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Following Mandelstam, we consider the asymptotic properties of a certain function F (s,l) relevant to the

problem of analytic continuation of the partial-wave amplitude T(s,l) by the fif/D method. As a function of

s, F(s,l) is defined to have only the left-hand (0~& s&~—&a) discontinuity of T(s,l). A representation for

F(s,l), suitable for discussing its asymptotic properties, is obtained. It is shown that for large l, F(s,l) must

fall off at least as fast as ~l ~

'" if s is above threshold. By virtue of crossing symmetry, the s-asymptotic
behavior of the left-hand discontinuity is related to the behavior of Ai(s, t), the absorptive part of the
scattering amplitude in the 1 channel, as s and/or t tend to infinity. If Ai(s, t) is bounded by t» for fixed s,
then, under certain assumptions, it is possible to show that F(s,l) is bounded by s& where y is the larger of

(n l 1—, ——1).A more stringent bound on the asymptotic behavior of F (s,l), although not ruled out, can be

established only if one 1rnows the detailed structure of Ai(s, t) It is. suggested that in the absence of crossing

symmetry, e.g. , in potential scattering, the left-hand discontinuity may behave asymptotically as stipulated

by Mandelstam so that analytic continuation of T(s,l) by the fir/D method would be possible.

A+(s, l) =
s—4ns'

2f
dt Qadi 1+

s—4''
XLA, (s,f)+A „(s,f)g

HE appropriate interpolating function for discus-
sing the analyticity properties of the relativistic

partial-wave amplitudes in the complex angular momen-
tum plane has been given by Froissart. ' In the case of
scattering of identical pseudoscalar particles of mass
m, the interpolating function may be written as'

where e is any arbitrarily small positive number, Eq.
(1) defines A+(s, l) only for Rel) n. As the integrand is
holomorphic in l for Ret& —1, one can also conclude
that A+(s, l) is holomorphic in l for Rel)cr. In the
interesting region Rel«o. where Regge' poles are ex-
pected to occur, the above representation of A+(s, l)
breaks down.

Mandelstam4 has recently shown that under certain

assumptions A+(s, l) can be continued into the region
Rel «0. in the complex I plane by exploiting its analyt-
icity properties and unitarity. From this point of view,
it is more convenient to deal with T(s,l) defined by

T(s,l) = L4m'/(s —4m')]'A+(s, l), (4)
tr 2f

df Q, i
1+ A, (s,t),

s—4m'
because of the presence of an additional kinematic cut
(0&~s &~4m') in A~(s, l). In the /t//D method of analytic
continuation of T(s,l), one makes the ansatz

s—4''
where s, t, and I are the usual Mandelstam variables,
with s the square of the center-of-mass energy, and
Ai(s, t) the absorptive part of the scattering amplitude
in the t channel. We have used the relation Ai(s, t)
=A„(s,t) which follows from the symmetry of our
problem. AVe need only consider the interpolating func-
tion for the even partial-wave amplitudes as defined in
Eq. (1), because the odd partial-wave amplitudes
vanish identically.

If Ar(s, f) is bounded by t (n&~0) for arbitrary but
fixed s (s~&4nzs) in the sense that

T(s,l) = N(s, l)/D(s, l), (5)

where, as usual, $(s,l) has the left-hand cut (0~&s~)
—eo) and D(s, l) has the physical cut (s&~4m') in s. It
can be shown' that $(s,l) obeys the following integral
equation

1 " F(s,l)—F(s', l)
/1/(s, l) =F(s,l)+ —R(s', l)X(s', l)ds'

27( 4~2 S —S

(6)I(s,s', l)/1/(s', l)ds',=F(s,l)+
i
A ,(s,t) i —+0 as t —+~,

and that for some value so of s

i
A, (so, f) i —+ao as t —+00,

]~a (s—4nP 'i'/'s —4' '

R(s, l) =
I I v (s,l),

s ~ 4+is*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'M. Froissart, in La Jolla Conference on Strong and Weak
interactions, 1961 (unpublished).

s E. J. Squires, Nuovo Cimento 25, 242 (1962).

3 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23,
954 (1962).

4 S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).

where F(s,l) (of which a precise definition will be given
in the following section) is analytic in s except for the
left-hand cut across which its discontinuity is the same
as that of T(s,l). R(s, l) arises from the unitarity relation

(3)
and is given by
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where y(s, l) is unity below the threshold (s=16m') for
inelastic processes. If

4m

ds ds'i K(s,s', l) i'
4m'

(Sa)

m2

dslF(s, l) I' (Sb)

f(s,l) = $F(s+is,—1) F(s ie, l—)j-
2i

&const)s(-' ~ as s-+ —~.
It is then possible to continue T(s,l) analytically in the
complex l plane in terms of a set of functions T (s,l)
which are meromorphic in l. Meromorphy of T(s,l) in l,
however, is not sufficient to guarantee a Regge repre-
sentation" for the total scattering amplitude. One must
also show that, for s&~4m', T(s,l) and, therefore, X(s,l)
vanishes sufBciently rapidly as l —+ ~ in the domain of
meromorphy. For this, it is enough to show that F(s,l)
vanishes as l ~ eo (s ~&4m').

From the above considerations it is quite clear that a
knowledge of the asymptotic behavior of F(s,l) in both
the variables is essential in the analytic continuation of
the partial-wave amplitudes. More specifically, the
asymptotic behavior of F(s,l) in s and l, respectively,
determines whether the relevant integral equations are
nonsingular, and whether it is possible to obtain the
Regge representation of the total scattering amplitude
by the usual Sommerfeld-Watson transformation

s J. D. Tamarkin, Ann. Math. 28, 127 (1927).

exist, then the integral equation (6) is said to be non-
singular. It can be shown' that if Eq. (6) is nonsingular
and if the resolvent of the kernel exists for at least one
value of l, then there exists a solution X(s,l) of (6)
which is meromorphic in the entire domain in the l
plane in which F(s,l) and R(s,l) is holomorphic. One
would then conclude that T(s,l) is also meromorphic in
the same domain.

Mandelstam' observed that, in general, the integral
equation (6) cannot be shown to be nonsingular be-
cause R(s,l) behaves badly for large s. Therefore, he con-
sidered the integral equation for R"(s,l)$„(s,l) in the
elastic unitarity approximation, i.e.,

9 (s,l) =1,
where N (s,l) is the numerator function for the ampli-
tude T„(s,l) defined by

T (s,l) = Ds 4m')/4m'j—"T(s,l), (10)

and m is a positive integer. Mandelstam showed that
for any given value of n there is a range of values of
Rel centered about it for which the integral equation for
R"'(s,l) V„(s,l) is nonsingular provided

1
Ag(s, t) = du—p(u, t)

4m'
+ —,(12)

u —s u+s+t 4m'—
where subtractions, if necessary, are implied. Although
we have taken the lower limit of the I integration as
4m' this is actually determined by the support proper-
ties of the double spectral function p(u, t). In the pres-
ent case of scattering of identical pseudoscalar particles,
the support of p(u, t) is given by'

p(u, t) = o (u, t)8(u 4m')8—)t 16m'u—/(u 4m')]-
+o (t,u)8(t —4m')8[u —16m't/(t —4m') j, (13)

where 8 (x), as usual, denotes the step function and o is a
real function of its arguments. Equation (13) shows that
p(u, t) is a real symmetric function of its arguments.
For the sake of clarity we shall take the integrations
with respect to the arguments of p(u, t) to extend from
4m' to ~. It should, hov ever, be understood that these
limits, unless otherwise speciaed, are always determined

by the support of p(u, t).
The analyticity properties of Q&(s) are contained in

the formulas'

Q((—sixie) =e+'i'+" Q((sais), (14)

Q)(s+ie) Q((s ie)—=—ia.—P((s)
~

s~ &1, (15)

Q((s+ie) —Q((s—ie) =0 s 1, (16)

where c is any arbitrarily small positive number. If we

take the branch cut for (s—4m') ' to extend from

' See Eq. (2.6) of Ref. 4.
'I G. F. Chew and S. Mandelstatn, Phys. Rev. 119, 467 (1960).

Bateman Project Staff, FIig her Transcendental P Nnctions
(McGraw-Hill Book Company, Inc. , New York, 1954), Vol. I,
p. 140.

method. In this paper, our purpose is to discuss the
asymptotic behavior of F(s,l) assuming only Mandel-
sta, m representation and the asymptotic condition (2)
for A&(s, t). Mandelstam's derivation of the asymptotic
behavior of F(s,l) depends heavily on his assumption
of a certain 'boundedness condition" for the asymptotic
behavior of A ~(s,t) when both s and t are large. With
the help of crossing symmetry it can be shown that this
assumption is not consistent with the asymptotic con™
ditions (2) and (3). This is not surprising because
Mandelstam's approximation of elastic unitarity in the
s channel necessarily violates crossing symmetry. Our
results for the asymptotic behavior of F(s,l) are in-

tended to give the modifi. cations and extensions of those
of Mandelstam necessary in a theory with full crossing
symmetry.

II.
It is clear from Eqs. (1) and (4) that the analyticity

properties of T(s,l) in s can be obtained from those of

A~(s, t) and Q~, the Legendre function of the second
kind. The analyticity properties of A &(s,t) are expressed
by the dispersion formula
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s=4m' to s= —~, we obtain We can now write the left-hand function F(s,l) as

1 2t
Qi 1+

(s 4m—+Os) s—4m +is (s—4 m 'L—)e

F(s,l)= P F;(s,l), (23)

( 2t
XQi 1+

s 4m' —so— ls —4m'I'

( 2t
XP,

~

—1— ~0(4m' —s—t)0(t). (17)
s—4m'3

T(s+ios l) —T(s—ie, l)=2i P fb(ssl)ss&~0s (18)

The above formulas show that T(s,l) has two cuts in
the complex s plane, viz. , (i) the physical cut
4ms~&s~&(20, and (ii) the left-hand cut —gg)&&s&&0.

The left-hand discontinuities are given by

where F;(s,l) is defined by the Cauchy integral formula

1 ' f;(s', l)
F, (s,l) =— ds'.

$ —s
(24)

If f,(s,l) does not vanish asymptotically in s we would
have to use a subtracted Cauchy integral representa-
tion for F,(s,l). It is, however, clear from the expressions
for f;(s,l) that if Rel is taken sufficiently large the
unsubtracted representation defines a holomorphic
function in l.

where

2(4m')'
fr(s, l) = —t) (—s)

/s —4m'f'+'

4m2 —s 2t " p(ut)du
dtI'~ —1—

s—4m 4~2 Q —s

,(s, l) =— 4(4m')'

)s—4m ~(+2,„*d(b(t ")

2 (4m') '

f (,l)= -~(—)
(s—4ms~ (+i

2t " p(u t)du
X

s—4m' 4 ~u s t—4m'

2 (4ms) '

Fs(s, l) =— dt du p(u, t)

We shall first show that Fs(s,l) defined in the preced-
ing section, must explode as exp(k~l~), where k&~-', gr,

6» large
~

l ~. We have already seen that fg(s, l) vanishes
for even integral values of l. Therefore, Fg(s, l) must also
vanish for these values of /. But for sufficiently large
values of Rel Fg(s, l) is holomorphic in l. Therefore, by
Carlson's theorem, ' Fg(s, l), unless it vanishes identi-
cally, must grow at least as fast as exp(-', gr

~

l) ) for large

~

l ~. As the first possibility is easily ruled out our asser-
tion follows.

It is clear tha, t if F(s,l) has to vanish for large values
of

~
l ~, Fg(s, l) must be exactly cancelled by some other

term in F(s,l). We shall now show that such a cancella-
(20) tion does indeed occur.

We change the order of integrations in Fs(s,l) and
write

Xp(4m' —s—t, t) . (21a)

because of the support properties of p(4m' —s—t, t),
the upper limit of the t integration in (21a) is actually
finite. Indeed, we obtain from Eq. (13)

4(4m')'
fs (s,l)= — 0 (—s—32m-')

s—4m'
I

'+'

4m2-t

ds' I'i —1—
2t

XP(s' —s) (s'+u+t —4m') (4ms —s')'+'j ' (25)

If we introduce a new variable of integration x deQned

by
ed

dt Qgi
—1—

s'= 4m' —2t/(1+ x), (26)

P it may be checked that the integration with respect to x
2t extends from —1 to +1.The x integral can be easily

+Q,(1+ (idm' —r—1), (21b) c,arried out by using the formula
s—4m'

where

P~=-', $—(8m'+s) & (s'+32m's)"'j. (22)
P((x) (1+x)'+"

dx = (1+s)'+"Qi(s)—Et"(s), (27)

When l is an even integer, Qi(x) is an odd function of
its argument. Therefore, f2(s, l) vanishes identically for
even integral values of l.

' E. C. Titchmsrsh, The Theory of Fggggetions (Oxford University
Press, New York, 1939), 2nd ed. , p. 186.
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wnere n ih is any positive integer, sary in our(, ).

't b ous Indeedtracted dispersion re a iLF(1+l)j'"—'2"+ (1+l) '

F (2 2l) — !(2+2l)
n—m—13
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he modifications neces

Bio(s)=0, and (l)„=r (l+m)/r (l) . 4(4m2)' 2t
dtQil 1+

F2(s,l) =
4(4m')'

4m

p(u, t)
dl

2u+s+t —4m

1 2t
Qi 1+

s—482(s—4m' '

2t—1+ . (30)
u t)'+' u+t

Qi—

27 for (Rel+e)) —1 follows

b i~1 s
h' t i d t

t on of x excep
and the discontinui y

ol-
t }1 t}1

E (27). Wh (R l+ )h sides of Eq.
to be

1 fth d 'd T}1
expression for Ii2~s, na

4(4m')'
XA, (s,l)—

P(~,&) 2t

u — — ' '+' u —4m23(u —s) (u —4m

ubstitute th y

1 1 exp{(l+-,') lnl s—(s'—1)'"j}
(2~)'" l'" (s' —1)'«

(34)

id' h bove representationidit of t ea

sin the asy ptotlc prop
h h fa

tio fo Aroissart repre

t t'c expansions

4(4m')'
F(s,l) =F1(,)+

" p(u, t)du4(4m') '

F, (s,l)=

hat F(s,l), like A+(s, l),S uires' show t atat the a d o o i g q

s (35)

'
) } e is determmed y

H

that the contribution rom
'g""-"within the squ b

d for reducing Fi(s,l) p
F;(,l)

Ke can follow e s

(,l) i h ilk

and fina}ly obtain

11
chec e
lll '" for»rge ll ys-
Eq

l andthesinguari
'

1 o1(31) encounters are simp e po
u s+t 4m2-

res of the above analys'res o 1 sis can be

4m' u+s

(,l)dfi din terms of the unc io

where

best elucidated in
by

1 2t 1

(u —4m') '+'(s—4m') '+' s—4m' u—

1
l

. (32)XQil +

where

p(s, l) =—2(4m')'

(s—4m')'+'

(36)

ck of our result it maya be easily
( 1) ( 2) hiven by Kqs.(, )g

t - n (—
ri discontinuity across t. is - eplane and t e isc

' '
s t. is

lA(s, t). (36a)dtpil
4m

totic behavior of
C(s,l) depends only on the ana y i
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A (s,t). For example, if A (s,t) has only the left-hand cut
(s~&0) in s, C(s, l) would explode exponentially. If,
however, A (s,t) is analytic in the complex s plane with

a cut along the positive real s axis, C (s,l) must vanish

at least as fast IlI '" for s&~4m'. This result is inde-

pendent of the asymptotic behavior of A (s,t)."As we

have noted earlier, the asymptotic behavior of A(s, t)
only prescribes the number of subtractions one should

employ in the representation (36).

IV.

The number of subtractions in the Cauchy integral
representation (24) of F,(s,l) depends on the asymp-
totic behavior of f;(s,l). Moreover, if f,(s, l) behaves as
s& for large s, it can be shown' that in general, P;(s,l)
would be bounded by s& for large s. In order to avoid
unnecessary complications we shall consider the s-

asymptotic behavior of [fi(s,l)+f&(s,l)]. It may be
easily checked that the bound for the s-asymptotic
behavior of D', (s,l)+fs(s, l)] obtained below is valid for

fs(s, l) and, therefore, for the total left-hand discon-

tinuity. From Eqs. (19) and (20) follows

where
s'=-', (1—x)(4m'+ IsI),
t'=-.', (1+x)(4m'+

I
s I) .

(40a)

In order to study the asymptotic behavior of the left-
hand side of Eq. (39) it is convenient to consider three
distinct ranges of values of x:

x=1—0(1/s) . (41)

In this case s' is fixed and t' (= IsI) increases with s.
According to Eq. (3) A, (ss, t) grows like t for large t
Therefore, we can always find x of the form (41) such
that in its neighborhood the integrand in Eq. (39) be-
haves like s for large s. Thus the contribution from the
region (41) to the left-hand discontinuity is bounded
by Isl--i-i

x= —1+0(1/s) . (42)

In this case t' is Axed and s' large. When s' is above
threshold we can write

A i(s', t') =ReA t(s', t')+ip(s', t.') . (43)

4tnm —s 2t
dtPi —1— A& s, t =—

s—4ns'

2m. (4m')'
f (s,l)+f, (s, l) = — 8(—s)

I
s—4m'I '+'

s (4ms)'

Is—4msI &

According to Eq. (2) p(s', t') is bounded by ItI when
s' is fixed. But, as noted before, p(s', t') is symmetric in
its arguments. Therefore, p(s', t') is bounded by s'~

for fixed t'. It follows (see Appendix A) that for fixed t'

I
Ai(s', t')

I —+0 as s' —+ ~,

where

1 1+x
y8(—s) dpi(x)A, s,

SQ 2
(4m' —s)), (37)

(37a)xe ———1+8m'/(4m' —s) .

where e is any arbitrarily small positive number. As in
the preceding case, we conclude that the contribution
from the region (42) to the left-hand discontinuity is
bounded by IsI" ' '.

Crossing symmetry allows us to write

1 x
A]I s, (4ms —s) Ii

so that

(1—x 1+x
=A,

I
(4m' —s), (4m' —s) I, (38)

5 2
'

2

z-(4ms)'

f (s,l)+f, (s,l) = — 8(—s)
Is—4m'I'

X dxPi(x)A i(s', t'), (39)
XQ

'0 We would like to point out that Mandelstam's results do not
agree with our conclusion. His results indicate that Lsee Eq.
(4.11) of Ref. 4g, irrespective of the analyticity properties of
A (s,t), C (s,l), as de6ned by Eq. (36), is bounded by

I (s 1) &
( t )

s n" '~'

where L, is given by

A (s,t) &const t~, s &so.

(iii) (1—x)))0(1/s) . (45)

In this case both s' and t' are large, and it is not possible
to set any bound on the asymptotic behavior of A, (s', t')
on the basis of Eq. (2) only. We make the ansatz that
for s' and t' sufficiently large A, (s', t') is majorized by

IAi(s')t')
I
&fi(s') ~i(t'/s')+fs(t') v s(s'/t') (46)

where f; and q; (i= 1, 2) are bounded for finite values
of their arguments. It can be checked that a Regge
type of asymptotic behavior of A (s', t') is consistent
with our ansatz. From Eqs. (2) and (44) we conclude
that f;(x) and tp, (x) are bounded by x in the sense of
Eq. (2). It follows from Eq. (46) that

IAi(s', t') I/max(s'~', t' +'}~ 0 as s', t' = oo, (47)

so that the contribution to the left-hand discontinuity
from the region where (45) holds is bounded by IsI~ '.

We cannot rule out the possibility that the asymp-
totic behavior of A i(s', t') is worse than that implied by
Eq. (47) in which case the asymptotic behavior of the
left-hand discontinuity will be correspondingly worse.
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It is also possible that the worst asymptotic behavior of
A, (s',t') corresponds to the case when one of the argu-
ments is held axed, i.e.,

It is interesting to note that in a theory without cross-
ing symmetry, e.g., in potential scattering, the left-hand
discontinuity would be given by

IA~(s', t')
I

&const max',:(s') ",(t')"—") s',t')R, (48)

where e&~ 1. In that case the left-hand discontinuity is
bounded. by Isl" ' '. Indeed our analysis shows that
Eq. (2) necessarily implies that

lfr(sl)+fs(»l)l/Isl ' ' '~" » lsl ~", (49)

f(s, l) =—n.(4')'
8(—s)

2ls —4m'I'

( 1+x
dxF((x)A)I s, (4nP —s) I, (56)

co

unless there are subtle cancellations or A &(s,l) is a highly
oscillating function.

It may be argued that the asymptotic behavior of
f,(s,l) gives only an upper bound of the asymptotic
behavior of F,(s,l). Indeed, if f;(s,l) oscillates very
rapidly, the asymptotic behavior of F,(s,l) may be
much better than that of f,(s,l) We .have shown in
Appendix 8 that if Eq. (48) holds, then our representa-
tion (33) for F(s,l) is valid for Rel&(n —1) and that

where
I F(s,l) I/s'-+ 0 as

5=max(n —l—1+e, —1}.

(50)

(51)

IA, ,a(s, l) I
=rlt' &/s, - (52)

where g and y are positive numbers and the subscript R
implies that the Born term has been excluded from
A &(s,t). Once the condition (52) is assumed it is easy to
show that the left-hand discontinuity is bounded by
lsl ' 'r for large s. It was precisely this asymptotic
behavior which enabled Mandelstam to show that the
integral equation for X (s,l), the numerator function of
T„(s,l) defined in Eq. (10), is nonsingular for a certain
range of values of / centered about e. We would like to
point out that the 'boundedness condition' (52) cannot
be consistent with Eqs. (2) and (3). We first observe
that from Eq. (52) follows

I p(s l) I &(1/s)f(l) g~ 00 (53)

where f(t) cannot grow faster than t' 'r for large t From.
the symmetry of the double spectral function we can
also conclude that

I p(s, l) I
& (1/l)f(s) t~ eo. (54)

The only asymptotic behavior of p(s, t) consistent with
Eqs. (53) and (54) is

I p(s, t) I &M/sl as (55)

as

s,t —& ~,
where M is a fixed positive number. It follows that
A&(s, t) obeys an unsubtracted dispersion relation and,
contrary to Eqs. (2) and (3), for fixed s,A&(s, t) must
tend to zero at least as fast as t ' for large t.

V.

The starting point in Mandelstam's analysis is the
'boundedness condition'

I see Eq. (2.7) of Ref. 4j

where xs is given by Eq. (37a). We cannot use Eq.
(38) to rewrite Eq. (56) in the form of Eq. (39). Thus,
the asymptotic behavior of f(s,l) is related to that of
A ~(—s, 1) as s ~ ~ and t &~ (4m'+s). One may assume
that for l &~(4'' +s)-

IA, (—s, 1) I
&alt-~/s as g~ 00

where g and y are positive numbers, without giving
rise to any inconsistency with Eqs. (2) and (3). Fol-
lowing Mandelstam, we can now show that f(s,l) is
bounded by s ' & for large s and that the numerator
function of T„(s,l) obeys a nonsingular integral equa-
tion for a certain range of values of /. We conclude that
in this case the partial-wave amplitude T(s,l) can be
analytically continued in the complex angular momen-
tum plane by the X/D method. From the results of
Sec. III it now follows that T(s,l) vanishes like Ill
for large Ill and, therefore, it is possible to obtain a
Regge representation of the total scattering amplitude
by applying the Sommerfeld-Watson transformation.

Thus it appears that the main diI.hculty in the
analytic continuation of the partial-wave amplitude by
the N/D method arises from the crossing symmetry.
As noted earlier, we cannot rule out the possibility that
the left-hand discontinuity is bounded by s ' & even
if crossing symmetry holds. But such behavior, if true,
has to be assumed from the beginning and, in general,
cannot be reconciled with the asymptotic behavior of
A&(s, t) implied by Eqs. (2) and (3) unless one knows
the detailed structure of At, (s,l).

In conclusion we would like to point out that, by
summing up certain class of Feynman graphs, several
authors" have recently shown that the partial-wave
amplitude may have branch cuts in the complex
angular-momentum plane. If this is true, the integral
equation for the numerator function need not be non-
singular. From this point of view it is not surprising
that the left-hand discontinuity is not bounded by
s ' & as required in Mandelstam's analysis.

"D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,
896 (1962); J. D. Bjorken and T. T. Wu (to be published).
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