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Generalization of Mass Formula in Unitary Symmetries*

MUCKER AHMAD RASHID AND IAN IWAO YAMANAKA

Imperial College, London, England

Okubo's mass formula for unitary symmetries is generalized to any order. It is shown that the number
of terms in a formula for a representation true to all orders is exactly the same as the number of isotopic
multiplets contained in the representation. This result also holds for strong interaction symmetries based
on other rank-2 groups.

I. INTRODUCTION

~[NE of the convincing features of unitary symmetry
models" for strong interactions of elementary

particles has been the success of the first-order mass
relation derived by Okubo. ' His recent derivation of the
second-order relation4 has prompted us to obtain its
generalization to any order. In Sec. II, we define the
medium-strong interaction to order rs I Eq. (2.2)] which
allows us to write the generalization almost immediately
(Sec. III). For particular representations, however,

simplification is achieved through the property of the
interaction that all the components of the irreducible
tensors appearing in its reduction commute with the
operators 1V, S, and I. From this we conclude (Theorem
I of Sec. IV) that these tensors must be of the symmetry
type (f, 0, f). Corre—sponding to the multiplicity
d~(~& f+ 1) of this representation in the reduction of the
direct product of a representation D and its contragra-
dient D, there exist dy linearly independent tensor
operators of the above symmetry type that can be con-
structed from the generators and give rise to the only
nonvanishing matrix elements contributing to the mass
formula. In Appendix II we are able to select these from
a set of f+1 that are added to the mass formula at the
fth stage. This gives us the formula for a particular
representation D to any given order I (Sec. IV). A
simple corollary is the exact relation for it which holds
to al/ orders. This contains the same number of terms as
the number of isotopic multiplets in the basis for the
representation. Section V deals with the consequences.

II. SYMMETRY BREAKING INTERACTION

In the unitary symmetry models of Sakata' and Gell-
Mann —Ne'eman, ' the strong interaction Lagrangian is
considered to be invariant under the groups U(3) and
SU(3)/Cs, respectively. This results in the classification
of elementary particles as degenerate supermultiplets
which form bases for the irreducible representations of

*The research reported in this document has been sponsored in
part by Air Force Ofhce of Scientific Research, OAR, through the
European Ofhce, Aerospace Research, U. S. Air Force.

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961).

2 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 22, 715 (1959); Y. Yamaguchi, Suppl. Progr. Theoret.
Phys. (Kyoto) ll, 1 (1959); J. Wess, Nuovo Cimento, 10, 15
(1960).' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).' S. Okubo, Phys. Letters 4, 14 (1963).

these groups. If the symmetries were exact, all the
members of these supermultiplets would have the same
mass. However, this does not appear to be the case in
nature and attempts have been made to break these
symmetries in a manner which removes the mass de-
generacy and gives the correct mass spectrum. These
attempts are primarily based upon Pais" philosophy of
a hierarchy of interactions in which a sequence of very
strong, medium strong, electromagnetic, etc. interac-
tions are assumed to exist in nature with progressively
weaker symmetries. In other words, the interaction
Lagrangian can be written as

I,+I,+I, +
where I „the very strong part, is invariant under the
full symmetry group LU(3) or SU(3)/Cs in the unitary
symmetry models j; the medium strong I, under a
subgroup of the full group which in turn includes the
subgroup that leaves the electromagnetic interaction
I, invariant. Since I, and I, respect only a part of
the full symmetry, their application will remove the
mass degeneracy in two stages: In the first stage when
the medium-strong interaction is switched on, the super
multiplets subdivide into isotopic multiplets which con-
tain a number of degenerate entities; turning on the
electromagnetic interaction completely removes the de-
generacy, resulting in mass splittings between all the
members of the supermultiplets.

We concern ourselves with the first stage only. If no
restriction is imposed on the form of the medium-
strong interaction (sometimes called the symmetry-
breaking interaction in the text) obviously no progress
whatsoever can be made. As our goal at this stage is to
break the supermultiplets into isotopic multiplets, we

suppose that the medium-strong interaction is an
operator T that commutes with the isotopic spin,
strangeness, and nucleon-number operators I, S, E, re-
spectively, (Assumption I). This restriction is highly
reasonable as we are still in the realm of strong inter-
actions where strangeness and nucleon number are con-
served, and any noncommutation with I will result in
mass splittings between diferent members of the
isotopic multiplets.

The above restriction alone is still riot sufhcient for
our purpose. We therefore make the further assump-

' A. Pais, Phys. Rev. 86, 633 (1952).
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T„s=b„s+M„s, (2 1)

where M„& is irreducible and transforms as the 8-dimen-
sional representation.

Henceforth, we shall confine ourselves to the U(3)
scheme which is simpler to deal with. The results, how-
ever, apply to both the schemes.

To eth order, we take this operator to be

tion' (in analogy with electromagnetism) that the
operator, to lowest order, transforms, as the adjoint
representation of the group' (Assumption II). These
conditions then fix the operator (to lowest order) as the
T8' component of a tensor T„I'. This tensor T„I", in
SU3/C3 is irreducible. However, in U(3), as the adjoint
representation is reducible, we can write it as

acterized by 3 integers fl, f2, f8 such that

fl ~~f2~~f8 ~ (3.2)

fl~ fl'~ f2~ f2'~if3
Then we have

I= 2 (fl' —f2')

(3 3)

(3.4)

fl +f2' (fl+—f2+ f8) (3.3)

D=(—f8, f—2, —fl) is the representation contragra-
dient to D.

From now onwards the word "representation" will
refer only to an irreducible representation.

To obtain the different values of I and S contained in
the basis of a representation D—= (fl,f2,f3), we determine
all pairs of numbers fl', f2' such that3

T 3yT 8T 8+. . .+T 8T 8. . .T 8 in fester)

(3.6)&=fl+ f2+ f8

Pote. X in the Sakata model LU(3) schemery is

(2 )
given by

where
TT T 8 —T 8T 8. . .T 8 (i factors)

8 (2 3)

Since every product of tensors T„I" is reducible under
U(3), we can express (2.3) as

However, it is outside the symmetry group SU(3)/C3 in
the Gell-Mann —Ne'eman model.

A tensor T„"transforming as the adjoint representa-
tion satisfies the commutation relation

II T 3 p t3 (g 8)r~ 83"~ 8 (l—r times)

t r=o

$Ap", T.")=58"T, 8„Tp". —
Lemma l. In any representation

(3 7)

where M88. ..888"' &~ "~"~ is a component of. an irre-
ducible tensor.

Thus,

(AAA. . .A) 88 ~ 3 (m times)

n factors

a (tt'')"(A ')'((AA)8')'. (3.8)
n

(g 3)r~ 38" 3 (t—r times) (2 4)
r, s, t&~0

r+s+t =m

i=1 y=0

From our first assumption

and Eq. (2.1) above, it follows that M8' also commutes
with I, E, S. By induction now

Pf 8. ..8"',Ij= $3f3...33"',Sj= L3f3...3"',iV( =0. (2.5)

We note that Okubo's expression T3'+ T8,"is equivalent
to our T33+T33T33 as both of these reduce to

a533+HE33+ CM8833.

III. GENERALIZATION OF OKUBO'S MASS
FORMULA

U(3) has nine generators A„" which satisfy the com-
mutation relations

LA„,As"j= 5."As —58 A„". (3.1)

The irreducible representations D—= (fl,f2,f3) are char-

'This assumption is the same as that made by Gell-Mann
(Ref. 1) and Okubo (Ref. 3}.

'Transformation law for a tensor belonging to the adjoint
representation is given in Eq. (3.7).

n

Mn= Q Q t8. LI(I+1)—-', S2)'5' '
i-0 j-0

(3.9)

where a;; are parameters depending upon the representa-
tion but independent of the subquantum numbers I
and S.

Proof. From Kq. (2.2) we have

where D is any arbitrary representation of U(3) and f
any vector in its basis.

As the associative algebra (R generated by the

H. Weyl, The Classical Groups (Princeton Vniversity Press,
Princeton, New Jersey, 1939).

Proof We have.

[A 33,A337= LA8', (AA) 88]= ((AA) 8', (AA) 83]=0.

Since the Casimir operators (AA), (AAA) commute
with the generators A„&, the lemma follows from Eq.
(A10) in Ref. 3 on replacing T„& by A„&.

Theorem' I. The mass formula to order e for every
representation is a sum of 2lt (38+1)(33+2)$ terms, and
can be written as
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infinitesimal generators of U(3) within a representation
is the whole matrix algebra over the representation
space, ' we can write the above matrix element for M" as
a sum of matrix elements of suitable operators con-
structed from the generators of the group. Thus, by
Lemma I

4

M"= g P(D,P[b,, (A, ')'- L(Aa), ') [D,P).
i=o j-0

The mass formula follows from this when we write

A 3'= —5
(AA) e'= LI(I+1)—re5'3+ttS+b,

where u and b are independent of I and S.

IV. SPECIALIZATION TO PARTICULAR
REPRESENTATIONS

In the case of the 10-dimensional representation Gell-
Mann" remarked that the first-order formula

Mtet=a+bS+cttI(I+1) ',Stj-—

reduces to
Mro'= a'+b'S

on account of the relation

I=1+',S. -
We wish to point out that the second-order formula4

M' =a+ bS+ cd (I+1) er 5'j+d5'—
+eSLI(I+1) „S'j+fEI(I+1—) —eS'js, —

when applied to the 8-dimensional representation
becomes

Ms' u'+ b'5+ c'kI ——(I+1) ,'5' j+d'S'——
as a result of the relations

SI(I+1)= seS

I(I+1)t I(I+1) 2j= iissS'

In order to see when and why this happens, we shall
look at the formula from a di6erent point of view. In
Eq. (2.4) we expressed T„, the symmetry-breaking
interaction to eth order, as a sum of components of
irreducible tensors. Each one of these components com-
mutes with the operators ItI, S and I Lsee Eq. (2.5)j.
Therefore, these appear only in the irreducible tensors
which correspond to the representations (with X=O)
containing in their bases an isotopic multiplet with
I=S=O. The representations can only be of the form
(f, 0, f) as we prove—below.

Lemma II. In representations (fr, fs, fs) with 1V=O,

~ This follows from Schur's lemma. See also J.Ginibre in Ref. 11.I M. Gell-Mann, in Proceedhngs of the 196Z Annsta/ Internatsonat
Conference on High-Energy Physics at CERN (CERN Scienti6c
Information Service, Geneva, 1962),p. 805. See also, S.L. Glashow
and J. J. Sakurai, Nuovo Cimento 26, 622 (1962).

the isotopic multiplet I=5=0 occurs only when
fs= f—t, fs=O.

Proof. From Eqs. (3.4), (3.5), and (3.6) we obtain on
setting I=S=E=O,

when df is the number of times the representation
(f, 0, f) occurs in t—he reduction Dt3D.

It is also clear from Theorem A.I that the representa-
tions (f, 0, f) with —f)f, fs do not occ—ur at all in the
reduction of the direct product DD. From this it
follows that an exact formula for D (true to ttll orders) is

Mn=Mg&&+" (tt= fr fs, o= fs——fs). (4.2)

The total number of terms in this formula is equal to

f=o
(4.3)

which by Theorem A.I is also

(t +1)(o+1) (4 4:)

Now as each one of these representations (f, 0, f)—
contains I=5=0 just once, (tt+1) (v+1) is also equal to

"This approach is similar to that employed in the following:
N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1962);B.Diu
(to be published); J. Ginibre (to be published).

1 2) 1 2)

i.e., ft' ——fs'=0. Now using (3), fs ——0. Finally from
(3.6), fs= fr-

Remark. The group SU3/Cs in the Gell-Mann-
Ne'eman model has the representations (fr, fs, fs) with
a restriction which may be taken as

fr+ fs+ fs=0

So the lemma holds equally well though E is outside the
symmetry group.

YVe have seen that the irreducible tensors in the
expression of the symmetry-breaking operator all belong
to the representations of the form (f, 0, f). Now—we
consider the reduction of the direct product DD, "in
which we see that the representation (f, 0, f) occu—rs
at most f+1 times. (This is a special case of Theorem
A.I proved in Appendix A.) This gives us the f+1 terms
in the formula (3.9) which were added at the fth
stage. However for a particular D, the representation
(f, 0, f) may—not. occur f+1 times in the reduction of
DD. (See Theorem A.I of Appendix A.) When this
happens there exist relations which allow a reduction in
the number of terms added at the fth stage to exactLy
the number of times the representation (f, 0, f)—
occurs in the reduction DD. (See lemmas in Appendix
8 and Theorem A.I.) Hence, the mass formula to order
e applicable to a particular representation D will be

n df—1

Mn"= 2 2 &rtLI(I+1)—-'5'I'5' ' (41)
f 0 j=o
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the number of times I=S=O multiplets occur in the
direct product of D and D. We now prove

Theorem II.The number of times I=$=0 multiplets
occurs in the direct product DD is equal to the number
of isotopic multiplets in the representation D.

Proof. The representations D and D consist of isotopic
multiplets of the form (I,S), (I',S') where the set oi
I'(S') is the same as that of I( S). F—rom (I,S) and
(I',S') we obtain
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I=)J—I'(
(I, S+S').

This series contains I=S=O if and only if

S+S'=0=I I', —

V. CONCLUSION

The conclusion reached at the end of the last section
about the number of parameters is not unexpected as
the group-theoretic approach gives the kinematical
structure only. The detailed dynamics is contained in
the values of these parameters and future efforts should
be directed towards an understanding of their relation-
ship with the spatial properties like spin and parity, etc.

An interesting feature is the observation that the mass
formula to first order when applied to baryon and
pseudoscalar meson octets gives a good 6t. The same
probably happens in the case of the baryon-meson
resonances forming the 10-dimensional representation.
A calculation based on 1238-, 1385-, and 1535-MeV
masses ot 1V*, Zi, ",predicts the mass of the fourth p'~'

resonance as 1680 MeV. Should such a resonance be
found, the values of the parameters c and d in the general
formula

Mip o+bY+cY——'+dYP (Y=1V+S)

i.e., when S'= —S, I'=I. Therefore, there exists a
unique solution for (I',S') for each (I,S) which satisfies
the theorem.

Thus, each of the multiplets (I,S) of D gives rise to
one and only one method of constructing I=S=O in the
direct product DQD.

Finally, we conclude from the theorem that the mass
formula M& has exactly the same number of parameters
as the number of isotopic multiplets in D.

It is clear that the above result also holds for strong
interaction symmetries based on other rank-2 groups.

0
p+ v f+1—

df=C ii+1
v+1
f+1

when
when
when
when
when

p+v& f
v, &f, v&f but p+v~&f

v~&f
p~& f, v&f
~~~f v&r f

and p, = fi fp, v =f—p
—fp.

Proof The th.eorem can be proved by working with
the characters. However, we use the much simpler pro-
cedure of multiplying Young's tableau. As some of the
integers labeling the representations D and D are nega-
tive, we first of all consider the representations

Di—= (fi—fp fp fp o)—= (u—+v v, o),
D,= (f,—fp, fi —f2, 0)—= (—p+ v, p, 0) .

The corresponding Young's tableau for Di (Di) has
ii+v squares in the first row and v (p) squares in
the second. We are interested in the representation

(f, 0, f) in the pro—duct DD. As Di (Di) has been
obtained from D (D) by subtracting fp (—fi) from each
of the three integers labeling the representation, we
should look for the representation (f, 0—f) in the
product D1D1 as associated with the Young's tableau

1 3) 1 3) 1 3

= (p+v+f, p+v, p+v —f).
To obtain the product diagrams (see Fig. 1), we write

n's (P's) in the squares in the first (second) row of the

APPENDIX A

Theorem A.I. In the reduction of the direct product
ot a representation D—= (fi,fp, fp) with its contragradient
D= (—fp,—fp, —f—i) the representation (f, 0, f) oc-—
curs df times, where

would be almost zero. Although the calculations above
are not perturbation theoretic, the rapid convergence of
the "series" presents us with a puzzle. It is a useful con-
jecture to consider some of the last few parameters in an
exact formula to be zero as a starting point for predict-
ing the position of new resonances and their assignment
to various representations. The case of the vector-
meson octet appears to be somewhat involved. F10. 1. Decomposition of D1D~ by Young's Tableau.
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diagram Dl and then adjoin these squares containing n s
and p's, in this order, to the diagram Di such that (i) the
final diagram has always &&3 rows; (ii) when we finish
adjoining squares containing n's (p's), it is a Young's
tableau; (iii) the adjoined n's and P's when read from
the right, exhausting the first row first, and then the
second, etc. , form a lattice order, i.e., at each stage in
this order the number of n's is not less than the number
of p's.

In this product we are interested in the diagrams with
p+v+ f, p+ v, y+ v f squ—ares in the first, second, and
third rows, respectively. This is obtained by adding f
squares containing 0.'s to the first row of Dl followed by
p, I3+ v f sq—uares containing some n's and some P's to
the second and third rows in a manner that satisfies the
3 conditions stated above. The condition (ii), requires p
additions in the second and third rows to be always on
the right of all n's. The condition (iii) of lattice order
says that the number of p's to be a,dded to the second
row must be &~f Thus. , the number of diagrams of the
above type in the product can be at most f+1 (corre-
sponding to 0, 1, 2, .f number of P's added to the
second row).

However, all these cases are not always possible. To
examine this carefully, let us first consider p. If p, &~ f all
the f+1 cases might be possible. But when iJ, &f only
@+1of these cases (which correspond to 0, 1, 2, p,

addition of p's to the second row) are possible. All these
cases will definitely be possible if we can fill all the
squares in the second row with the rest of the o.'s. As
there are only N+v f squares t—o be adjoined to the
third row, this requires 13+v f&~l3 or v&~—f. On the
otherhand, when12+v f&p, or e—quivalently v& f, then
i3—(p+v f) =f, v—p's (at l—east) will have to be added
to the second row. This will reduce the number of
possibilities in each of the above cases by exactly f—v

to (f+1)—(f v) = v+1—and (ii+1)—(f v) =p+v-
f+1, respect—ively. Since the condition (iii) is also

satisfied by each one of these cases, the theorem follows.

APPENDIX B

Mass Formula for a Particular Representation

To derive the mass formula MD" for a representation
D we need the following lemmas:

Throughout this Appendix we take D= (fi,fs,fs) and—
13 =fi—f2 ~& v = f2 f3~-

Lemma B.I. In any irreducible representation D
of U(3):

(i) I takes the p+ v+1 distinct values 0, —',, 1,
, (p+ v) with multiplicities 1, 2, v, v+1, v+1, v+1,
v, v—1, 1, respectively.

(ii) S takes the p,+v+1 distinct values fr+f2 —23,

fi+f2 1 I, ~, f2+—f3-—23 with multiplicities 1, 2,
v, v+1, v+1, v+1, v, , 1, respectively, with

fi+f2+ f3

Fio. 2. The (I,S) plot for a representation (fq, f2,f3).
(J =fi f2& V=f—2 f3)—

I= 2S f2'+2 (fi—+f2+f3)
I= ',S+fi' ,' (—fi—+f2+f—3) —.

(81)

(82)

Corresponding to v+1 (p+1) different fixed values of
f2' (fi') (81) and (82) are the equations referred to in
the lemma.

From Lemmas B.I and B.II we can construct the
following lattice of points (I,S) for the representation
D (Fig. 2).

Lemma B.III. If A and 8 are any functions satisfying

v+1
A'+'= P n;A" '+'B'+ Q n;;A'B'

i=1 &+j &v+1
~, j&0

(83)

v—1

A jBv+y+t—2i+ g Q . . A kBv+v-3' —2

j 0 k=0

p—v—1

g P. . A2BWt+g —2

j~0 k~0

+ Q V;.2A'B'
j, k~0'0

j+k (v+1

(84)

for i =0, 1, 2, v, then all other expressions of the form
A Be(n,p&~0) not included in the above equations are

The proof follows from Eqs. (3.3), (3.4), and (3.5).
Lemma B.II. The points (I,S) corresponding to the

isotopic multiplets in D form a lattice consisting of v+ 1

(p+1) equally spaced parallel lines with equations of
the form

I= ,'5+c(I= ——',S+-c') .

Proof. Eliminating f,' and f2' in turn from Eqs. (3.4)
and (3.5) we obtain
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A FIG. 3. Schematic representation of terms
appearing in the mass formula.

also expressible in terms of quantities on the right in
Eq. (84).

The quantities A "+' A'8&+"+' "appearing on the left-
hand side of the above equations are enclosed in squares
in Fig. 3. Equation (83) has on its right-hand side
quantities in the (v+1)st column except A "+' and those
on the left of this column. The quantities on the right-
hand side of the Eqs. (84) are all the quantities below
the zig-zag line. The content of the lemma is that all the
quantities in the figure above the zig-zag line and not in
the squares are expressible in terms of the ones below
this line provided that the quantities in the squares
satisfy (83) and (84).

The proof of the above assertion is trivial: Ke start
with the expression (83) for A "+' and multiply it first by
8 and then by A obtaining expressions for A"+'8 and
A "+' in terms of the quantities on the right-hand side of
(83) and the ones in i+2md column below the zig-zag
line. This process is repeated. Slight modification is
needed when we approach the stage where we want to
express the quantities in the column headed by A&+'.

I.erlrlu I3.IV. The conditions (83) and (84) in
Lemma B.III are, in fact, satisfied by the functions

A =I(I+1)—i«S'

B=S.
Proof. (i) From Lemma B.II we see that all the

points of Fig. 2 satisfy the relation

Let S take the distinct values s~, s2, - s„+„+~ ex-
pressed as a monotonically increasing sequence. For
i/0, suppose the set Si consists of all the points having
S as any of

$&) $2) ~ ~ $;) S„+y—,+g) Sp+„) $„+„+y)

and let So be the null set. The set S consists of the
remaining points in the figure. Consider first i/0. It is
clear from Lemma B.I that the set S, consists of i (i+ 1)
points. S;can, therefore, determine a set of values of the
i(i+1) ratios of the (i(«+1)+1)constants a„such that

d(I (I+1)—-', S') '

+ Q a„[I(I+1)—«S')'S'= 0 (85)
2r+s &2i

r, s&0

is satisfied by all the points of the set. I%ere d is neces-
sarily nonzero, for if it were zero, Eq. (85) which is now
of at most i 1degre—e in I(I+1), cannot satisfy all the
i distinct points with S=s; because the corresponding
I(I+1) are necessarily distinct and positive definite.

Thus, all the points of the figure satisfy the set of
equations

[I(I+1) «S']'+ P —[I(I+1)—«S $ S'
2r+s (2i d

r, s)0

X (S—~,~i), (S—~~,-;+ ) =0. (86)

This is condition (83). (ii) To prove Eq. (84) we divide
the set of points in Fig. 2 into two sets S;, S
(i=0, 1, , v) as follows:

%hen i =0 we have instead

(S si) (S sp) ' ' ' (S s~+,+i) =0.
These give condition (84).

(87)


