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Spatial Separation of Events in 8-Matrix Theory*
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Just as the derivative of the argument of the 8 matrix with respect to energy gives a time interval for
events, it is shown that the corresponding derivative with respect to momentum transfer gives a space
interval. This space interval corresponds to the classical impact parameter in the classical limit. More
generally, it is suggested that these two derivatives may provide a basis for introducing space-time intervals
into physical theory.

be defined, and in general provides a defirtitiort for the
impact parameter. In a manner analogous to that used
for defining the time interval for a sequence of events,
this impact parameter provides a means of constructing
a trajectory for a particle undergoing a sequence of
scat terings.

These, and the earlier considerations of time interval,
suggest that a complete but coarse-grained description
of space and time intervals may be derived in 5-matrix
theory, rather than postulated —as in conventional field
theory.

I. INTRODUCTION

&~URING the past few years there has been consider-
able interest in the possibility of replacing the

ordinary dynamical description of physical systems via
a Schrodinger equation by an 5-matrix theory. The
principal objection to the conventional theory is that
it tells one rather more than he wants to know about a
physical system; more precisely, it forces discussion of
things that do not seem observable. One aspect of this
problem that has been recently discussed is the notion
of time interval in an S-matrix theory. ' The idea was

proposed that the S Inatrix, although superficially
involving only information about the state of a system
over long time intervals, does, in fact, provide a kind
of coarse-grained definition of time interval. In a
complex process, involving a sequence of operations,
one can define a sequence of time intervals only to the
extent that the S matrix for the entire event factors into
a product of 5 matrices. When this is possible, a time
label can be defined that involves only S-matrix (i.e.,
on energy shell) quantities. A dynamical principle may
then be formulated from the 5 matrix for describing
the change with time of physical systems.

It is natural to ask whether any analogous consider-
ations apply for the definition of the spatial separation
of events in an S-matrix theory. Such a description
would evidently be "coarse grained, " as was that for
time intervals, and much more restrictive than the
notion of a space-time continuum inherent in conven-
tional field theory.

We shall see that a spatial separation for two inter-
acting particles may indeed be defined in terms of the
partial derivative of S with respect to the scattering
angle. This quantity reduces to the classical impact
parameter in the limit that a classical trajectory may

~ This work was prepared under the auspices of the U. S.Atomic
Energy Commission and a contract from the U. S. Air Force.

t PresentIy on leave at the Massachusetts Institute oi
Technology.' M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 2284
(1962).

II. WAVE-PACKET DESCRIPTION OF
THE SCATTERING

For simplicity of discussion we restrict ourselves to
the scattering of a simple spinless particle by a massive
scatterer located at the origin of a given coordinate
system. More complicated and physically interesting
interactions would seem to involve complication of
detail rather than of principle. The interaction and its
observation involve directing a wave packet toward
the scatterer at some initial time t= —To and observing
it at some later time T, as is illustrated in Fig. 1. We
suppose that at both times (—To) and T the wave
packet is far from the scatterer. In the spirit of 5-matrix
theory we can assume that we know the wave function
for the particle only at such times that it is far from
the scatterer.

The wave function of the incident particle prior to
interaction will be of the form

P(x,t) = (2sr) st' expLi(p x—cot) jG(x vvt), (1)—
where p, vo, and e„are, respectively, the initial momen-
tum, velocity, and energy of the particle. The wave-
packet amplitude

G(x)=—G(x,y,s) (2)

is so constructed that at t= 0 the packet is centered on
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the scatterer at x=0. More precisely, we write

d~*x~G(x) ~2=0. (3)

The envelope G is assumed to have a spatial extent
characterized by a length 8'. It is assumed to be
"reasonably smooth" in the sense that its Fourier
transform a(1), in

FIG. 1.Illustration
of wave-packet scat-
tering.

Detector

e t=T

Incident

wave packet

G(x) = d'l e"*a(l), (4)

g(x, t) = (2s.) 'I' d'«exp[i(x x—»„t)]a(x—p) . (5)

is characterized by a "width" 8' ' in momentum space.
The width 8' is conveniently chosen large enough that
spreading of the wave packet is negligible by the time
it reaches the detector. ' We shall also assume that over
the momentum interval 8' ' the 5 matrix, energy, and
scattering amplitude are very nearly constant.

The wave function (1) may, with the assumptions
just made, be written as

so long as X&)W. The lower limit obtainable on S' is
determined from the properties of the interaction and
the requirement of negligible spreading. The question
that concerns us is whether the asymptotic wave
functions alone (or the S matrix) permit one to describe
the spatial separation of the particle and scattering
center during the interaction.

To investigate this, we first use Eqs. (7) and (8) to
write the asymptotic scattered wave as

P„(x,t)

exp[i(«x —»„t)]= (2m) '" d'« f(«,i «)a(x —p). (12)

The momentum p is taken to be the mean momentum The complex scattering amplitude may evidently be
of the incident packet: written in the form

(6)
f(«~ z' «) =R(«) z' «) exp[zan(«) z ' «)], (13)

The complete wave function for the scattering event
is then

where R and g are real.
Now, by our assumption that f varies little over the

momentum interval 8' ', we may take

P(x, t) = d'eP„+(x)e '"'a(x —p) . »g = »p+ 1' Vy»y )

«=p+l p,
(14)

where

S„„=8 (x'—x) —2vrib (»„—»„)T„„

T;.= —[«/(2n. )'p,]f(«,«' «),

p.=«'/(d»„/d«) .

(10)

The separation X between the packet and scatterer is
certainly observable, to within an accuracy of order 8'

~ See, for exam le, M. L. Goldberger and K. M. Watson,
Collision Theory John Wiley 8z Sons, Inc. , New York, 1963),
Chap. III. When the wave packet has traveled a distance L to
the detector, its amplitude will have been distorted to the form

O' G 1+0—
where N is the mass of the particle.

Here P„+ is the steady-state wave function having the
asymptotic form

P„+(x)= (2m) '~'[exp(ix x)+ (e'"'/x) f(«, 2 «)], (8)

as x-+ ~. The quantity f(«, z «) is the amplitude for
scattering from the initial direction ~ to a final direction
X. The relation of f to the S matrix is described by the
equations

and

Rp=—R(p, i p)

x»=x(P &'P)

(16)

The factor exp(1 V'„ lnR») in (15) leads to a distortion
in the shape of the scattered wave packet. This is not
of interest to us now, so we suppose it to be absorbed
into the definition of the amplitude function a in Eq.
(12). The second factor, exp (il V'&xp) leads to a
disp/acemeet of the packet and does concern us. Indeed,
on inserting the expressions (14) and (15) into (12),
we find

exp[i�

(Px »„t)]—
0'-(xt~)= (2~) "' — f(P &'f')

XGjp(x —vot)+ V~xo]. (17)

f(«, i «) = f(p, z P) exp(1 V'& lnRp) exp(il T~xp) (15)

in the integrand in (12). Here

1=x—p
and
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FIG. 2. Illustration
of the vectors jo and
Do.

vo p~o Vypp is the velocity of the incident
particle.

For the validity of Eq. (17) we require that

7'„'o„(T+To)((W',
g 2X ((+73

which are conditions placed on the wave packet. '
To give Eq. (17) a physical interpretation, we

introduce
u:z'p

as a variable, and write

& xo= vo(cjxo/&or)+ (x—i pp) (~xo/p») (1g)

The expression (19) is a direct generalization of the
|A"igner —Eisenbud' time delay for scattering in pure
eigenstates of the 5 matrix. The quantity r& evidently
corresponds to a delay in the arrival of the packet at
the detector. Its significance for the present consider-
ations was discussed in Ref. 1.

We see from Eqs. (21) and (22) that a meaning can
be given to the term "spatial separation" of two inter-
acting particles. In the next section we give a diferent,
and more direct, calculation of this quantity.

III. DIRECT CALCULATION OF POSITION
OF THE WAVE PACKET

We discuss once again the same scattering event
that was described in Sec. II, but now calculate directly
the center of mass of the packet.

If theie were no scattering, the wave function (5)
would describe the packet motion. Its mean initial
position at the time $= —Tp is then

Xp' —— ed'x xjy(x, —Tp) j'.

It is natural to call cIxp/Bc„a "time delay, "
re= (axo/ao, )= (a—argf/ao, ),

and to call

In the absence of scattering, and at the time T, the
mean position of the packet is

19

Do—= (i—i pp) (~xp/p»)
= (i i pp) (—rl arg f/p»)

(20) Xp(T) = |Px xjy(x, T) j'. (26)

a "space shift. "It may be noted that Dp is per perrdi cular
to the incident direction p.

The wave-packet amplitude in Eq. (17) has then the
form

When scattering occurs we must use the wave
function (7) to find the packet location. At the time
T= —Tp this is

G= G(pfx op(t rg)]+ —Dp) . — (21) Xp —— d'x x
j P(x, —Tp) j

'. (27)

If, for example, the scattering lies in the x—s plane of
a rectangular coordinate system, with p directed along
the s axis, we may write this in the notation of Eq. (2)
as

Since (—Tp) was chosen as a time long before scattering
occurred, we will have

G=Gfap, 0, x—wp(t —rg) j. (22) f(x, —To) =@(x, —To), (28)

Equation (22) has a direct physical interpretation.
Particles scattered into the direction i tend to be
displaced off the s axis by a distance Bp. This is illus-
trated in Fig. 2, where a "classical" trajectory is drawn.
The displacement Dp is seen in this case to correspond
to the classical impact parameter.

These considerations permit us to give a strictly
quantum-mechanical definition of the impact parameter
for a collision. In addition, we can de6ne a distance of
closest approach as the vector

y= pfz cos(8/2) —p sin(e/2)7, (23)
where

1
X(T)=— d'x xjA. (i)|p(x,T) j', (29)

Xo——Xpo.

To And the position of the scattered wave packet at
time T for those particles scattered into the direction
i, we introduce a projection operator A(i) onto those
plane-wave states corresponding to momentum vectors
parallel to i and lying in the small increment 80(i) of
solid angle. The required mean coordinate of the wave
packet is then

where z is a unit vector parallel to the x axis, 0 is the
scattering angle (cose=z p), and Ã~ d'xjh(i)P(x, T) j'. (30)

p=2 sin(S/2) (axo/p»)
= f2 sin(8/2)/pj(8 arg f/») .

(24) 3 E. P. signer, Phys. Rev. 98, 145 (1955), and L. Eisenbud,
Ph.D. thesis, Princeton University, 1948 (unpublished).
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—(Vi+9p V'.i) argf(p, 9 p) = r—„vf+ f (55)

where 7z is the time delay (19) and

Dr =——(p i—i p) (8 arg f/p8u), (56)

and u=x p as in Eq. (18). Finally, we use Eqs. (39)
and (54) to write Eq. (30) as

X(T)= v, (T rd)+—Dr, (57)

FIG. 3. Construc-
tion of "classical"
trajectory.

e
0

or
DX= vi (T Tg) —voT+ Df. (58)

The interpretation of these expressions is similar to
that given in Sec. II of Eq. (22). The scattered wave
packet is delayed by a time 7& and displaced a distance
Dr, which lies in the plane of the scattering and is
perpendicular to the direction z. This is illustrated in
Fig. 3, where Eqs. (20) and (57) are used to define a
"trajectory" for the particle.

Referring to Fig. 3, we see that if the scattering had
"actually occurred" at 0, the point X(T) would have
been at P. Because the scattering is displaced by the
distance 8 [see Eq. (23)$, the point X(T) is displaced
by a distance Df perpendicular to the line OP. The
displacement of the incident orbit is Do [see Eq. (20)).
We see that

Df =Do= p cos(8/2),

and Df is in the direction of the unit vector e, illustrated
in Fig. 3.

Our discussion has been quite general to this point
and certainly consistent with the indeterminacy
principle. The "trajectory" drawn in Fig. 3 has been
defined in terms of the meae disp/acescent Do and Dr.
In the next section we shall evaluate these quantities
in the classical limit and see that y does indeed then
correspond to just the classical distance of closest
approach.

Before doing this, let us suppose that the scattering
interaction illustrated in Fig. 3 is weak and limited to
small angles 0, and that the orbit may be considered as
classical. The displacement Do and Dr are then directly
interpretable as displacements of the classical trajectory
from QOI'. The time delay rz requires discussion,
however. There are two contributions to 7-~. One
results from the fact that the trajectory EST is shorter
than QOI' by the line segments aO and bS. Since, this
length is 2p sin(8/2), we have a purely geometrical
contribution to v-g,

= —(2p/vo) sin(8/2) . (60)

The time delay also has a dynamical contribution
corresponding to the fact that the velocity of the parti-
cle is in general diferent while it is interacting. To
evaluate this in the classical limit, we suppose that the
scattering is due to a potential V(r, s), where s is a
coordinate along p, and r a coordinate along j. Now,
the velocity e, if the particle has a nonrelativistic

energy, at (r,s) is given by the equation

v'+ (2/M) V (r,s) = v(P, (61)

where 3f is the particle mass. Since we have assumed
that 8 is small and that (2/M)

~

V~&&v02, we obtain
from Eq. (61) for an impact parameter p

ds
Ch= 1+ -—V(p, s)

~p 3Ap'
or

'Vp

V(p, s)ds (62)

for the dynamical contribution to the time delay. The
total time delay rg is then

&d &dyn+ &geom ~ (63)

IV. SCATTERING IN THE NEAR-CLASSICAL LIMIT

Let us evaluate the scattering illustrated in Fig. 3 in
the WEBJ, or eikonal, approximation for the case of a
nonrelativistic particle. Then, if the scattering is due to
a potential V(r,s) and is limited to small angles 8,' the
scattering amplitude' is

rdr Jo (pr8)[e"""~' 1], —(64)

where Jp is the Bessel function of zero order and

which may easily be evaluated by a saddle-point
integration. To do this, we must consider the two

5 The limitation to small scattering angles is not essential here,
but simplihes our discussion.

~ See Ref. 2, Kq. (6-505), for example.

In the near-classical limit we may replace Jp by its
asymptotic form to write

p 1/2 oo

f= —i
2xo p

X (exp[i(pr8 —-', v)j+exp[ —i(pr8 —-', v.)j}
y (e"'—1), (66)
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integrals derivatives (19) and (24) of arg f with respect to these
variables have a simple geometrical interpretation. If
one considers f to be a function of the variables7

where
4*( n) =2~(& P)~(Pre —4) (68)

s—=2M&„,

t=—2—s(1—g),
(75)

The stationary phase point at r= pp is determined from
the equations

rather than of e„and u, the partial derivatives of
arg f(s,t) may be given a dynamical interpretation.

To see this, let us first generalize the definition (62)
for ydy~) wilting

(69)2~ (»,p)~pe=0,
where b'= Bh(r—,p)/Br.

(76)~6~ ~d ~geOI11 p

Now,
1 ~ 8 V(r, s)

8'(r, P) =— «—
25p ~ t9f

where rq is defined by Eq. (19) and r... by Eq. (60).
(70) An elementary calculation then gives

so
8'(r,p)) 0 for a repulsive force (case R),
8'(r,p)(0 for an attractive force (ca,se A) .

8 argf(s, t)
2(s)u

Bf 2 sin(0/2)
(77)

We see then that in the present approximation

f= —i (p/2vre)'"I+, (71)

where the plus sign corresponds to case A and the
minus sign to case R. Evaluation of I+ gives

f= i(ppo/—(00"()'"e+'1 e'~0, case R
f= i (pp—o/ [&0"[)"'e+':~e'~'+, case A, (72)

where @o+=—g+(po, P) and @o"—=qb" (po,p). The plus sign
in Eqs. (72) is to be used when po") 1, the minus sign
for $0"(1.

Using Eqs. (24) and (72), we find the impact parame-
ter p tobe

p= pp, case R,
= —pp, case A,

(73)

in agreement with our anticipations.
The time delay (17) is evaluated from Eqs. (72) as

i BB pp8

vo BP vo

Pp~
«V(po, s)W-

'Vp

(74)

V. AN ALTERNATIVE REPRESENTATION

We have considered the scattering amplitude to be
a function of e~ and u=9 p, and have shown that the

by using Eq. (65). For ca,se R and small 0 (minus sign),
this is seen to agree precisely with Eqs. (60), (62), and
(63).

where p is defined by Eq. (24), and

8 argf(s, t)
2M =Tc 7dyn ~

Here r&~ is defined by Eq. (76).
Ke call the quantity r, the "causal time delay. "

Equation (62) suggests that this has a more direct
dynamical significance than does 7-&.

VI. CONSTRUCTION OF A TRAJECTORY

In Ref. 1 it was observed that for a sequence of
scatterings, or in the quasi-classical limit, for which the
S matrix factors into a product of S matrices, the time
delay 7~ permits one to attach a coarse-grained time
label to points on the trajectory. In a similar manner
we can use Eqs. (23) and (24) to construct an "orbit"
in coordinate space for the scattered particle. That is,
when

where S; is an S matrix for the ith scattering, we may
define a sequence g; of displacement parameters. A
path formed by line segments between this sequence
of vectors provides the required "orbit." It is evident
that in the classical limit this orbit will coincide with
the classical trajectory.

We have seen that the S matrix may provide a basis
for defining space-time intervals for events. The extent
to which it may provide a general and satisfactory
definition of space-time intervals is not presently clear.

7 A relativistic generalization is evidently straightforward.


