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The WKB method is applied to solve the Dirac equation and the modified Dirac equation appropriate to
a spin-~ particle with an anomalous magnetic moment. The solution consists of a phase factor multiplied by a
spinor amplitude which is a power series in Planck s constant. The phase is a solution of the Hamilton-Jacobi
equation of relativistic mechanics for a spinless particle without electric or magnetic moments. Each term in
the spinor amplitude satisfies an ordinary differential equation along the relativistic trajectories. The equa-
tion for the leading amplitude yields an- equation for the polarization four-vector which is identical with that
derived classically by Bargmann, Michel, and Telegdi. It also yields the law of conservation of probability
in a tube of trajectories. In addition, it gives rise to an equation for a supplementary phase factor. By using
the classical Hamilton-Jacobi function, the law of probability conservation, the polarization four-vector and
the supplementary phase factor, the leading term in the solution of the Dirac or modified Dirac equation can
be constructed. This solution should be useful when the wavelength of the particle is small compared to the
characteristic distance associated with the electromagnetic potential through which the particle moves. When
applied to the bound states of a particle without an anomalous moment in a spherically symmetric electro-
static potential, it yields the same results as are usually obtained by separation of variables and use of the
ordinary WKB method. The advantage of the present method is that it applies equally well to nonseparable
problems.

1. INTRODUCTION derived classically by Bargmann, Michel, and Telegdi. '
Quantum mechanically it holds exactly for a particle in
a homogeneous field. We obtain this equation for
inhomogeneous fields as well, but only to lowest order
in A. Thus, according to our analysis the spin and
moments do not affect the trajectories, but the moments
affect the precession of the spin, which varies along the
trajectory in accordance with the appropriate covariant
equation of motion. Another consequence of the equa-
tion for ao is conservation of probability in a tube of
trajectories. A third consequence is an equation for an
additional phase which depends upon the velocity and
polarization. By employing the classical equations for
the trajectories and for the polarization, we can
construct as and S.Upon using them in (1) and neglect-
ing higher terms, we obtain an approximate wave
function constructed from classical quantities. This
approximate wave function may prove useful in solving
problems in which the particle wavelength is small
compared to the characteristic lengths associated with
the electromagnetic held, which is the nondimensional
meaning of 5 being small.

We have constructed the approximate wave function
for the ordinary Dirac equation for a particle in a
uniform magnetic field and for bound states of a
particle in a spherically symmetric electrostatic poten-
tial. In each case the condition that f must be single-
valued leads, in a known way, ' to the appropriate

N attempt was made by Pauli' to solve the
Dirac equation for a particle in an electromagnetic

field using the WEB method. He sought a solution f
of the form

g,~cia &s Q ( sg)n tt
n=o

where A=h/2sr. Upon inserting (1) into the Dirac
equation and equating to zero the coeKcient of each
power of 5, he obtained equations for the scalar function
S and the spinor functions a . S was found to satisfy the
Hamilton-Jacobi equation of relativistic mechanics for
a spinless charged particle without electric or magnetic
moments, so it can be determined by means of the
particle trajectories. However, a„wasfound to satisfy a
system of partial differential equations which Pauli was
unable to solve in general. We have succeeded in
solving them by reducing them to ordinary differential
equations along the particle trajectories. In the same
way, we have solved the modified Dirac equation
appropriate to a particle with an anomalous magnetic
moment.

The equation for ao leads to an equation for the
precession of the polarization four-vector which was
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quantum conditions which determine the energy
levels. In both cases the problems can be solved by
separation of variables and application of the usual
WKB method to the resulting separated equations.
The results obtained in this way coincide with ours.
Therefore, we do not present these examples.

De Broglie' has criticized Pauli's procedure, which
we have followed, because the trajectories to which it
leads are unaffected by the particle's electric and
magnetic moments. In the next section we analyze this
criticism and show to what extent it is valid. At the
same time, we point out the limitations on the validity
of Pauli's procedure.

2. BE BROGLIE'S CRITICISM OF
PAULPS PROCEDURE

De Broglie's criticism of Pauli's procedure is based on
the fact that the "limit" of quantum mechanics as A.

tends to zero is classical mechanics. Since electric and
magnetic moments are classical concepts, they should
remain in the classical "limit" and should affect the
trajectories. In Pauli's procedure they do remain but
they do not affect the trajectories, which depend only
upon the charge and mass of the particle. This would
appear to be a shortcoming of his procedure. However,
the moments of an electron are proportional to 5, and,
therefore, they too vanish in the classical limit. (The
equation for the precession of the magnetic moment
involves only the ratio of the magnetic moment to the
spin, from which 5 cancels. ) This vanishing of the
moments seems to justify Pauli's procedure and to
invalidate de Broglie s objection. Nevertheless, as we
shall now show, his objection is valid despite the fact
that Pauli's procedure is correct. The explanation of
this paradoxical statement is that Pauli's procedure
yields the correct result in inhomogeneous field regions
and at 6xed finite distances from them, but not at
distances of the order k ' from them. The correct result
at, such distances can only be obtained by taking
account of de Broglie's objection, and permitting the
moments to affect the trajectories.

To clarify the above explanation, let us consider the
classical motion through an inhomogeneous field of
finite extent of an electron with electric and magnetic
moments proportional to A. The angular deviation of
the trajectory produced by the inhomogeneity is
proportional to the moments of the electron, and thus
proportional to fi. Therefore, as 5 tends to zero, the
trajectory at every point approaches the trajectory of an
electron with moments. However, the approach is not
uniform at in6nity. At a distance of order fi ' along
the trajectory from the inhomogeneity, the lateral
deQection of the trajectory is the product of the angular
deviation of order A and the distance of order fi ', which
product is of order unity (i.e., independent of 5).There-

L, de Broglie, I.a Theoric des Purticlles de SPin 1/Z t'Gauthier-
Villars, Paris, 1952), pp. 132, 128.

fore, to obtain a description of the trajectories which is
valid everywhere, including the neighborhood of
infinity, it is necessary to include the effect of the
moments even though the moments themselves vanish
with A. However, a description which is valid at any
finite point, but is not uniformly valid at infinity, can
be obtained by ignoring the moments.

Let us now reformulate the preceding explanation
analytically. We seek the asymptotic expansion of the
wave function iP(x,h) as fz tends to zero. If g is fixed, it
is given by the WEB expansion (1) employed by Pauli.
However, if x=5 'x', where x' is fixed, then the as-
ymptotic exansion of f(A, 'x', 5) as 5 tends to zero is
not given by (1). It is given by a different expansion
which would meet de Broglie's objection in that the
trajectories would be affected by the moments. The
first term in such an expansion could presumably be
obtained from Schiller's' approximate solution of the
squared Dirac equation. We shall not determine that
expansion in this paper.

These considerations may become more understand-
able by the examination of a familiar situation in which
a similar phenomenon occurs, namely the occurrence of
a shadow behind a sphere of radius a illuminated by a
plane wave of wavelength P. We know that when X is
much smaller than a, the shadow is essentially a
circular cylinder of radius a, but that it disappears at
about the distance a'/X behind the sphere. Therefore,
if we wish to determine the behavior of the shadow in
the geometrical optics limit, in which 'A/a tends to
zero, we must specify whether we want it at a fixed
distance or at a distance a'/X behind the sphere. At a
6xed distance there is a shadow whose cross section is
a circle while at a distance a'/X there is no shadow. A
uniform description would describe the circular shadow
and its gradual disappearance as the distance increases.

This example illustrates the main point involved in
reconciling the viewpoints of Pauli and de Broglie.
It is that a function of x and a parameter A. may have
more than one asymptotic expansion with respect to h
around 5=0, and they are valid in different domains of
x space. The validity domain of one expansion may
even include that of another. In seeking an expansion, it
is necessary to specify the domain in which it is to be
valid. By ignoring this point, Pauli failed to realize that
his expansion was not uniformly valid at infinity and
de Broglie failed to see that what he wanted was an
expansion which was uniformly valid everywhere,
including in6nity. The domain of validity of this
expansion wouM include that of the WEB expansion
considered by Pauli, but the expansion would be more
dificult to determine.

3. FORMULATION

The modi6ed Dirac equation for the wave function of
an electron with an anomalous magnetic moment

s R. Schiller, Phys. Rev. 128, 1402 (1962).
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The 0;. are the 2 by 2 Pauli spin matrices. When g=2,
(2) becomes the usual Dirac equation.

We seek a solution of (2) of the form (1).Therefore,
we insert (1) into (2) and equate to zero the coefficient
of each power of A. This yields the equations

(Zzr„y„+22ZC) a0 ——0,

(izr„y„+zzzc) a„= iy„8„a„—, (2g—1—) (e/2mc2)

XFo a 1, zz=12, . (6)

Here x„is dehned by

zr„=cr„S+ec'A„.
Equation (5) is a system of linear algebraic equations

for ao. It has a nontrivial solution only if the coeKcient
matrix has a vanishing determinant,

det (izr„y„+mc)=0.

Upon evaluation of this determinant we obtain

zr„zr„+22Z2C2 =0. (9)

Equation (9) is just the single-particle relativistic
Hamilton-Jacobi equation for the function S describing
the motion of a spinless particle without electric or
magnetic moments.

When S satisfms (9) the matrix in (5) is found to have
rank 2. Therefore, (5) has 4—2= 2 linearly independent
solutions. Denoting them by 8& and 82 we find

—(12g—1)equi/mc may be written in the form

fy„/sr)„+iec'A )+zrzc —(-'g —1)
X (ich/2zzzc2)F»o. »$$=0. (2)

The notation in (2) is the following:

8„=rI/rI0c„, 2;„=(x,y, 2 i ct), A„=(A „A„,A„iC), (3)„„=—'(y„y„—y„y„),F»= rI„A,—4),A„.
Here x, y, s, and t are the Cartesian space coordinates
and the time, respectively; c is the velocity of light;
A„A„,A, and C are the three components of the
electromagnetic vector potential and the scalar poten-
tial, respectively; Ii„„is the electromagnetic Geld tensor,
the index p, ranges from 1 to 4 and is to be summed over
when it is repeated in a given term; m is the rest mass
of the electron, (—e) is its charge, and g is its gyro-
magnetic ratio. The wave function It is a four-component
column vector and the p„arethe 4 by 4 matrices

Here I, e, and m + are deGned by

u=mc —zzr4, v=zr2, w+ ——zr, &zzr2. (11)

We shall later utilize two linearly independent left null
vectors of the matrix in (5). These are easily found to
be the Pauli adjoints of 8& and 82, namely,

Bl Bite——4 (u*——, 0, —v*, —wp"),

B2 B2——y4= (0, u*, —w *, v ) .

In (10) and (12) the t designates the Hermitian adjoint;
i.e., the complex conjugate of the transpose, the overbar
denotes the Pauli adjoint, and the asterisk denotes the
complex conjugate.

In terms of 8& and 82 we may write u„as
a0 &01B1+~02B2

a =c2„1B1+c4„2B2+b„,zz= 1, 2, . (13)

Here b„is a particular solution of (6) while n„land a„2
are scalar functions which are so far undetermined. To
determine them we consider Eqs. (6). These are
inhomogeneous linear algebraic equations for a„.They
have solutions only if the right side is orthogonal to
all the solutions of the transposed homogeneous
equations. But these latter solutions are linear combina-
tions of B~ and B2. Therefore, the conditions for solva-
bility are obtained by multiplying (6) on the left by
B~ and B2, which are left null vectors of the coeKcient
matrix. The resulting solvability conditions are

Bly„8„a~,(-', g
—1) (Z'e/—2mC2)B1F»o„„a~1 0.,

——
Bzy„B„a~, (-', g

—1) (ze/—2mzc')B2F»o„„a„,=0, (14)

g $ 2 0 ~ ~

These equations were obtained by Pauli' for g=2. He
did not see how to solve them in general. Instead, after
deducing one consequence, related to Eq. (25) below,
he turned to a special case. We shall show how to
solve (14), in general.

4. REDUCTION TO ORDINARY DIFFERENTIAL
EQUATIONS

I.et us now substitute for a„from (13) into (14).
Then (14) becomes for zz=0, 1,

(B17pBl)r)pr2nl+ (B170r)@Bi)c4nl+(Bl|'pB2)cIpc2m2

+ (B,y„&„B2)r2„2(-,'g —1) (ie/2221 C2)—

XB1F»rr»(n„lB1+r2„2B2+b„)= B,y„B„b —(15).
(B2Y Bl)cj„021+ (B27 rl Bl)r2 1+ (B2Y B2)4I 42 2

+ (Bzy„B„B2)n2 (2g —1) (ie/22ztc—2)

XB2F»o„.(~nlB1+c2.2B2+b.) = Bzy„r)„b„.(16)—
I
0

BJB;= 2izr4(zzzc izr4—)8,, ; i, j—= 1, 2. (10)

Here we have introduced bo ——0 to enable us to write the
equations for n=0 together with those for n&0. For
each zz, Eqs. (15) and (16) are a pair of linear first
order partial diGerential equations for 0.„&and n 2. We
shall now show that they can be reduced to ordinary
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do (r)
8~7i ~dT = ln

do(r p).

(27)Theorem

B,Z„B2= 2i—(mc ipr—4)2r„8,&, j, k = 1, 2. (17)

differential equations along the particle paths associated The integral in (26) is evaluated in Appendix II and
with (9). The reduction is based upon the following is found to be
algebraic theorem.

DC4n2+ C 2142n 1+C 2242 n2

=$2i(mC —iir4)] '82t y„8„—(—,'g —1)
X (i e/2mc2)F„„o„„jb„.

Here D and the c;, are defined by

D=m„8„,

(19)

(20)

c,,= P 2i (m—c i2r4)—) 'B;fy„B„(2g
——1)

X (ie/2mc')F„„o„„5B,, i, j=1, 2. (21)

Since D is a directional derivative in the direction ~„,
(18) and (19) are ordinary differential equations along
the curves to which m.

„

is tangential. These curves are
the relativistic trajectories of a particle in the potential
A„.An incorrect version of (18) and (19) for g=2 was

given by de Broglie. 4

Let us now consider the case n=0, set no~=a~,
u02 ——n2, and assume that S is real. Then D is real and
an immediate consequence of (18) and (19) for 22=0
is the equation

D(421421 +422%2 )+421C21 (Cll+Cll )+422122 (C22+C22 )
+C21422 (C21+C12 )+421 422(C12+C21 )=0. (22)

It, follows from (21) and the definitions of the B, that

cll+cll*=c22+C22 =8„7r„+Din(mc—in4), (23)

This theorem can be proved by direct computation. A
more algebraic proof is given in Appendix I.

We now use (17) in (15) and (16). Then after
multiplying these equations by $—2i (mc —in4) j ' they
can be written as

D42n1+ C1142n1+ C12C4n2

=
f 2i(mc in.—)] 'Bigs„B„(-'—g

—1)
X (ie/2mc2)F„,o„„]b„,(18)

The quantity do(r) is the three dimensional cross-
section of a narrow tube of trajectories containing the
one under consideration, evaluated at the point 7. on
this trajectory. do. (rp) is the corresponding cross section
at the point rp Ac.tually do(r)/do(rp) is the limit of
the cross-section ratio as do (rp) tends to zero. When (27)
is used in (26), it finally becomes

Pete i n 4 (r)—)do(r p)'
421421 +422422 (&1421 +422422 )rp . (28)

LmC —ipr4(rp) jdo'(r)

1
P= exp 2' 8~7i ~87

Then (18) and (19) with 22=0, and (25) yield for p the
equation

DP+MP =0. (30)

fn (30), M is a square matrix of order two with elements

1Mg= cg——,8„~„6;;, (31)

The determination of the solution ao has now been
reduced to the problem of finding the vector P satisfying
(30). Then nl and 422 are given by (29) and ap by (13),
which becomes upon using (27)

This equation expresses conservation of probability in
a tube of trajectories.

We can now use the above results to simplify Eqs.
(18) and (19) for nl and C42 To thi.s end we introduce
the two component vector

(p
')

defined by

Thus, (22) becomes

C 21+C12 0 ~ (24) do (rp)- ))2

do (r)
(81Bl+P2B2) ~ (32)

D(421nl*+n2422*)+(cll+cll ')(n1421*+n2422*) =0. (25) The spinors Bl and B2 are given by (10) and (11).
To solve (25) we write D= md/dr where r is a param-

eter along a trajectory which can easily be recognized as 5. PRECESSION OF THE POLARIZATION

the proper time. Then, the solution of (25) is

&1421 +422422
T

=(, ,*+, ,*)„exp(— (c +c *)4
m „)'

mC 22r4(r) 1—
= (421421*+422422')„exp—— a„2r„dr

~

.
mc irr4 (rp) m „—j

We shall now show that (30) implies the covariant
equation of motion of the polarization four-vector
along a particle trajectory. Furthermore, a solution of
that equation can be used to construct the solution P
of (30). To this end we utilize the vector 42, whose
components are the Pauli spin matrices of order two.
We multiply (30) from the left by Bt4r and obtain

(26) PtaDP+ P242MP =0 (33)
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The Hermitian adjoint of (33) is

(DPt)aP+P"MtaP= 0.

Here pp=(4ri, 4rp, s.p). Upon using (36)-(44) in (35) we
obtain the following equation for X:

(34)

Addition of (33) and (34) yields

D(PtaP)+Pt (aM+Mta)P=0 (35)
mc —im 4

e XX(EX~)—X(E ~) gDX= —XXH+ + —1
~

C 2 )

This equation can be concisely written in terms of
the vector X defined by

X=PtaP.

From (36), the components and length X of X are

~*=PiPp*+Pi*Pp,

X,=i(PA* P*P—),
&*=PiPi"'-PpPp*,

X= (Z.'+X„'+&,')'"=PiPi*+PpPp*.

(36)

(3g)

(39)

(40)

The matrix M, given by (31), involves c;; defined by
(21), which in turn involves Bi and Bp given by (10)
and (11).When M is evaluated from these equations,
it can be expressed in terms of the electromagnetic
tensor Ii„„,the components of which are the components
of the electric field E and the magnetic 6eld H. Thus,

da (r)—e
—iA Imp&ry~fy ppeiA &S

d~(r p)

(46)

Upon using (32) for ap and the definition (36) of X,
we find

f XX(Expp) XXLppx(HXpp) j)
X/ XXH+

E. mc nsc (mc —
iver 4) )

We shall now introduce the polarization four-vector
T„and show that it can be expressed in terms of X.
To do so we recall that the spin current density is
given by ItiPg „fwith y 4——pic&ypy4. Therefore, the flux
of this current through a tube of trajectories of cross
section da (r) is Piypy„/do(r). I.et us. compute this flux

by using the expansion (1) for P and retaining only the
first term so that f e'" '

ap. We shall call this flux the
polarization four-vector T„multiplied by the fixed
cross section do (r p) so that

mC —Ar4

ei (EXpp).+iE pp g
Mii ———H,+ + ——1i

2c )

T= 2444C(rr4C —i4r4) X+2(pp X)pp,

T4 2i(mc i——m4) pp X—.

(47)

(48)

(Ex~). L~x (Hx~) j,)
X) H.y +

*

~, (41)
4ric rr4c(rr4c i4r4) )—

(Ex~).—i(EX~), (g
Mip ———H, iH„+- +

I

—1)
2G k2mc —ix4

(Expp). —i(EXpp)
„

Xi H. 4H,+—
L x(Hx )).—'t. x(Hx )j„q

(42))4i4c (4r4c —iver 4)

mC —ix4

( (Ex~),+i(EX~)„
Xj H.+'H, +

mc

ei (Expp), +i(EXpp) „(g
Ms, =—H.+~P„+ +~l —1)

2c &2

pp X=[—2i4r4(4ric —ipr4)]-'pp T.

Now (47) and (49) lead to

(49)

X= $2mc(mc —ipr4)] '

X(T+fi4r4(mc —im4) j i(pp T)pp}. (50)

To obtain the equation for T„,we need to know the
equations for a trajectory

Der„=—(%)F„„7r„
«+( XH);+ E.

& (51)

In (47) the vector T= (Ti, Tp, Tp).
Equations (47) and (48) show that the polarization

four-vector T„is expressible in terms of X. Since X
satisfies (45), these equations will enable us to get an
equation satisfied by T„.To do so we shall first solve
(47) for X in terms of T. Thus, multiplying (47) by
~. and solving for ~ X yields

ei (EXpp), —iE pp g
Mpp= ——H,+ + —i)2c 2

dx~ trv pip

dr Ec
'

tr4c
' (52)mC —Zx'4

(EXpp), LppX (HX pp) $4) where
Xi H.+ + ( . (44)

4lc 444c(4ric —ipr4) )

This is the Lorentz force equation, which follows
t x(Hx )].+'L x(Hx )j„& directly from the Hamilton-Jacobi equation. It is

)4ric(mc —ipr )
I, (43)

convenient to utilize more common notation by
recognizing that the four-velocity dx„/dr is just

(1—8/'c') (53)
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Then equations (45), (50), and (51) may be rewritten as for dT/d7 becomes

— XXH+ tXX(EX )—X(E. )j
dr mc mc(1+y)

5(+ ——1~~ XXH+-- XX(EX )
2 i& mc (~cV)' (nzc7)'

e g T.m
—

g T E
— TXH+ E + —1 y'—

52$ 2 1scp 2 mt,.p
(TXH) ~ (T m)(E m)

(60)

In a similar manner, the equation satisfied by T4 is

m'c'(1+y) )
j

—L2~'c'(1yy)] —' T- (T.~)m, (55)
m'c'y (1+y)

ei g g—T E+ —1)y'
kgb' 2 2

—= —e y
4T

(56)
(TxH) .~ (T ~) (E m)-—T.E+

naca (naca)'
(61)

dy e
K.~.

d7 78 C

(57)

Equations (60) and (61) together are the covariant
equations of motion for the polarization four-vector,
T„=(T,T4), of an electron moving in an arbitrary
electromagnetic 6eld. '

Substituting (55), (56), and (57) into (54), we obtain
the equation

dT 1 dT)

d7 m'c'y(1+y) dr i

6. DETERMINATION OF g

To solve for P in terms of T, we use (50) to get X in
terms of T and then (37)—(40) to get P in terms of X
and hence of T. Thus, we find from Eqs. (37)—(40)
that P ma, y be expressed in terms of X as follows:

(T ~) (E ~)
+ ——1

m'c'y (1+y) 2

e (T.m)E= ——-- TXH+ — (TXH).~

i Z„)
(Z —Z,)"' exp —tan ' —

~z.i

i ~Z„--
(Z+Z )"' exp ——tan '~—

c" 2 &X.

K2
(62)

( T~ (TXH) ~
Xl TXH+ E—T.E—

naca mc(1+y)

(T ~)(E.~)
(58)

m'c'y(1+y) mc)

Multiplying (58) by ~., we find that

Inasmuch as four real functions are required to
completely determine 8, it is seen that the three
components of X leave a phase function 0 to be deter-
mined. The equation for 8 may be found by substituting
(62) into (30) and multiplying by Pt. It follows that

2ZZW=Z, I7ltan-i(Z„/Z. )$+iPt(M —Mt)P. (63)

By direct calculation it is found that
e

(TXH) ~+

+ ——1 7' (TXH) ~+
2 SEC+

mc(1+7) (y —1)—(T E) (59)

By substituting (59) back into Eq. (58), the equation

z„- (xXDx),
D tan'—

Z, Z, '+Zy'

e (EX~) g
iPt(u —~t)P= —X. Hy

C Pic—Ar4 2

EX~ ~X (Hx~)xH+ +
mc mc(mc —im 4)

(64)

(65)
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(g
— (EX~) ~X (HX~)-

+( —1 Hy -+-
&2 mc m'c'(I+y)

(66)

The solution may be written immediately as

0=Op- (s„Z„,O)
2nzc „Z'+Z„'
g (EXm) g+ —1 ~L~c(1+&)~-
2 mc(1+y) 2 )

Hence, with the use of (45), it follows from (63) that

e (EX~)
(Z„Z„,O) H+

2mc Z,'+Z„' mc(1+y)

z+5+~T~Ny= +Ay. (69)

These vectors N~ form the polarization basis and in
terms of them (68) becomes

laboratory coordinate system, while the polarization
basis is a frame which refers to an axis that rotates with
the polarization T„ofthe particle. In order to define
this basis we first observe from the definition of T„that
T„s.„=0.Furthermore, from (60) and (61) it follows
that (d/dr) T„T„=Oso we may normalize T„bysetting
T„T„=1.Then from (68) we find that Ptf~2ydo(ro)/
do(r). We also find from (68) thatiy&y„T„ip=ip.Thus,
(68) is an eigenvector of the operator ipse„T„.Let us
define the two vectors I+ and I to be solutions of the
free Dirac equation (5) normalized by the condition
N~tg~=- 1 and satisfying

~X (HXm)
X y(EXm)+ dr . (67) P~c—iA, ~s+i8

do (ro)

da(r)
(70)

Here ep is the value of 0 at 7-=Tp.

P~c—i@ &sg—
&8+F9 —D f X —]./2

oJ
L(~+~.)"'

W2 do(r)

7. CONCLUSION

%e have now completed the determination of the
zero-order solution ao since (67) determines tI, (62)
determines P and then (32) yields ao. Upon combining
these results in (1), we obtain

The definition of u~ does not fix their phase, and (70) is
true only if the phase of I+ is the same as that of the
bracketed expression in (68). However, if the phase of
u+ included the phase 0, then 0 could be omitted from
(70). Of course, it would then remain present in N~.
The use of the polarization basis together with some
results of Bouchiat and Michel' pertaining to it, can also
simplify some of our other equations and calculations.

APPENDIX I' PROOF OF THEOREM

Xexpl li tan —i lg /y i IB ~ fg g ) i/2 To prove the theorem of Sec. 3 we consider m Hermi-eXpl Z tan /' / 5 l I

tian matrices M„and e real scalars p„,p= 1, m.

XexpL-', i tan '(Z„/Z,)]B2j . (68) Let G be the Hermitian matrix defined by

In (68), 5 is the relativistic Hamilton-Jacobi function,
tI is a phase factor given by (67), do(7O)/do(r) is the
ratio of the cross sections of an infinitesimal tube of
rays at 7 p and r, where r is proper time along a trajec-
tory, X is a vector given in terms of the polarization
four vector T„by(55) and Bi and B2 are spinors given
by (10). Although (68) may seem complicated, it
actually involves only classical quantities associated
with a classical trajectory. For that reason, it should be
useful in the approximate solution of problems since
classical quantities can be found by solving ordinary
differential equations. Thus, the solution (68) is
obtainable from the solution of ordinary differential
equations even for nonseparable problems.

To determine further terms in the expansion of It, the
ordinary differential equations (18) and (19) must be
solved for e&0.They can be analyzed in a way similar to
that employed above for m=0 but we shall not do so.

The result (68) and some of the calculations leading
to it can be simplified somewhat by the introduction of
a polarization basis for the solutions of the free Dirac
equation (5) rather than the basis Bi, B& which we
have employed. Our basis refers to an axis Axed in the

G= Q p„M„.
p,=l

881, N, BBI,
M„Bi,+G = Bi,+7i

'dp~ ~pl ~p~
(A4)

Multiplication of (A4) on the left by B,+, the use
of (A3), and the fact that G is Hermitian yield

BX
8;~M„B&=

8 p

(A5)

' C. Bouchiat and I . Michel, Nucl. Phys. 5, 416 (1958).

I-et X be a multiple eigenvalue of G and h&, .
, 8, a set

of corresponding orthormal eigenvectors which are dif-
ferentiable functions of p„.Then

(A2)

(A3)

I.et us now differentiate (A3) with respect to p„to
obtain
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This is the desired result. The above derivation is
essentially due to R. M. Lewis.

To apply (A5) we first multiply (5) from the left by
y4 and obtain

(pprN'r4+p+mc+4)8p= 0. (A6)

B)'y4y4Bq= 2irr4(mc—im4) 8,~, .— . (AS)

In (AS) we have used the fact thet y4y4 is the identity,
so the left side is just B; B& which is given by (10).
Since B,ty4=B;, the left side of (AS) and i times the-
left sides of (A7) are the left sides of the theorem, Eq.
(17).The right side of (AS) is the same as that of (17),
which proves (17) for u=4. To prove it for p= 1, 2, 3
one may evaluate the left side for j=k = 1 and p= 1, 2, 3
to show that the right side has the value given by (17).

The matrices iy4y, (j=1, 2, 3), y4y4 and y4 are Hermi-
tian so they may be chosen as the M„(+=1, , 5) of
the above analysis. When S is real, as we now assume,
pr; (j= 1, 2, 3), irr4 and mc are real and maybe chosen to
be the p„(p=1, , 5) above. Then the matrix in (A6)
is G and Bi and Bp given by (10) are two orthogonal
eigenvectors of G corresponding to the eigenvalue X=0.
They can be normalized by dividing them by an
appropriate factor which can be found from (10). Now
(A5) applies and yields, when the normalization of
8; is taken into account,

B,tip'„Bp (H,/Bp——„)[ 2irr4(m—c i,rr4)]b—,i. ,

@=1,2, 3 (A7)

dimensional volume U bounded by an infinitesimal tube
of trajectories and by two three-dimensional orthogonal
cross sections of the tube. Let the proper time at these
ends of the tube be ro and v on one of the trajectories.
Then by Gauss' theorem

T

pc B„pr„A(r)dr = imcLA (r) —A (rp)).
fQ

(82)

Differentiating (82) with respect to r and dividing the
result by A (r) yields

pI„7r„=md lnA (r)/dr

Integrating (83) yields

(83)

a„~„dV= ~„dS„=~~„(.) ~A(r)

—
~
pr„(rp)~A(rp). (81)

The surface integral in (81) is evaluated by noting that
m.

„

is parallel to the sides of the tube so that m„d$„=0
there whereas m„ is normal to the ends of the tube so
pr„dS„=

~
pr„(r)

~

A (r) oil olle erld alld =
~
pr„(rp) )

XA (rp), on the other. Here dS„denotes an element of
the surface directed normally and A (r) is the cross-
sectional "area" of the tube at v.

Let us rewrite (81) by noting that dV=A(r)icdr
and that ~~„(r)

~

=imc. Then (81) becomes

APPENDIX II: EVALUATION OF AN INTEGRAL SS gp

8„7r„dr= 1n/A (r)/A (rp) ) . (84)

We shall now evaluate the integral in (26), the value
of which is given in (27). To do so we consider a four-

If we denote the cross-sectional area by do(r) instead of.

A(r), (84) is exactly (27).


