that value plus 0.01xo. The result
that the neutron distribution has the greater extent
was predicted by Johnson and Teller. "

Column 6 reports the surface thickness, "the distance
over which the total nucleon density decreases from 90
to 10% of its central value. Our results show a surface
thickness roughly independent of 2, averaging to

«90%%u' —1()%"= (2.9g~0.26)rII= 1.68+0.15 F. (46)

This result is of the same order of magnitude, but
somewhat lower than the lowest values for the skin

l.o

0.8-

0.6-

OA

0 I

IO l4 l6

FIG. 1. The variation of p and If' (the Fermi neutron and proton
momenta in units of p~) as a function of x (the radial distance in
units of rn) for x(xo. Curves are given for x// (the nuclear radius
in units of rn) equal to 8 and 15, corresponding to A =25 and 200.

is the Fermi momentum (in units of pn) of a nucleon in infinite
nuclear matter.

~'M. A. Preston, Physics of the Nucleus (Addison-Wesley
Publishing Company, Inc.~'Reading, Massachusetts, 1962), p. 46.

'3 L. R. B.Elton, Nucl. Phys. 23, 681 (1961).

thickness quoted by Preston. " Certainly the surface
region of the nucleus is treated inadequately by the
present simple model, which in eGect neglects quantum-
mechanical diffuseness (and can thus give a sharp edge).
A tail of nucleon-distribution extending beyond our
"nuclear radius" is to be expected, and it is, therefore,
satisfactory that our calculated surface thickness is
on the low side. It may be worth mentioning that the
90—0% surface thickness in the present model is much
more nearly A-independent (than the 90—10% thick-
ness) and averages to the lowest skin thickness
(2.20+0.03 F) reported by Preston.

Column 7 gives the value of x at which the total
nucleon density is equal to half of its central value.
This value will be referred to as the half-density radius.
Column 8 gives the extent xo, of the "equivalent
uniform density model" (density throughout same as
calculated central density and same number of
nucleons) .

Our results predict that the radius (as used in this
paper) of the neutron distribution, gs, exceeds the
radius of the proton distribution, the difference in-
creasing monotonically as a function of 3 to the value
0.54F at 3=240. Experimental evidence concerning
the difference in the extents of the neutron and proton
distributions has been presented by Elton" and his
conclusion is that, for heavy nuclei (A) 150), a differ-
ence between the neutron and proton half-density
radii of more than 0.1 to 0.2 F is incompatible with
experiment. For our solution of largest A (=241:
xs ——16), we find by examining the solutions q and lf
that the neutron density drops to half its central value
at x=13.85, while the proton density becomes half its
central value when x= 13.61.Thus, the difference in the
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FIG. 2. The variation of E, the
binding energy per nucleon, as a
function of A. The solid curve repre-
sents the theoretical values, the
isolated points the experimental
values.
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ep half-density radii is 0.24r~ or 0.135 F, which is well
within Elton's requirement.

Figure 1 displays the solutions q (x) (solid curve) and

P(x) (dashed curve) as functions of x for two values of
go, 8.0 and 15.0, corresponding to A=25 and 200 [we
have normalized the solutions to the infinite nucleus
value by multiplying by q&„'(= 1.573)$. For small A

the solutions q and P are nearly equal, but as A increases
the Coulomb energy rises rapidly (~ Z') and, thus, the
proton density distribution (o-P) looks considerably
different (lower in central density and lesser in spatial
extent) from the neutron distribution (~ y'). It is to
be remembered that although, as in Fig. 1, as x~ xo,

y —+ 0 with infinite slope, the density ~ 0 with zero
slope (cf. Fig. 2 in I). Some conclusions that follow
from Fig. 1 (inner neutron density being saturated,
etc.) have already been drawn from Table I. There is,
however, one more result to be emphasized. Although
the neutron density distribution decreases mono-
tonically as a function of x for all A, the proton distri-
bution does not. In particular, for A)55 the proton
density dips slightly in the center; that is, its maximum
is displaced from the center of the nucleus (compare the
two dashed curves in Fig. 1). Quantitatively, for
A = 55 (xp = 10), the point of maximum proton Fermi
momentum (and, therefore, proton density) is displaced
from the center of the nucleus by 0.10xo (=0.56 F) and
has a value 0.0001% greater than the central Fermi
proton momentum. For xo ——15 (A =200) the maximum
of the proton Fermi momentum occurs at x= 0.55xo and
is noticeably (2.3%) greater than the proton Fermi
momentum at the center of the nucleus. A dip of 2.3%
in proton Fermi momentum corresponds to a dip of
almost 7% in proton density. As A increases both the
amount of dip and the amount of departure of the
proton density maximum from the center of the nucleus

X/Z= 1+0.015A'" (47)

since for A)35 these two curves differ by less than
0.14%. At lower A, for example, at A=12, the theo-
retical curve is about 1% below the value given by
Eq. (47), and for A(12 the difference is greater than

increase as is to be expected since both effects are
directly attributable to the increase in Coulomb
repulsion energy.

In Fig. 2 is exhibited the variation of the binding
energy per nucleon, E, as a function of the number of
nucleons, A. The smooth curve gives the theoretical
values of E. The isolated points indicate the experi-
mental values of E for all known stable nuclei having A
between 5 and 205 (when more than one experimental
value of E is available for a particular value of A only
the average value is shown in Fig. 2). It is seen that the
theoretical curve accurately represents the over-all
"smoothed-out" behavior of the experimental data
reproducing the average of the experimental values to
well within 1% for nearly all A in the range 5 to 205.
The success of our theory in not only satisfying the
general requirement of exhibiting saturation, but in
reproducing to high accuracy the observed binding
energies for all A is, indeed, gratifying. In fact, it
probably should be admitted that this fit seems
suspiciously good, in view of the fact that we have made
no effort to exclude aspherical nuclei from those to
which the 6t is made.

Figure 3 presents the neutron-proton ratio, X/Z,
as a function of A. The theoretical values are repre-
sented by the smooth curve. The X/Z values of the
experimentally known stable nuclei are plotted as
isolated points. Except at very low A, the theoretical
curve can be accurately represented by the Weizsacker
expression"
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FIG. 3.The variation of the neutron-
proton ratio, N/Z, as a function of A.
The solid curve gives the theoretical
values, the isolated points the experi-
mental values (averaged for each A).
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FIG. 4. Theoretical (solid curve) and experimental
(isolated points) values of N as a function oi Z.

1%. The same information is presented in slightly
diferent form in Fig. 4, where Ã is plotted as a function
of Z. The smooth curve gives the theoretical values and
the isolated points the experimental values (Fig. 4
contains information in the A range 205 to 240 not
exhibited in Fig. 3). The fit is seen to be very satis-
factory over the whole range of A.

The upper set of data in Fig. 5 shows x~ plotted as a
function of 2'1". We have indicated on the figure an
attempt to fit the data with a (not necessarily the best)
straight line, whose equation is xe ——2.482'"+1.00, or
multiplied by rn, R= 1.403'~s+0.56 F. The departures
from the given line indicate that to fit the points at very
high A a line having greater slope (the slope in the A'~'
"law" is usually designated by the symbol r&) is needed
(e.g. , at 2 = 240, rs 1.48 F——'), whereas to fit the low 2
portion a much lower value of rs is needed (e.g. , at
A =5, rs would need to be ='1.16 F). Thus, we see that
a unique value of ro does not exist. The variation of slope
(re), over the range of A considered, can be summarized
by the statement rs ——1.32 F&12%.

The lower set of data in Fig. 5 presents xs, (the
extent of the equivalent uniform density model) as a
function of 2'1". As before, to illustrate the departure
of the data from a straight-line fit we have included the
line xo, ——2.153'~' or E,=1.21A'~' F If we require the
line to pass through the origin (as one would expect
for a uniform density model) we see that for medium A
a lower slope is needed (e.g. , 3=22 slope ='1.185 F),
while for very large 3 a larger value of slope is required
(e.g. , A = 240, slope =' 1.25 F).

Ke conclude that both sets of data in Fig. 5 show
about the same departure from straight-line fits and
that the slope (re) of a straight-line fit to the upper (xs)
data may exceed, by as much as 15%, the slope of a
similar ht to the xo,, data. These facts indicate the
necessity for caution when attempting to compare
directly ro values based on different models.

The deviation from the 3'1' law, observed in Fig. 5,
can be explained by plotting xo as a function of 1P~', as
is done in Fig. 6. It is seen that in this case the data
can be well represented by a straight-line 6t. The
equation of the line drawn in Fig. 6 is xs ——2.74cV'"+ 1.47
which when multiplied by r& (=0.564 F) becomes

R= 1 541P"+0.83 F.
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Now if E can be expressed as A multiplied by a
constant (for nuclear rnatter N=A/2) we arrive at a
linear A'I' dependence. However, because of the
Coulomb energy, the ratio N/A is itself a function of A

and, therefore, ro will be A-dependent. We are in a
position to predict this A dependence since we have in
Kq. (47) an analytic expression which accurately
(except for very low A) approximates N/Z as a function
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of A. We find'4 (in F)

FIG. 5. The points present x4 (nuclear radius) and the lower
points, X4, (radius oi equivalent uniform density model), as a
function of A'l3. Equations of the "Gt" lines are given in text.

I'IG. 6. The variation of x0 as a function of E», E
being the neutron number.

CONCLUSION

A credible zero-order nuclear model is given by
treating attractive but velocity-dependent two-body
interactions in Thomas-Fermi approximation. Such a
model reproduces the gross energetics and sizes given
by experiment for reasonable values of a small number
of input parameters. The model predicts a small but
definite Johnson-Teller effect: The neutron distribution
extends out beyond the proton distribution. It also
predicts a definite depression of the central proton
density for medium and heavy nuclei. The treatment
of the extremities of the neutron and proton distri-
butions in this model is certainly not accurate. There
is no way that this model can deal directly with a
possible clustering effect far out in the nuclear surface.
The sharp edge of the nucleus predicted by a Thomas-
Fermi model with 6nite-range forces is certainly
unrealistic, but we see no evidence that it is fatal to the
model or responsible for the prediction of a spurious
Johnson- Teller effect.

1+0.015A' ', ) ' '
2=1.22

i
A"'+0.83.

1+0.0075A@')

' Equation (32) of I reads 8=1.00r0 A'j'+1.67' which when
evaluated using present values of r0 and rD becomes
= 1.20A»3+0.94 I».
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