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where

e(x,z) =+1 for x'(x'
=—1 for x'(x'. (3.7)

Because of the in6nite integrations in Kq. (3.6), it is
clear that the additional term is either zero or infinite for
a periodic motion of the system. Thus, for periodic
motions the Frenkel 4-momentum either coincides with
the canonical 4-momentum or gives in6nite results. In
our case of point charges in circular motion, the right-

hand side of Kq. (3.6) vanishes, so that the Frenkel
4-momentum also leads to the energy given by Eq. (3.4).

Our system, characterized by Eqs. (3.1) to (3.5), can.
now be quantized by putting I.=mfa. For either posi-
tronium (e electronic charge, nz=m electron mass) or
hydrogen (e, m electronic charge and mass, m proton
mass), the resulting quantized motions are all nonrela-
tivistic. They are the usual Bohr motions with small
corrections for retardation and other relativistic effects
and, in the case of hydrogen, with small corrections for
the motion of the nucleus.
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Methods are developed for discussing the photon statistics of arbitrary radiation fields in fully quantum-
mechanical terms. In order to keep the classical limit of quantum electrodynamics plainly in view, extensive
use is made of the coherent states of the field. These states, which reduce the field correlation functions to
factorized forms, are shown to offer a convenient basis for the description of fields of all types. Although
they are not orthogonal to one another, the coherent states form a complete set. It is shown that any quan-
tum state of the field may be expanded in terms of them in a unique way. Expansions are also developed
for arbitrary operators in terms of products of the coherent state vectors. These expansions are discussed as a
general method of representing the density operator for the field. A particular form is exhibited for the
density operator which makes it possible to carry out many quantum-mechanical calculations by methods
resembling those of classical theory. This representation permits clear insights into the essential distinction
between the quantum and classical descriptions of the field. It leads, in addition, to a simple formulation
of a superposition law for photon fields. Detailed discussions are given of the incoherent fields which are
generated by superposing the outputs of many stationary sources. These fields are all shown to have inti-
mately related properties, some of which have been known for the particular case of blackbody radiation.

I. INTRODUCTION

~ EW problems of physics have received more atten-
tion in the past than those posed by the dual wave-

particle properties of light. The story of the solution of
these problems is a familiar one. It has culminated in
the development of a remarkably versatile quantum
theory of the electromagnetic 6.eld. Yet, for reasons
which are partly mathematical and partly, perhaps, the
accident of history, very little of the insight of quantum
electrodynamics has been brought to bear on the
problems of optics. The statistical properties of photon
beams, for example, have been discussed to date almost
exclusively in classical or semiclassical terms. Such
discussions may indeed be informative, but they in-
evitably leave open serious questions of self-consistency,
and risk overlooking quantum phenomena which have
no classical analogs. The wave-particle duality, which
should be central to any correct treatment of photon
statistics, does not survive the transition to the classical
limit. The need for a more consistent theory has led us

* Supported in part by the U. S. Air Force Oflice of Scientific
Research under Contract No. AF 49(638)-S89.

to begin the development of a fully quantum-mechanical
approach to the problems of photon statistics. We have
quoted several of the results of this work in a recent
note, ' and shall devote much of the present paper to
explaining the background of the material reported
there.

Most of the mathematical development of quantum
electrodynamics to date has been carried out through
the use of a particular set of quantum states for the
6.eld. These are the stationary states of the non-
interacting field, which corresponds to the presence of
a precisely dered number of photons. The need to use
these states has seemed almost axiomatic inasmuch as
nearly all quantum electrodynamical calculations have
been carried out by means of perturbation theory. It is
characteristic of electrodynamical perturbation theory
that in each successive order of approximation it
describes processes which either increase or decrease
the number of photons present by one. Calculations
performed by such methods have only rarely been able
to deal with more than a few photons at a time. The

' R. J. Glsuher, Phys. Rev. Letters 10, 84 (1963).
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description of the light beams which occur in optics, on
the other hand, may require that we deal with states in
which the number of photons present is large and in-
trinsically uncertain. It has long been clear that the use
of the usual set of photon states as a basis offers at best
only an awkward way of approaching such problems.

We have found that the use of a rather different set
of states, one which arises in a natural way in the
discussion of correlation and coherence' ' properties of
fields, offers much more penetrating insights into the
role played by photons in the description of light beams.
These states, which we have called coherent ones, are
of a type that has long been used to illustrate the time-
dependent behavior of harmonic oscillators. Since they
lack the convenient property of forming an orthogonal
set, very little attention has been paid them as a set of
basis states for the description of fields. We shall show
that these states, though not orthogonal, do form a com-
plete set and that anystate of the field may be represented
simply and uniquely in terms of them. By suitably
extending the methods used. to express arbitrary states
in terms of the coherent states, we may express arbitrary
operators in terms of products of the corresponding
state vectors. It is particularly convenient to express
the density operator for the field in an expansion of this
type. Such expansions have the property that whenever
the field possesses a classical limit, they render that
limit evident while at the same time preserving an
intrinsically quantum-mechanical description of the
field.

The earlier sections of the paper are devoted to a
detailed introduction of the coherent states and a survey
of some of their properties. We then undertake inSecs.
IV and V the expansion of arbitrary states and operators
in terms of the coherent states. Section VI is devoted to
a discussion of the particular properties of density
operators and the way these properties are represented
in the new scheme. The application of the formalism to
physical problems is begun in Sec. VII, where we intro-
duce a particular form for the density operator which
seems especially suited to the treatment of radiation by
macroscopic sources. This form for the density operator
leads to a particularly simple way of describing the
superposition of radiation fields. A form of the density
operator which corresponds to a very commonly
occurring form of incoherence is then discussed in
Sec. VIII and shown to be closely related to the density
operator for blackbody radiation. In Sec. IX the results
established earlier for the treatment of single modes of
the radiation field are generalized to treat the entire
field. The photon fields generated by arbitrary distribu-
tions of classical currents are shown to have an especi-
ally simple description in terms of coherent states.
Finally, in Sec. X the methods of the preceding sections

are illustrated in a discussion of certain forms of
coherent and incoherent fields and of their spectra and
correlation functions.

where p is the density operator which describes the field
and the symbol tr stands for the trace. We noted, in
discussing these functions, that there exist quantum-
mechanical states which are eigenstates of the positive-
and, negative-frequency parts of the fields in the senses
indicated by the relations

in which the function b„(rt) plays the role of an eigen-
value. It is possible, as we shall note, to find eigenstates

I ) which correspond to arbitrary choices of the eigen-
value function b„.(rt), provided they obey the Maxwell
equations satisfied by the field operator E„(rt) and
contain only positive frequency terms in their Fourier
resolutions.

The importance of the eigenstates d.efined by Eqs.
(2.2) and (2.3) is indicated by the fact that they cause
the correlation functions to factorize. H the field is in
an eigenstate of this type we have p=

I )( I, and the
first-order correlation function therefore reduces to

(2.4)

An analogous separation into a product of 2m factors
takes place in the eth- order correlation function. The
existence of such factorized forms for the correlation
functions is the condition we have used to d.efine fully
coherent fields. The eigenstates

I ), which we have
therefore called the coherent states, have many prop-
erties which it will be interesting to study in detail. For
this purpose, it will be useful to introduce some of the
more directly related elements of quantum electro-
dynaIllics.

The electric and ma, gnetic field operai:ors E(rt) and
B(rt) may be derived from the operator A(rt), which
represents the vector potential, via the relations

1 8
E= ———,B=qXA.

c Bf
(2.5)

II. FIELD-THEORETICAL BACKGROUND

We have, in an earlier paper, ' discussed the separation
of the electric field operator E(rt) into its positive-
frequency part E'+' (rt) and its negative-frequency part
Et & (rt). These individual fields were then used to define
a succession of correlation functions G("', the simplest
of which takes the form

'R. J. Glauber, in Proceedings of the Third International
Conference on Quantum Electronics, Paris, Prance, 1963 (to be
published).

s R. J. Glauber, Phys. Rev. 130, 2529 (1963).

We shall find it convenient, in discussing the quantum
states of the field, to describe the field by means of a
discrete succession of dynamical variables rather than
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a continuum of them. For this reason we assume that
the field we are discussing is confined within a spatial
volume of finite size, and expand the vector potential
within that volume in an appropriate set of vector mode
functions. The amplitudes associated with these
oscillation modes then form a discrete set of variables
whose dynamical behavior is easily discussed.

The most convenient choice of a set of mode func-
tions, u A (r), is usually determined by physical considera, —

tions which have little direct bearing on our present
work. In particular, we need not specify the nature of
the boundary conditions for the volume under study;
they may be either the periodic boundary conditions
which lead to traveling wave modes, or the conditions
appropriate to rejecting surfaces which lead to standing
waves. If the volume contains no refracting materials,
the mode function uA(r), which corresponds to fre-
quency coj„may be taken to satisfy the wave equa, tion

(E'+]P)jr. (2.11)

With the use of Eqs. (2.7,8) and of a, suitable set of
boundary conditions on the mode functions, the
Hamiltonian may be reduced to the form

magnetic theory these Fourier amplitudes are complex
numbers which may be chosen arbitrarily but remain
constant in time when no charges or currents are
present. In quantum electrodynamics, on the other
hand, these amplitudes must be regarded as mutually
adjoint operators. The amplitude operators, as we have
defined them, will likewise remain constant when no
field sources are active in the system studied.

The dynamical behavior of the field amplitudes is
governed. by the electromagnetic Hamiltonian which,
in rationalized units, takes the form

(2 6)
+=,q p ~~A(aAt ga+aAgat). (2.12)

uA" (r) u((r)dr=bA(, (2 7)

at interior points. More generally, whatever the form
of the wave equation or the boundary conditions may
be, we shall assume that the mode functions form a
complete set which satisfies the orthonormality condi-
tion

This expression is the source of a well-known and
extremely fruitful analogy between the mode ampli-
tudes of the field and the coordinates of an assembly of
one-dimensional harmonic oscillators. The quantum
mechanical properties of the amplitude operators aI,
and a&~ may be described completely by adopting for
them the commutation relations familiar from the
example of independent harmonic oscillators:

and the transversality condition

V' uA(r) =0. (2 8)

fgArgA j=fgi, aAt]=0,

P&arga )=~ax .
(2.13a)

(2.13b)

The plane-wave mode functions appropriate to a,

cubical volume of side I.may be written as

uq(r) =L '"e'"& exp(ik r), (2.9)

where e'"' is a unit polarization vector. This example
illustrates the way in which the mode index k may
represent an abbreviation for several discrete variables,
i.e., in this case the polarization index (X= 1,2) and the
three Cartesian components of the propagation vector
k. The polarization vector e&A& is required to be perpen-
dicular to k by the condition (2.8), and the permissible
values of k are determined in a, familiar way by means
of periodic boundary conditions.

The expansion we shall use for the vector potential
takes the form

gz 1/2

A(rr) =r X (2M/c

X(aAuA(r)~ ' '+aA uA" (r)e*"") (2.10)

in which the normalization factors have been chosen to
render dimensionless the pair of complex-conjugate
amplitudes aI, and al,~. In the classical form of electro-

aA
~

0)A= o. (2.14)

The state vectors for the excited states of the oscillator
may be obtained by applying integral powers of the
operator aAt to

~
0)A. These states are written in normal-

ized form as

(g t)nA

~

ri„)„=
~
0)&, (~A ——0, 1, 2 ). (2.15)

(~A t)

Having thus separated the dynamical variables of the
different modes, we are now free to discuss the quantum
states of the modes independently of one another. Our
knowledge of the state of each mode may be described
by a state vector

~
)& in a Hilbert space appropriate to

that mode. The states of the entire field are then defined
in the product space of the Hilbert spaces for all of the
modes.

To discuss the quantum states of the individual
modes we need only be familiar with the most elemen-
tary aspects of the treatment of a single harmonic
oscillator. The Hamilt onian A

2har A (aqtgA+gAg&t)
eigenvalues h~A(NA+2), where mi is an integer
(0„=0,1,2 . ). The state vector for the ground state
of t.he oscillator will be written as

~
)A. It is defined by

the condition
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a~
I n~)i =n~'"

I
nl, —1)~

a,t in. )= (n,y 1)it2 in, +1)„
(2.16)

(2.17)

The way in which the operators al, and u&t act upon
these states is indicated by the relations

find the recursion relation

(n+1)'"(n+1iu)=u(niu) (3.2)

for the scalar products (n Iu). We immediately find from
the recursion relation that

Cg Qlc QIe =ST (2.18)

K&+&(rt) =i Q (2A(ug)'"atul, (r)e '""' (2.19)

The eigenvalue functions f, (rt) defined by Eq. (2.2)
must clea, rly satisfy the Maxwell equations, just as the
operator K'+'(rt) does. They therefore possess an
expansion in normal modes similar to Eq. (2.19). In
other words we may introduce a set of c-number Fourier
coefficients nI, which permit us to write the eigenva, lue
function as

S(rt)=i+ (-,'fsa&i)'t'u„u, .(r)e '"". (2.20)

With these preliminaries completed we are now ready
to discuss the coherent states of the Geld in greater
detail. The expansion (2.10) for the vector potential
exhibits its positive frequency part as the sum contain-
ing the photon annihilation operators aA, and its negative
frequency part as that involving the creation operators
aI,t. The positive frequency part of the electric field
operator is thus given, according to (2.10), by

( I
)= (oI )(n!)'"

(3.3)

Ã no.

= (Oiu) Q In).
(n!)'"

The squared length of the vector Iu) is thus

Iui2n

(3.4)

(3.5)

If the state Iu) is normalized so that (u Iu)= 1 we may
evidently dehne its phase by choosing

These scalar products are the expansion coefFicients of
the state Iu) in terms of the complete orthonormal set
In) (n=O, 1, ~ ). We thus have

(Oiu)=e —l~ ~'. (3.6)
Since the mode functions ui(r) form an orthogonal set,
it then follows that the eigenstate

I ) for the field obeys
the infinite succession of relations

The coherent states of the oscillator therefore take the
forms

(2.21)

for all modes k. To find the states which satisfy these
relations we seek states, Iui)I„of the individual modes
which individually obey the relations

and

Iu)=e l~ ~'Q In)
n (n!)'t'

(3 7)

(3 g)

(2.22)

The coherent states
I ) of the field, considered as a

whole, are then seen to be direct products of the
individual sta tes

I
uI, ),

These forms show that the average occupation number
of the mth state is given by a Poisson distribution with
mean value Iui',

(2.23)
I(niu)i'= e-& ~'. (3 9)

III. COHERENT STATES OF A SINGLE MODE

The next few sections will be devoted to discussing
the description of a single mode oscillator. We may
therefore simplify the notation a bit by dropping the
mode index k as a subscript to the state vector and to
the amplitude parameters and operators. To find the
oscillator state Iu) which satisfies

(3.1)

They also show that the coherent state Iu) correspond-
ing to o.=0 is the unique ground state of the oscillator,
i.e., the state In) for n=O.

An alternative approach to the coherent states will
also prove quite useful in the work to follow. For this
purpose we assume that there exists a unitary operator
D which acts as a displacement operator upon the
amplitudes ct and a. We let D be a function of a complex
parameter P, and require that it displace the amplitude
operators according to the scheme

we begin by taking the scalar product of both sides of
the equation with the nth excited state, (ni. By using
the Hermitian adjoint form of the relation (2.17), we

D '(P)aD(t3) =a+I,
D '(P) a'D(tt) =a'+&*

(3.10)

(3 11)
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Then if Iu) obeys Eq. (3.1), it follows that D '(p) iu) is
an eigenstate of a corresponding to the eigenvalue u —p,

the product
D (u) e

—', [a[seaate a—'a (3.21)

aD-'(p)iu) = (u —p)D '(p) Iu). (3.12)

In particular, if we choose p=u, we find

aD—'(u) iu)=0.

Since the ground state of the oscillator is uniquely
defined by the relation (2.14), it follows that. D '(u) Iu)
is just the ground state, IO). The coherent states, in
other words, are just displaced forms of the ground
state of the oscillator,

Iu) =D(u)
I
0). (3.13)

Products of this type, which have been ordered so that
the annihilation operators all stand to the right of the
creation operators, will be said to be in normal form.
Their convenience is indicated by the fact that the
exponential expi —u'a], when applied to the ground
state

I 0), reduces in effect to unity, i.e., we have

(3.22)

since the exponential may be expand. ed in series and
the definition (2.14) of the ground state applied. It
follows then that the coherent states may be written as

To find an explicit form for the displacement operator
D(u), we begin by considering infinitesimal displace-
ments in the neighborhood of D(0) =1. For arbitrary
displacements do. , we see easily from the commutation
rules (2.13) that D(du) may be chosen to have the form

D(du) =1+utdu adu*, — (3 14)

Iu&=D(u)
I
o

= e '[a['eaat
I
0)

(uat) n,

=e—l[ ['Q I0)
rs!

(3.23)

(3.24)

which holds to first order in dn. To formulate a simple
differential equation obeyed by the unknown operator
we consider increments of n of the form da=udX where
X is a real parameter. Then if we assume the operators D
to possess the group multiplication property

D(uP.+d~)) =D(udge )D(uz),

we find the differential equation

(3.15)

—D (uX) = (uat —u*a)D(u),),
A.

(3.16)

Lle, $],0.]=LL8„$],$]=0,
it may be shown4 that

(3 19)

exp(8) exp($) =exp(S+$+-',
I 8,$]). (3.20)

If we write S=ut and S=a, this theorem permits us
to resolve the exponential D(u) give'n by Eq. (3.17) into

4 A. Messiah, Qnantnnr Mechanics (North-Holland Publishing
Company, Amsterdam, 1961), Vol. I, p. 442.

whose solution, evaluated for ) = 1, is the unitary
operator

D(u) eaat
—aaa (3.17)

The coherent states Iu) may therefore be written in the
form

iu) =e-t-a*a
I 0) (3.18)

which is correctly normalized since D(u) is unitary.
It is interesting to discuss the relationship between

the two forms we have derived for the coherent states.
For this purpose we invoke a simple theorem on the
multiplication of exponential functions of operators.
If 8 and. S are any two operators, whose commutator

I 8,$] commutes with each of them,

Since the excited states of the oscillator are given by
In)= (I!) '~'(at)" IO), we have once again derived the
expression

iu) =- e *[ [' P —II).
n g, !

q= (h/2')'I'(at+ a), (3.25a)

p=s(hee/2)' '(a —a) ( .25b)

To find the expectation value of q and p in the coherent
states we need only use Eq. (3.1), which defines these
states, and its corresponding Hermitian adjoint form.
We have then

q lu) = (2h/co)'~' Re u,

(u I p I u) = (2hee) '~s Im u,

(3.26a)

(3.26b)

where Re o. and Imn stand for the real and imaginary
parts of u.

To find the wave functions for the coherent states,
we write the defining equation (3.1) in the form

(2ho~) 'i'((uq+ip) in) =urn), (3.27)

and take the scalar product of both members with the
conjugate state (q'I, which corresponds to the eigen-
value q' for q. Since the momentum may be represented
by a derivative operator, i.e., (q'I p= —ih(d/dq')(q'I, we
find that the coordinate space wave function, (q'Iu),

It may help in visualizing the coherent states if we
discuss the form they take in coordinate space and in
momentum space. We therefore introduce a pair of
Hermitian operators q and p to represent, respectively,
the coordinate of the mode oscillator and its momentum.
These operators, which must satisfy the canonical
commutation relation, I q,p]=ih, may be defined for
our purposes by the familiar expressions
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obeys the differential equation

, (v'l~)= —2 —
I

—
I

v' —~ (v'I~& (328)
dq' 2&i 2Ai

The equation may be integrated immediately to yield
a solution for the wave function which, in normalized
form, is

(q' In) = (oi/1rh)'" exp( —
L (ce/2A)'"q' —n7') (3.29)

An analogous argument furnishes the momentum space
wave function. If we take the scalar product of Eq.
(3.27) with a momentum eigenstate (p'I, and use the
relation (p'Iq=t'A(8/Bp')(p'I, we reach a differential
equation whose normalized solution is

(p'
I n& = (rrfio1) '1' exp( —

f (2fioi) '1'p'+in)'} (3 30)

Both of these wave functions are simply displaced
forms of the ground-state wave function of theoscillator.
The parameters (A/o1)'1s and (hei)'1' correspond to the
amplitudes of the zero-point fluctuations of the coordi-
nate and momentum, respectively, for an oscillator of
unit mass. The fact that the wave functions for the
coherent states have this elementary structure shouM
be no surprise in view of the way they are generated in
Eq. (3.13), by means of displacements in the complex
0, plane.

The time-independent states
I u) which we have been

describing are those characteristic of the Heisenberg
picture of quantum mechanics. The Schrodinger
picture, alternatively, would make use of the time-
dependent states exp( —sHt/A) ln). If we omit the zero-
point energy ~Ace from the oscillator Hamiltonian and
write II=Sonata, it is then clear from the expansion (3.7)
for la) that the corresponding Schrodinger state takes
the same form with 0. replaced by O.e '"' We may thus
write the Schrodinger state as

I
ae '"'). With the substi-

tution of ne '"' for n in Eqs. (3.26a) and (3.26b), we see
that the expectation values of the coordinate and
momentum carry out a simple harmonic motion with
coordinate amplitude (2A/o1)'1'

I
n

I
. The same sub-

stitutions in the wave functions (3.29) and (3.30) show
that the Gaussian probability densities characteristic of
the ground state of the oscillator are simply carried back
and forth in the same motion as the expectation values.
Such wave packets are, of course, quite familiar; they
were introduced to quantum mechanics at a very early
stage by SchrOdinger, ' and have often been used to
illustrate the way in which the behavior of the oscillator
approaches the classical limit.

Another connection in which the wave packets (3.29)
and (3.30) have been discussed in the past has to do
with the particular way in which they localize the
coordinate q' and the momentum p'. Wave packets can,

'E. Schrodinger, Natnrwissenschaften 14, 664 (1926). For a
more recent treatment see L. I. Schiff, QNantum 3fecharucs
(McGraw-Hill Book Company, Inc. , New York, 1955), 2nd ed. ,
p. 67.

of course, be found which localize either variable more
sharply, but only at the expense of the localization of
the other. There is a sense in which the wave packets
(3.29) and (3.30) furnish a unique compromise; they
minimize the product of the uncertainties of the
variables q' and p'. If we represent expectation values
by means of the angular bracket;s ( ) and define the
variances

(~~)'= (ri'& —4&' (3.31a)

(~p) =(p )-(p), (3.31b)

we find, for the wave functions (3.29) and (3.30), that
the product of the variances is

(hp)'(hq)'= sr-A'.

According to the uncertainty principle, this is the
minimum value such a product can have. There thus
exists a particular sense in which the description of an
oscillator by means of the wave functions (3.29) and
(3.30) represents as close an approach to classical
localization as is possible.

The uses we shall make of the coherent states in
quantum electrodynamics will not, in fact, require the
explicit introduction of coordinate or momentum
variables. We have reviewed the familiar representa-
tions of the coherent states in terms of these variables
in the hope that they may be of some help in under-
standing the various applications of the states which
we shall shortly undertake.

One property of the states
I
rr& which is made clear by

the wave-function representations is that two such
states are not, in general, orthogonal to one another. If
we consider, for example, the wave functions (q' In& and
(q'ln'& for values of n' close to n, it is evident that the
functions are similar in form and overlap one another
appreciably. For values of e' quite different from 0.,
however, the overlap is at most quite small. We may
therefore expect that the scalar product (nlu'&, which
is unity for n'=n, will tend to d.ecrease in absolute
magnitude as n' and o. recede from one another in the
complex plane. The scalar product may, in fact, be
calculated. more simply than by using wave functions if
we employ the representations (3.7) and (3.8). We then
find

(&*)npm

(nfP&=e-l~ ~'—ate~' P (1sl111&,
~,m (1Z !111I) I

which, in view of the orthonormality of the
I 11) states,

reduces to

(~IP)=exp(~*P—s l~l' —s IPI') (3 32)

The absolute magnitude of the scalar product is given
by

1(~I&&I'=exp( —l~—PI'), (333)
W. Heisenberg, The Physical Prince/es of the Quanta Theory

(University of Chicago Press, Chicago, 1930, reprinted by Dover
Publications, Inc. , New York, 1930), pp. 16-19.



2772 ROY J. GLAUBER

which shows that the coherent states tend to become
approximately orthogonal for values of n and P which
are suKciently different. The fact that these states are
not even approximately orthogonal for Iu —PI of order
unity may be regarded as an expression of the overlap
caused by the presence of the displaced zero-point
fluctuations.

Since the coherent states do not form an orthogonal
set, they appear to have received little attention as a
possible system of basis vectors for the expansion of
arbitrary states. ~ We shall show in the following section
that such expansions can be carried out conveniently
and uniquely and that they possess exceedingly useful
properties. In later sections we shall, by generalizing
the procedure to deal with bilinear combinations of
states In) and (pi, develop analogous expansions for
operators' as well.

d'u= d(Re u)d(Im n) (4.1)

(i.e., d'n is real). If we write n= In i
e'e, we may easily

prove the integral identity

(n*)"n"e—
~ ~'d'n

ini "'+ +'e— 'dini

= arm Ib„ (4 2)

in which the integration is carried out, as indicated,
over the entire area of the complex plane. With the aid
of this identity and the expansions (3.7,8) for the
coherent states, we may immediately show

In)(nid'n=n-P in&(mi.

IV. EXPANSION OF ARBITRARY STATES IN
TERMS OF COHERENT STATES

While orthogonality is a convenient property for a
set of basis states it. is not a necessary one. The essential
property of such a set is that it be complete. The set of
coherent states Iu) for a mode oscillator can be shown
without difficulty to form a complete set. To give a
proof we need only demonstrate that the unit operator
may be expressed as a suitable sum or an integral, over
the complex o. plane, of projection operators of the
form In)(ni. In order to describe such integrals we
introduce the differential element of area in the n plane

piete orthonormal set, the indicated sum over e is
simply the unit operator. We have thus shown'

In)(ni d'n=1, (4.3)

which is a completeness relation for the coherent states
of precisely the type desired.

An arbitrary state of an oscillator must possess an
expansion in terms of the m-quantum states of the form

(4.4)

where Q Ic I'=1. The series which occurs in Eq. (4.4)
may be used to define a function f of a complex vari-
able s,

f(s) =2 c-
(~ l)r/2

(4.5)

If)=f(~') Io) (4.6)

To secure the expansion of
I f) in terms of the states

In), we multiply I f) by the representation (4.3) of the
unit operator. We then find

It is cI.ear from the normalization condition on the c„
that this series converges for all finite s, and thus
represents a function which is analytic throughout the
finite complex plane. We shall speak of the functions
f(s) for which Q I

c„i'=1 as the set of normalized entire
functions. There is evidently a one-to-one correspond-
ence which exists between such entire functions and
the states of the oscillator. One way of approaching the
description of the oscillator is to regard the functions
f(s) themselves as the elements of a Hilbert space. The
properties of this space and of expansions carried out
in it have been studied in some detail by Segal' and
Sargmann. ' The method we shall use for expanding
arbitrary states in terms of the coherent states has been
developed as a simple generalization of the usual method
for carrying out changes of basis states in quantum
mechanics. It is evidently equivalent, however, to one
of the expansions stated by Bargmann.

If we designate the arbitrary state which corresponds
to the function f(s) by I f), then we may rewrite
Eq. (4.4) as

Since the e-quantum states are known to form a com- I
f&=- In)(nI f(~')

I
o)&'n

' Uses of these states as generating functions for the m-quantum
states have, however, been made by J. Schwinger, Phys. Rev. 91,
728 (1953).

I. E. Segal, Illinois J. Math. 6, 520 (1962).' V. Bargmann, Commun. Pure and Appl. Math. 14, 187 (1961);
Proc. Natl. Acad. Sci. U. S. 48, 199 (1962).
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If we use this expression for T to calculate the matrix
element which connects the two coherent states (n I

and

(pl we find

(~l2'lP)= 2 2' (~!~!) '"(~*)"P"(~l0)(0IP) (53)

The expansion function for the operator Tt, the
Hermitian adjoint of T, is obtained by substituting
T „' for T„ in Eq. (5.4). It is given by P"(P*,n)$*. If
the operator T is Hermitian the function V'must satisfy
the identity

~( ',p) =L~(p', )3',
It is evidently convenient to define a function E(n*,p) as since the expansions of 2' and P are unique.

(5.10)

~(.',P) = Z 7'.-( t l)-'~'(.')"P". (5.4) The functions 0"(n*,P) which represent normal
products of the operators at and a such as (at)" a~ are
immediately seen from Eqs. (5.7) and (3.32) to be

The operators which occur in quantum mechanics are
often unbounded ones such as those of Eqs. (2.16)—
(2.18). Those operators and the others we are apt to
encounter have the property that the magnitudes of the
matrix elements T„are dominated by an expression
of the form Me&m~ for some fixed positive values of 3f,
j, and k. It then follows that the double series (5.4)
converges throughout the finite n" and p planes and
represents an entire function of both variables.

To secure the expansion of the operator T in terms of
the coherent states, we may use the representation (4.3)
of the unit operator to write

(5.11)&(~*,p) = (~') "p"expl:~'pl

In particular, the unit operator corresponds to n =m =0.
It may be worth noting at this point that many of

the foregoing formulas can be abbreviated somewhat
by adopting a normalization different from the con-
ventional one for the coherent states. If we introduce
the symbol lln) for the states normalized in the new way
and define these as

flo, &= la)e&~ "~', (5.12)

1
I &( I2'I p&&pld'-d'p,

7r'
(5.13)

then we may write the scalar product of two such
states as (nllP). We see from Eq. (3.32) that this scalar

(5 5) product is

1
l~&r(~*,P)&PI&&lo&&olP&d ~d P,

7r2

We may next, following Bargmann, ' introduce an
element of measure dp(n) which is de6ned as

1
l~) &(a* p)&pl exp( —-'Io, l' —-'Ipl'}d'nd'p.

7r2

dy, (n) =—e ~~~'d'n. (5.14)

(5.6)

The inversion of this expansion, or the solution for
9'(a*,P), is accomplished by the same method we used
to invert Eq. (4.7) and secure the amplitude function
(4.11).The result of the inversion is

~(~*,p) = &~ I
T

I p& exp(2 l~ I'+2'
I p I'} (5.7)

YVe see, thus, that the expansion of operators, as well as
of arbitrary quantum states, in terms of the coherent
states is a unique one.

The law of operator multiplication is easily expressed
in terms of the functions K If T= TjT2 and K~ and E2
are the functions appropriate to the latter two operators,
we note that

&~12'I p&= &~ I

2' 2'
I p&

With these alterations, all of the Gaussian functions,
and factors of x, in the preceding formulas become
absorbed, as it were, into the notation. The Eqs. (5.6)
and (5.7), for example, reduce to the briefer forms

(5.15)

~(~' p) = &~ll2'lip&. (5.16)

(5.17)

and thus obey the relation

A more significant property of the states IIu) is that
they are given by the expansion

&~I2' Iv&&VI2' Ip&d'v. (5 8)
(5.18)

The function f' which represents the product is there-
fore given by

1
~(-,p) =- n(-",~) ~.(~,p&e 'd ~. —

While the properties of the alternatively normalized
states lln& are worth bearing in mind, we have chosen
not to adopt this normalization in the present paper in
order to retain the more conventional interpretation of
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scalar products as probability amplitudes. The advan-
tage afforded by the relation (5.18) is not a great one
since all of the operators we shall have to deal with are
either already in normally ordered form, or easily so
ordered.

VI. GENERAL PROPERTIES OF THE
DENSITY OPERATOR

The formalism we have developed in the two preced-
ing sections has been intended to provide a background
for the expression of the density operator of a mode in
terms of the vectors that represent coherent states.
Viewed in mathematical terms, the use of the coherent
state vectors in this way leads to considerable simplifica-
tion in the calculation of statistical averages. The fact
that these states are eigenstates of the field operators
E&+i(rt) means that normally ordered products of the
field operators, when they are to be averaged, may be
replaced by the products of their eigenvalues, i.e.,
treated not as operators, but as numbers. The field
correlation functions such as G"i given by Eq. (2.1) are
averages of just such operator products. Their evalua-
tion may be carried out quite conveniently through use
of the representations we shall discuss.

Any density operator p may, according to the methods
of the preceding section, be represented in a unique
way by means of a function of two complex variables,
R(n",P), which is analytic throughout the finite n* and
P planes. The function R is given explicitly, by means
of Eq. (5.7), as

R(n'P) =(nl plP) expl llal'+lIPI'3 (6 1)

If we happen to know the matrix representation of p in
the basis formed by the m-quantum states, the function
E is evidently given by

If 7 is any operator of the form (at) "a", its representa-
tion V(P*,'n) is given by Eq. (5.11). In particular for
m=m=0, we have the unit operator T=1 which is
represented by V'(P', n)=expDI*n]. Hence, the trace of

p itself, which must be normalized to unity, is

trp= 1

R(n*,p) expDI* —
I

I' —
I
pl'gd'nd'p.

7r2

Since R(n', P) is an entire function of n", we may use
Eq. (4.10) to carry out the integration over the n plane.
In this way we see that the normalization condition
on Ris

1
R(P' P)e I Pl'd2P= —

1 (6.6)

The density operator is Hermitian and hence has real
eigenvalues. These eigenvalues may be interpreted as
probabilities and so must be positive numbers. Since p
is thus a positive definite operator, its expectation value
in any state, e.g. , the state

I f) defined by Eq. (4.6),
must be non-negative,

The statistical average of an operator T is given by the
trace of the product pT. If we calculate this average by
using the representation (6.4) for p we must note that
the trace of the expression ln)(pl T, regarded as an
operator, is the matrix element (pl Tln). Then, if we
express the matrix element in terms of the function
9'(a",P) defined by Eq. (5.7) we find

1
tr (pT) =— R(n', P) V(P'')n)e l~l e 'd'nd'P .(6.5)

7r2

R(n*,P)= P (el pin)(m!m!)-'~'(n*)"P". (6.2) Ul p I
f)&o (6.7)

If we do not know the matrix elements (N
I p I m) they

may be found quite simply from a knowledge of
R(n', p). One method for finding them is to consider
R(a*,P) as a generating function and identify its Taylor
series with the series (6.2). A second method is to note
that if we multiply Eq. (6.2) by n'(p')&'expL —(lnl'
+ I p I

')$ and integrate over the n and p planes, then all
terms save that for @=iand m=j vanish in the sum on
the right and we have

1
(il pl g)=— R(n* p) (i lj 1) i/2n&(p*)le (l&l~+Iplmid2nd2p

X2

(6 5)

Given the knowledge of R(n', p), we may write the
density operator as

1
p= — In)R(a', P)(P I

e I&l~l'+l~l'&d'nd'P (6.4)
$.2 .

R(n*,n) &0. (6.8)

If we let the state
I f) be specified as in Eq. (4.7) by an

entire function f(n*), then we find from the inequality
(6.7) the more general condition for positive definiteness

Cf(-')7f(P')R( P)e--l'-lel'd-d P&0, (6.»

which must hold for all entire functions f
In many types of physical experiments, particularly

those dealing with fields which oscillate at extremely
high frequencies, we cannot be said to have any a priori
knowledge of the time-dependent parameters. The
predictions we make in such circumstances are un-
changed by displacements in time. They may be derived
from a density operator which is stationary, that is, one

If, for example, we choose the state
I f) to be a coherent

state ln) we find that the function R, which is given by
Eq. (6.1), satisfies the inequality
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VII. THE P REPRESENTATION OF THE
DENSITY OPERATOR

In the preceding sections we have demonstrated the
generality of the use of the coherent states as a basis.
Not all fieMs require for their description density
operators of quite so general a form. Indeed for a broad
class of radiation fields which includes, as we shall see,
virtually all of those studied in optics, it becomes
possible to reduce the density operator to a considerably
simpler form. This form is one which brings to light
many similarities between quantum electrodynamical
calculations and the corresponding classical ones. Its
use offers deep insights into the reasons why some of the
fundamental laws of optics, such as those for super-
position of fields and calculation of the resul ting
intensities, are the same as in classical theory, even
when very few quanta are involved. We shall continue,
for the present, to limit consideration to a single mode
of the field.

One type of oscillator state which interests us
particularly is, of course, a coherent state. The density
operator for a pure state Ia) is just the projection
operator

p= Ia) (aI. (7.1)

The unique representation of this operator as a function
'R(P*,y) is easily shown, from Eq. (6.1), to be

R (P',y) = expD3*a+ ya"
I
a

I
'3. —(7.2)

Other functions R(P',y), which satisfy the analyticity
requirements necessary for the representations of
density operators, may be constructed by forming linear
combinations of exponentials such as (7.2) for various
values of the complex parameter n. The functions R,
which we form in this way, represent statistical mix-
tures of the coherent states. The most general such

which commutes with the Hamiltonian operator or,
more simply, with a~a. The necessary and sufhcient
condition that a function R(a*,P) correspond to a
stationary density operator is that it depend only on
the product of its two variables, a*P. There must, in
other words, exist an analytic function 8 such that

(6.10)

That this condition is a sufFicient one is clear from the
invariance of R under the multiplication of both n and

P by a phase factor, e'&. The condition may be derived as
a necessary one directly from the vanishing of the
commutator of p with a~a. An alternative and perhaps
simpler way of seeing the result depends on noting that
a stationary p can only be a function of the Hamiltonian
for the mode, or of a~a. It is therefore diagonal in the
basis formed by the n-quantum states, i.e., (nIpIm)
= 8„(ts

I p I tt) Exami. nation of the series expansion (6.2)
for R then shows that it then takes the form of Eq.
(6.10).

function R may be written as

R(P",y) = P(a) exp[j9"a+pa
I
a I'3d'a (7 3)

where P(a) is a weight function defined at all points of
the complex a plane. Since R(P*,p) must satisfy the
Hermiticity condition, Eq. (5.10), we require that the
weight function be real-valued, i.e., fP(a))*=P(a).The
function P(a) need not be subject to any regularity
conditions, but its singularities must be integrable
ones. " It is convenient to allow P(a) to have delta-
function singularities so that we may think of a pure
coherent state as represented by a special case of
Eq. (7.3).A real-valued two-dimensional delta function
which is suited to this purpose may be defined as

8 t't (a) = 8 (Re a)5 (Im a) . (7.4)

p= P(a) Ia)(a I
d'a. (7.6)

It is the kind of operator we might naturally be led to
if we were given knowledge that the oscillator is in a
coherent state, but one which corresponds to an un-
known eigenvalue a. The function P(a) might then be
thought of as playing a role analogous to a probability
density for the distribution of values of n over the
complex plane. " Such an interpretation may, as we
shall see, be justified at times. In general, however, it is
not possible to interpret the function P(a) as a proba-
bility distribution in any precise way since the projec-
tion operators Ia)(a I

with which it is associated are not
orthogonal to one another for diferent values of n.
There is an approximate sense, as we have noted in
connection with Eq. (3.33), in which two states Ia)
and Ia') may be said to become orthogonal to one
another for Ia —a'I))1, i.e., when their wave packets
(3.29) and those of the form (3.30) do not appreciably
overlap. When the function P(a) tends to vary little
over such large ranges of the parameter n, the non-
orthogonality of the coherent states will make little
difference, and P(a) will then be interpretable approxi-
mately as a probability density. The functions P(a)

"If the singularities of P(a) are of types stronger than those of
delta functions, e.g., derivatives of delta functions, the Geld
represented will have no classical analog.

"The existence of this form for the density operator has also
been observed by E. C. G. Sudarshan, Phys. Rev. Letters 10, 277
(1963).His note is discussed brieQy at the end of Sec. X.

The pure coherent state IP) is then evidently described
by

P(a) =St'&(a—P) (7 5)

and the ground state of the oscillator is specified by
setting P=O.

The density operator p which corresponds to Eq. (7.3)
is just a superposition of the projection operators (7.1),
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which vary this slowly will, in general, be associated
with strong fields, ones which may be described approxi-
mately in classical terms.

We shall call the expression (7.6) for the density
operator the P representation in order to distinguish it
from the more general form based on the functions R
discussed earlier. The normalization property of the
density operator requires that P (n) obey the normaliza-

tion condition

trp= P(n)d'n=1.

It is interesting to examine the conditions that the
positive definiteness of p places upon P(n). If we apply
the condition (6.9) to the function R(p*,&) given by
Eq. (7.3) we find

Lf(p*)7f(~*»(~) expÃ~+~~* —
I
~ I' —

I p I'—
I ~ I'j

Xd'ad'pd'y& 0 (7.8.)

The p integration may be carried out via Eq. (4.10) and
the p integration by means of its complex conjugate.
We then have the condition that

If(n*)I'P(n)e i~i' dn& 0 (7.9)

must hold for all entire functions f(n*) In partic.ular,
the choice f(n*) = exp[j9n* ',

I p I—'] -leads to the simple
condition

P(n)e-~ ~'df'n&0, (7.10)

"An example of a weight function P (n) which takes on negative
values but leads to a positive-definite density operator is given by
the form

P(n) = (1+X)(ma) ' expL —~n ('/lg —M&'&(n)

for e&0 and 0&X&n '. The matrix representation of the corre-
sponding density operator, which is given by Eq. (7.12), is seen
to be diagonal and to have only positive eigenvalues.

'4 A familiar example of a function which plays a role analogous
to that of a probability density, but may take on negative values
in quantum-mechanical contexts is the Wigner distribution
function, E. P. Wigner, Phys. Rev. 40, 749 (1932),

which must hold for all complex values of P. It corre-
sponds to the requirement (p I p I

p)&0. These conditions
are immediately satisfied if P(a) is positive valued as it
would be, were it a probability density. They are not
strong enough, however, to exclude the possibility that
P(n) takes on negative values over some suitably
restricted regions of the plane. " This result serves to
underscore the fact that the weight function P(n) can-
not, in general, be interpreted as a probability density. "

H a density operator is specified by means of the P
representation, its matrix elements connecting the e-

quantum states are given by

When Eqs. (3.3) and (3.6) are used to evaluate the
scalar products in the integrand we find

(I I p I m) = (I tris!) 'I'-P (n)n" (rr*. )"e—
i ~i'd'n. (7.12)

This form for the density matrix indicates a funda-

mental property of the fields which are most naturally
described by means of the P representation. If P(n) is

a weight function with singularities no stronger than
those of delta function type, it will, in general, possess
nonvanishing complex moments of arbitrarily high
order. )The unique exception is the choice P (a) = 8"& (n)
which corresponds to the ground state of the mode. $ It
follows then that the diagonal matrix elements (e I p In),
which represent the probabilities for the presence of e
photons in the mode, take on nonvanishing values for
arbitrarily large e. There is thus no upper bound to the
number of photons present when the function P is well

behaved in the sense we have noted. "
Stationary density operators correspond in the P

representation to functions P(n) which depend only
on In I.This correspondence is made clear by Eq. P.2)
which shows that such P(cr) lead to functions R(P*,y)
which are unaltered by a common phase change of p
and y. It is seen equally well through Eq. (7.12) which

shows that (e I pI no) reduces to diagonal form when the
weight function P(rr) is circularly symmetric.

Some indication of the importance, in practical
terms, of the P representation for the density operator
can be found by considering the way in which photon
fields produced by different sources become superposed.
Since we are only discussing the behavior of one mode
of the field for the present, we are only dealing with a
fragment of the full problem, but all the modes may
eventually be treated similarly. We shall illustrate the
superposition law by assuming there are two diGerent

transient radiation sources coupled to the 6eld mode
and that they may be switched on and off separately.
The first source will be assumed, when it is turned on
alone at time t~, to excite the mode from its ground,

state IO) to the coherent state Io.i). If we assume that
the source has ceased radiating by a time t2, the state of
the field remains Iui) for all later times. We may
alternatively consider the case in which the first source
remains inactive and the second one is switched on at

'~ Density operators for fields in which the number of photons
present possesses an upper bound E are represented by functions
R(P*,p) which are polynomials of Nth degree in P* and in p. It is
evident from the behavior of such polynomials for large ~P ~

and
~v ~

that any weight function P(o) which corresponds to R(P~,y)
through Eq. (7.2) would have to have singularities much stronger
than those of a delta function. Such fields are probably represented
rebore conveniently by means of the R functioI)I. ,
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time t2. The second source will then be assumed to
bring the mode from its ground state to the coherent
state ~n2). We now ask what state the mode will be
brought to if the two sources are allowed to act in
succession, the first at I~ and the second at t2.

The answer for this simple case may be seen without
performing any detailed calculations by making use of
the unitary displacement operators described in Sec.
III. The action of the first source is represented by the
unitary operator D(ni) which displaces the oscillator
state from the ground state to the coherent state

~
ni) =D (ni)

~
0). The action of the second source is

evidently represented by the displacement operator
D (n2), so that when it is turned on after the first source,
it brings the oscillator to the superposed state

)= D (n,)D(n,) i 0) . (7.13)

Pi(ai)
I ai)(ni I

d'ai. (7.16)

The condition produced by the second source, when it
acts alone, is assumed to be represented by

P ( ) I

P2(a2)D(a2)
~
0)(0~ D '(a2)d'n&.

Since the displacement operators are of the exponen-
tial form (3.17), their multiplication law is given by
Eq. (3.20). We thus find

D (n2)D (n,) =D (n,+n, ) expL-,' (n~a,
*—n2"ni) j. (7.14)

The exponential which has been separated from the D
operators in this relation has a purely imaginary
argument and, hence, corresponds to a phase factor. The
superposed state, (7.13), in other words, is just the
coherent state ~ni+n~) multiplied by a phase factor.
The phase factor has no influence upon the density
operator for the superposed state, which is

p =
~
ni+n2)(ni+n2 (

. (7.15)

To vary the way in which the sources are turned on in
the imaginary experiment we have described, e.g. , to
turn the two sources on at other times or in the reverse
order, wouM only alter the final state through a phase
factor and would thus lead to the same final density
operator. The amplitudes of successive coherent
excitations of the mode add as complex numbers in
quantum theory, just as they do in classical theory.

Let us suppose next that the sources in the same
experiment are somewhat less ideal and that, instead of
exciting the mode to pure coherent states, they excite
it to conditions described by mixtures of coherent states
of the form (7.6). The first source acting alone, we
assume, brings the field to a condition described by the
density operator

If the second source is turned on after the 6rst, it brings
the 6eld to a condition described by the density operator

p P2(a2)D(a2)plD (n2)~ n2 y

P2 (n2)Pl (ni)
~
ai+ng) (ai+n2

~

d'aid'n2 ~ (7.17)

The latter density operator may be written in the
general form

p= P(n) in)(ni d'n,

if we de6ne the weight function P (n) for the superposed
excitations to be

P(a) ~ (a ai n2)P1(al)P2(n2)d aid a2 rr (7.18)

Pi(n —n')P2 (n')d'n'. (7.19)

n= aP (n)d'n (7.20)

It is clear from Eq. (7.19) that any such f eld may be
regarded as the sum of a pure coherent field which
corresponds to the weight function bi2& (n —n) and an
additional field represented by P (n+n) for which the
mean value of n vanishes. Fields with vanishing mean
values of n will be referred to as unphased fields.

The use of the P representation of the density
operator, where it is not too singular, leads to simpli6ca-
tions in the calculation of statistical averages which go
somewhat beyond those discussed in the last section.
Thus, for example, the statistical average of any
normally ordered product of the creation and annihila-
tion operators, such as (at) "a", reduces to a simple
average of (n*)"n taken with respect to the weight

We see immediately from Eq. (7.18) that P is correctly
normalized if E~ and P2 are. The simple convolution
law for combining the weight functions is one of the
unique features of the description of fields by means of
the P representation. It is quite analogous to the law
we would use in classical theory to describe the proba-
bility distribution of the sum of two uncertain Fourier
amplitudes for a mode.

The convolution theorem can often be used to
separate fields into component fields with simpler
properties. Suppose we have a field described by a
weight function P(n) which has a mean value of n given
by
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function P(n), i.e., we have

tr{p(a') "a }= P(n)(a~ (a') "a"~a)d'n,

P (n) (u*)"n"d'n. (7.21)

This identity means, in practice, that many quantum-
mechanical calculations can be carried out by means
which are analogous to those already familiar from
classical theory.

The mean number of photons which are present in a
mode is the most elementary measure of the intensity
of its excitation. The operator which represents the
number of photons present is seen from Eq. (2.18) to
be ata. The average photon number, written as (e), is
therefore given by

as an eigenvalue, then we see from Eq. (2.20) that the
appropriate value of n has a magnitude which is
proportional to 5 '". In the dimensionless terms in
which n is defined, the classical description of the mode
only applies to the region ~u~))1 of the complex n
plane, i.e., to amplitudes of oscillation which are large
compared with the range of the zero-point fluctuations
present in the wave packet (3.29) and (3.30). Classical
theory can therefore, in principle, only furnish us with
the grossest sort of information about the weight
function P(n). When the weight function extends
appreciably into the classical regions of the plane,
classical theory can only be relied upon, crudely speak-
ing, to tell us average values of the function P(n) over
areas whose dimensions, ~hu~, are of order unity or
larger. From Eq. (7.10) we see that such average values
will always be positive; in the classical limit they may
always be interpreted as probabilities.

(e)= tr{pa"a}. (7.22) VIII. THE GAUSSIAN DENSITY OPERATOR

According to Eq. (7.21), with its two exponents set
equal to unity, we have

(~)= P(n) (n('d', (7.23)

i.e., the average photon number is just the mean squared
absolute value of the amplitude n. When two fields
described by distributions P& and P2 are superposed,
the resulting intensities are found from rules of the form
which have always been used in classical electromag-
netic theory. For unphased fields the intensities add
"incoherently"; for coherent states the amplitudes add
"coherently. "

The use of the P representation of the density
operator in describing fields brings many of the results
of quantum electrodynamics into forms similar to those
of classical theory. While these similarities make
applications of the correspondence principle particularly
clear, they must not be interpreted as indicating that
classical theory is any sort of adequate substitute for
the quantum theory. The weight functions P(n) which
occur in quantum theoretical applications are not
accurately interpretable as probability distributions,
nor are they derivable as a rule from classical treatments
of the radiation sources. They depend upon Planck's
constant, in general, in ways that are unfathomable by
classical or semiclassical analysis.

Since a number of calculations having to do with
photon statistics have been carried out in the past by
essentially classical methods, it may be helpful to
discuss the relation between the P representation and
the classical theory a bit further. It is worth noting in
particular that the definition we have given the ampli-
tude a as an eigenvalue of the annihilation operator is
an intrinsically quantum-mechanical one. If we wish to
represent a given classical Geld amplitude for the mode

(8.1)

Since the weight functions which appear in this
expression are all real valued, it is sometimes convenient
to think of the amplitudes n in their arguments not as
complex numbers, but as two-dimensional real vectors e
(i.e., n, =Reu, n„=Imu). Then if X is an arbitrary
complex number represented by the vector 2, we may
use a two-dimensional scalar product for the abbrevia-
tion

Re X Re a+Im X Im n =n 0 . (8.2)

Using this notation, we may define the two-dimensional
Fourier transform of the weight function p(n) as

p(X) = exp(zX n) p(n)d'n. (8.3)

The Gaussian function is a venerable statistical
distribution, familiar from countless occurrences in
classical statistics. We shall indicate in this section that
it has its place in quantum field theory as well, where
it furnishes the natural description of the most com-
monly occurring type of incoherence. '

Iet us assume that the field mode we are studying is
coupled to a number of sources which are essentially
similar but are statistically independent of one another
in their behavior. Such sources might, in practice,
simply be several hypothetical subdivisions of one large
source. If we may represent the contribution of each
source (numbered j= 1, Ã) to the excitation of the
mode by means of a weight function p (n, ), we may then
construct the weight function P(n) which describes the
superposed fields by means of the generalized form of
the convolution theorem
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The superposition law (8.1) then shows that the Fourier
transform of the weight function P(n) is given by

(Z) = exp(4, n)P(e)d'n,

=p(x) jN (8.4)

If the individual sources are stationary ones their
weight function p (n) depends only on

~

e
~

. The trans-
form $(X) may then be approximated for small values
of [Z/ by

&(~)=1—l~'
I
~ I'p(~)d'~,

g2(( ~
(
2) (8.5)

P(n) = (2m) ' exp( —in X) (X)d'l~,

exp( —o.'/1V((e (')).
n.iV(~n~')

(8 7)

The mean value of ~n ~' for such a weight function is
evidently X(

~
e

~
'), but by the general theorem expressed

in Eq. (7.23), this mean value is just the average of the
total number of quanta present in the mode. If we write
the latter average as (n), and resume the use of the
complex notation for the variable o, the weight function
(8.7) may be written as

P (~)— e
—

[ u[ &/tn)

m(e)
(8.8)

The weight function P(n) is positive everywhere and
takes the same form as the probability distribution for
the total displacement which results from a random
walk in the complex plane. However, because the
coherent states ~n) are not an orthogonal set, P(a) can

For values of (0
~

which are smaller still (i.e.,(X '~'(~n(') '), the transform for the superposed
6eld may be approximated by

=-(~) =exp( —-'~2m(~ ~
~
2)). (8.6)

Since the weight function p(n) may take on negative
values it is necessary at this point to verify that the
second moment (~u~') is positive. That it is indeed
positive is indicated by Eqs. (7.22) and (7.23) which
show that (~n~') is the mean number of photons which
would be radiated by each source in the absence of the
others. For large values of 1V the transform (2) there-
fore decreases rapidly as ~X~ increases. Since the
function becomes vanishingly smaU for ~0

~
lying outside

the range of approximation noted earlier, we may use
(8.6) more generally as an asymptotic approximation
to (2) for large 1V. When we calculate the transform of
this asymptotic expression for .(2) we find

only be accurately interpreted as a probability distribu-
tion for (n)))1. We may note that it is not ultimately
necessary, in order to derive Eq. (8.8), to assume that
the weight functions corresponding to the individual
sources are all the same. All that is required to carry
out the proof is that the moments of the individual
functions be of comparable magnitudes. The mean
squared value of ~0.

~

is then given more generally by
P; (~cz;~'), rather than the value in Eq. (8.7), but this
value is still the mean number of quanta in the mode, as
indicated in Eq. (8.8).

It should be clear from the conditions of the deriva-
tion that the Gaussian distribution P(n) for the excita-
tion of a mode possesses extremely wide applicability.
The random or chaotic sort of excitation it describes is
presumably characteristic of most of the familiar types
of noncoherent macroscopic light sources, such as gas
discharges, incandesant radiators, etc.

The Gaussian density operator

p= e ~ "~'t&"&fn)(n(d'n
(e)

(8.9)

may be seen to take on a very simple form as well in the
basis which specifies the photon numbers. To And this
form we substitute in Eq. (8.9) the expansions (3.7)
and (3.8) for the coherent states and note the identity

~ '(i!m!) '" expL —Cn']n'(u*)"d'a=b C t~+"

which holds for C)0. If we write C= (1+(e))/(e) we

then find

(~) m

[m)(m f
.

1+(n) 1+(e)
(8.10)

In other words, the number of quanta in the mode is
distributed according to the powers of the parameter
(e)/(1+(e)). The Planck distribution for blackbody
radiation furnishes an illustration of a density operator
which has long been known to take the form of Eq.
(8.10).The thermal excitation which leads to the black-
body distribution is an ideal example of the random type
we have described earlier, and so it should not be sur-
prising that this distribution is one of the class we have
derived. It is worth noting, in particular, that while the
Planck distribution is characteristic of thermal equili-
brium, no such limitation is implicit in the general form
of the density operator (8.9). It will apply whenever
the excitation has an appropriately random quality, no
matter how far the radiator is from thermal equilibrium.

The Gaussian distribution function expL —
~n

~
'/(n) j

is phrased in terms which are explicitly quantum
mechanical. In the limit which wouM represent a
cia,ssical field both ~n~' and the average quantum
number (e) become infinite as A ', but their quotient,
which is the argument of the Gaussian function, remains
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well defined. The form which the distribution takes in
the classical limit is a familiar one. Historically, one of
the origins of the random walk problem is to be found
in the discussion of a classical harmonic oscillator which
is subject to random excitations. "Such oscillators have
complex amplitudes which are described under quite
general conditions by a Gaussian distribution. If we
were armed with this knowledge, and lacked the
quantum-mechanical analysis given earlier, we might
be tempted to assume that a Gaussian distribution
derived in this way from classical theory can describe
the photon distribution. To demonstrate the fallacy of
this view we must examine more closely the nature of
the parameter (I) which is, after all, the only physical
constant involved in the distribution. We may take, as
a simple illustration, the case of thermal excitation
corresponding to temperature T. Then the mean photon
number is given by (rs) =Lexp(kco/nT) —1] ', where n is
Boitzmann's constant, and the distribution E(er) takes
the form

1
P(n) = Pea"~' —1]expl ——(e""~" 1) In—l'] (8.11)

To reach the classical analog of this distribution we
would assume that the classical field energy in the mode,
H=sr f(E'+B')dr, is distributed with a probability
proportional to expl —H/aT]. The distribution for the
amplitude 0. that results is

I', (n) = (A(/rraT) expL —Ao Inl'/IrT], (8.12)

which is seen to be a first approximation in powers of A

to the correct distribution. (Again, we must remember
that the quantity

A lcr I' is to be construed as a classical
parameter. ) The distribution E.i(n) only extends into
the classical region of the plane, Inl))1, for low-

frequency modes, that is, only for (Ace/KT)&(1 are the
modes sufficiently excited to be accurately described by
classical theory. For higher frequencies the two distri-
butions differ greatly in nature even though both are
Gaussian. The classical distribution retains much too
large a radius in the 0. plane as Ace increases beyond ~T,
rather than narrowing extremely rapidly as the correct
distributioli does. ' That error, in fact, epitomizes the
ultraviolet catastrophe of the classical radiation theory.
The example we have discussed is, of course, an ele-
mentary one, but it should serve to illustrate some of
the points noted in the preceding section regarding the
limitations of the classical distribution function.

The expression for the thermal density operator of an
oscillator in terms of coherent quantum states appears

"Lord Rayleigh, The Theory of Sound, (MacMillan and
Company Ltd. , London, 1894), 2nd ed. , Vol. I, p. 35; Scientific
I'upers (Cambridge University Press, Cambridge, England,
1899-1920), Vol. I, p. 491, Vol. IV, p. 370.

' For frequencies in the middle of the visible spectrum and
temperatures under 3000'K the quantum mechanica distribution
(8.11) will have a radius which corresponds to ~o. '&&10 e, i.e. ,
the distribution is far from classical in nature. Comparable radii
characterize the distributions for nonthermal incoherent sources.

to oGer new and instructive approaches to many
familiar problems. It permits us, for example, to derive
the thermal averages of exponential functions of the
operators a and at in an elementary way. The thermal
average of the operator D(P) defined by Eq. (3.17) is
an illustration. It is given by

tr{pDQ)) =
n-(I)

e ~
~~'«"&(n

I
D Qt) I

n)d'n. (8.13)

IX. DENSITY OPERATORS FOR THE FIELD

The developments introduced in Secs. III—VIII have
all concerned the description of the quantum state of a
single mode of the electromagnetic field. We may
describe the field as a whole by constructing analogous
methods to deal with all its modes at once. For this
purpose we introduce a basic set of coherent states for
the entire held and write them as

where the notation {crs), which will be used in several
other connections, stands for the set of all amplitudes
a~. It is clear then, from the arguments of Sec. IV, that
any state of the field determines uniquely a function
f({ers*)) which is an entire function of each of the
variables n~*. If the Hilbert space vector which repre-
sents the state is known and designated as

I f), the
function f is given by

f({~~'))=({~~)I f& exp(s Zs l~s I'), (9 2)

which is the direct generalization of Eq. (4.11). The
expansion for the state

I f) in terms of coherent states
is then

I f)= I {ns})f({ere"))g n
—'e &~ "~'d'ng„(9.3)

which generalizes Eq. (4.7).
All of the operators which occur in 6eld theory possess

expansions in terms of the vectors
I {res)) and their

"F.81och, Z. Physik 74, 295 (1932).

The expectation value in the integrand is, in this case

(alD(P) ln)=(OID '(cr)D(P)D(er) IO),

pEP
*—0* ](0 ID(P) I o&,

= exp/Su' P*a—](0I P),
= expQ3u* —P*n—s I P I

'], (8.14)

where the properties of D(n) as a displacement operator
have been used in the intermediate steps. When the
integration indicated in Eq. (8.13) is carried out, we find

t {pD(P))= PL—I&l'(( )+l)], (815)

which is a frequently used corollary of Bloch's theorem
on the distribution function of an oscillator coordinate. '8
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adjoints. To construct such representations is simply a
matter of generalizing the formulas of Sec. V to deal
with an infinite set of amplitude variables. ale therefore
proceed directly to a discussion of the density operator.
For any density operator p we may define a function
E((0.~"),(PA)) which is an entire function of each of the
variables n~* and Pl, for all modes k. This function, as
may be seen from Eq. (6.1), is given by

~({~~') {P~))= &(~~) I ~ I (P~))
XexpLk 2 (I~.I'+ IP. I')3. (9.4)

The corresponding representation of the density
operator is

X8—k(l arel +18al 2)(P~~(PP~ (9 $)

H the set of integers (e~} is used to specify the familiar
stationary states which have ej, photons in the 4th
mode, we may regard 8 as a generating function for the
matrix elements of p connecting these states, i.e., as a
generalization of Eq. (6.2) we have

XII (~~. ! ') '"( .*)"'P "' (96)

The matrix elements of p in the stationary basis are
then given by

&(~~) I ~ I (~~) )

and the corresponding function R which determines the
density operator is

The normalization condition (9.8) corresponds to the
requirement P Iq(k) I'=1. Since the state we have
considered is a pure one, the function E factorizes into
the product of two functions, one having the form of f
and the other of its complex conjugate. If the packet
amplitudes q(k) were in some degree unpredictable, as
they usually are, the packet could no longer be repre-
sented by a pure state. The function R would then be an
average taken over the distribution of the amplitudes
q(k) and hence would lose its factorizable form in
general. Vilhenever an upper bound exists for the
number of photons present, i.e., the number of photons
is required to be less than or equal to some integer Ã,
we will find that E is a polynomial of at most Ãth
degree in the variables (n~*) and of the same degree in
the (Pu}.

There will, of course, exist many types of excitation
for which the photon numbers are unbounded. Among
these are the ones which are more conveniently de-
scribed by means of a generalized E distribution, i.e.,
the excitations for which there exists a reasonably well-
behaved real-valued function P((n~)) such that

~((P *),{~))= &(( ))

Xexp Q (Pz na+'Yang —InyI ) ]g d~aq. (9.11)

E({ng*) (Pg)) g m '(eI, !mg l)
—'"ng'""(PI*)"&

X8 (l ~~l'+l8—~1')d2~„d2P

The normalization condition on E is clearly

4Vhen R possesses a representation of this type the
density operator (9.5) may be reduced by means of
Eq. (4.14) and its complex conjugate to the simple form

(9 7)

~({ })I( ) )&{ ) I II d' , (9 12)

~({P."),{P~))II ~ '8 l8"l'd'Pk=1. (9 g)

The positive de6niteness condition, Eq. (6.9), may also
be generalized in an evident way to deal with the full
set of amplitude variables.

It may help as a simple illustration of the foregoing
formulae to consider the representation of a single-photon
wave packet. The state which is empty of all photons is
the one for which the amplitudes 0.~ all vanish. If we
write that state as

I vac), then we may write the most
general one-photon state as P q q(k) an't I

vac), where the
function q(k) plays the role of a packet amplitude. The
function f which represents this state is then

which is the many-mode form of the I' representation
given by Eq. (7.6). The function P must satisfy the
positive definiteness condition

I f({ng*))I'E((np)) g 8 l 'l'd'up&0 (9 13)

for all possible choices of entire functions f ((nA, '}).The
matrix elements of the density operator in the repre-
sentation based on the m-photon states are

&( .)I I{ ))= ~(( })

f({~~*})=2 q(k)~.', (9.9) (nI, !m~!) '~'~„"~(~;)"&8 l "l'd'~„(-9.14).
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Stationary density operators, i.e., ones which commute
with the Hamiltonian correspond to functions P({o.i})
which depend on the amplitude variables only through
their magnitudes {~ai

~
}.

The superposition of two fields is described by form-
ing the convolution integral of their distribution func-
tions, much as in the case of a single mode. Thus, if two
fields, described by Pi({P&})and P2({pi,}),respectively,
are superposed, the resulting field has a distribution
function

pletely soluble problems of quantum electrodynamics.
We shall study the photon field radiated by an electric
current distribution which is essentially classical in
nature, one that does not suffer any noticeable reaction
from the process of radiation. We may then represent
the radiating current by a prescribed vector function of
space and time j (r, t). The Hamiltonian which describes
the coupling of the quantized electromagnetic field to
the current distribution takes the form

1
H, (t) =—— j(r, t) A(r, t)dr. (9.16)

XP ({P.})P,({~.})H d'P.d'~. . (9.»)

For fields which are represented by means of the
density operator (9.12) all of the averages of normally
ordered operator products can be calculated by means
of formulas which, as in the case of a single mode,
greatly resemble those of classical theory. Thus, the
parameters {n&} play much the same role in these
calculations as the random Fourier amplitudes of the
field do in the familiar classical theory of microwave
noise. "Furthermore, the weight function P({nl,})plays
a role similar to that of the probability distribution for
the Fourier amplitudes. Although this resemblance is
extremely convenient in calculations, and offers
immediate insight into the application of the corre-
spondence principle, we must not lose sight of the fact
that the function P({nI,}) is, in general, an explicitly
quantum-mechanical structure. It may assume negative
values, and is not accurately interpretable as a proba-
bility distribution except in the classical limit of
strongly excited or low frequency fields.

In the foregoing discussions we have freely assumed
that the density operator which describes the field is
known and that it may, therefore, be expressed either in
the representation of Eq. (9.5) or in the P representa-
tion of Eq. (9.12). For certain types of incoherent
sources which we have discussed in Sec. VIII and will
mention again in Sec. X, the explicit construction of
these density operators is not at all difficult. But to find
accurate density operators for other types of sources,
including the recently developed coherent ones, will
require a good deal of physical insight. The general
problem of treating quantum mechanically the inter-
action of a many-atom source both with the radiation
field and with an excitation mechanism of some sort
promises to be a complicated one. It will have to be
approached, no doubt, through greatly simplified
models.

Since very little is known about the density operator
for radiation fields, some insight may be gained by
examining the form it takes on in one of the few com-

'9 J. Lawson and G. E. Uhlenbeck, ThreshoM Noise Signals
(McGraw-Hill Book Company, Inc. , New York, 1950), pp. 33—56.

The introduction of an explicitly time-dependent
interaction of this type means that the state vector for
the field,

~ ), which previously was fixed (corresponding
to the Heisenberg picture) will begin to change with
time in accordance with the Schrodinger equation

8
iA—

( )=Hi(t)i ),
Bt

(9.17)

which is the one appropriate to the interaction repre-
sentation. The solution of this equation is easily found. "
If we assume that the initial state of the field at time
t= —~ is one empty of all photons, then the state of
the field at time t may be written in the form

Di (Ps) =expD4n, t—
Pg,*ni $. (9.19)

Then it is clear from the expansion (2.10) for the vector
potential that we may write

exp — dt' j(r,t') A(r, t')dr =gDlfn&(t)], (9.20)
Ac

where the time-dependent amplitudes n&(t) are given by

ni, (t) =
(2Aor)" t'

The density operator at time t may therefore be written

2 R. J. Glauber, Phys. Rev. 84, 395 (1951}.

~
t) = exp — dt' j(r, t') A(r, t')dr+i@(t)

~
vac).

Ac

(9.18)

The function p(t) which occurs in the exponent is a
real-valued c-number phase function. It is easily
evaluated, but cancels out of the product ~t)(t

~

and so
has no bearing on the construction of the density
operator. The exponential operator which occurs in
Eq. (9.18) may be expressed quite simply in terms of
the displacement operators we discussed in Sec. III.
For this purpose we define a displacement operator DI,
for the kth mode as
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I&)«I=IID.L (&)ll )& I IID 'L~ (&)j (922)

For this operator it follows from Eq. (10.1) and its
Hermitian adjoint that the correlation functions reduce
to the factorized form

(&)))((n (&)) I
. (9.23) Gp N".'"'(» "»-)=ll &I;*(x~) II &pi(xi) (1o 4)

L=n+1

The radiation by any prescribed current distribution,
in other words, always leads to a pure coherent state.

It is only a slight generalization of the model we have
just considered to imagine that the current distribution
j(r,t) is not wholly predictable. In that case the ampli-
tudes ni, (t) defined by Eq. (9.21) become random
variables which possess collectively a probability distri-
bution function which we may write as p((nq), t). The
density operator for the field radiated by such a random
current then becomes

PP)= P({ni),&) I(ni)&((ni} I
IId'ni (9 24)

We see that the density operator for a field radiated by
a random current which suGers no recoil in the radiation
process always takes the form of the I' representation
of Eq. (9.12). The weight function in this case does
admit interpretation as a probability distribution, but
it has a classical structure associated directly with the
properties of the radiating current rather than with
particular (nonorthogonal) states of the field. The
assumption we have made in defining the model, that
the current suRers negligible reaction, is a strong one
but is fairly well fulfilled in radiating systems operated
at radio or microwave frequencies. The fieMs produced
by such systems should be accurately described by
density operators of the form (9.24).

X. CORRELATION AND COHERENCE PROPERTIES
OF THE FIELD

Any eigenvalue function 8(rf) which satisfies the
appropriate field equations and contains only positive
frequency terms determines a set of mode amplitudes
(ni, ) uniquely through the expansion (2.20). This set of
mode amplitudes then determines a coherent state of
the field,

~
(ni, )), such that

To discuss the general form which the 6eM correlation
functions take in such states it is convenient to abbrevi-
ate a set of coordinates (r, ,t,) by a single symbol x;. The
mth-order correlation function is then defined as'

G„,. . .„,„&"&(xi xn„) = tr(pE„, &
—i (xi)

&&E„„i
—i (x„)E„,&+i(x„+i) E„,„&+i (x2 )) . (10.2)

The density operator for the coherent state defined by
Eq. (10.1) is the projection operator

(10.3)

In other words, the field which corresponds to the state
~
{ni)&

satisfies the conditions for full coherence accord-
ing to the definition' given earlier.

It is worth noting that the state
~ {n~)& is not the

only one which leads to the set of correlation functions
(10.4). Indeed, let us consider a state which corresponds
not to the amplitudes (ni, ), but to a set (e'&ni} which
differs by a common phase factor (i.e., y is real and
independent of k). Then the corresponding eigenvalue
function becomes e"G(rt), but such a change leaves the
correlation functions (10.4) unaltered. It is clear from
this invariance property of the correlation functions
that certain mixtures of the coherent states also lead to
the same set of functions. Thus, if

~
(ni, )& is the state

defined by Eq. (10.1), and Z(y) is any real-valued
function of y normalized in the sense

(10.5)

we see that the density operator

~(~) l(e'" )&((e'",) Id& (10.6)

leads for all choices of Z(q) to the set of correlation
functions (10.4). Such a density operator is, of course,
a special case of the general form (9.12), one which
corresponds to an over-all uncertainty in the phase of
the {ni,). The particular choice Z(p)= (2s) ', which
corresponds to complete ignorance of the phase, repre-
sents the usual state of our knowledge about high-
frequency fieMs. We have been careful, therefore, to
define coherence in terms of a set of correlation functions
which are independent of the over-all phase.

Since nonstationary Gelds of many sorts can be
represented by means of eigenvalue functions, it
becomes a simple matter to construct corresponding
quantum states. As an illustration we may consider the
example of an amplitude-modulated plane wave. For
this purpose we make use of the particular set of mode
functions defined by Eq. (2.9).Then if the carrier wave
has frequency co and the modulation is periodic and has
frequency fee where 0(( (1, we may write an appro-
priate eigenvalue function as

Aa)

$(rt) = i e&'inj,
2I.'

X(1+M cost'i (k r —cot) —5$}e'i"' 'i. (10.7)
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When this expression is expanded in plane-wave modes adjoint, we see that these operators obey the identity
it has only three nonvanishing amplitude coefficients.
These are ni, itself and the two sideband amplitudes

2 E& '(rt) E(+&(rt')dr

ag(i r& =gM(1 —{) & e' ay,

a& (i+r& —k~(1+{')
(10.8) =g A&da&, ta&, expl m(t —t')). (10.11)

The coherent state which corresponds to the modulated
wave may be constructed immediately from the know-

ledge of these amplitudes. In practice, of course, we will

not often know the phase of ni„and so the wave should
be represented not by a single coherent state, but by a
mixture of the form (10.6). Representations of other
forms of modulated waves may be constructed similarly.

Incoherent fields, or the broad class of fields for
which the correlation functions do not factorize, must
be described by means of density operators which are
more general in their structure than those of Eqs. (10.3)
or (10.6).To illustrate the form taken by the correlation
functions for such cases we may suppose the field to be
described by the P representation of the density
operator. Then the first-order correlation function is
given by

G„&'& (rt, r't') = P({o&,)) Q 'A((va&-')'I'e&, „'(r)N&, .(r')

If we take the statistical average of both sides of this
equation we may write the resulting relation as

G»&'& (rt, rt')dr = ,' P A&e—(m&,) expLico(t —t') j, (10.12)

where (Ni) is the average number of photons in the kth
mode. The Fourier representation of the vol ome integral
of Q„G»('& therefore identifies the energy spectrum
Puu(ei) quite generally.

For fields which may be represented by stationary
density operators, it becomes still simpler to extract the
energy spectrum from the correlation function. For such
fields the weight function P({n&,})depends only on the
absolute values of the nk, so that we have

P({~~))~'*~~"H d'«=(l~~ I')&~ ~-

k, k'

X& *&„,e&(&ut ru'F'& g J—2& (10 9)
=(N~ )4 ~". (10.13)

By using Eq. (10.9) to evaluate the correlation function,
and specializing to the case of plane-wave modes, we
then findFields for which the P representation is inconveniently

singular may, as we have noted earlier, always be
described by means of analytic functions R({a&'},{p&))
and corresponding density operators of the form (9.5).
%hen that form of density operator is used to evaluate
the first-order correlation function we find

G„„&'&(rt)r't') = R({nl,*),{PI,)) Q —'A(&o'a&")' '

XN«q (r)+& "~(r )px «'"e' "

Xg ee Zp(«)et (P,), (1O.1O)

where the differentials dtI, (a&) and dp, (p&) are those
defined by Eq. (5.14). The higher order correlation
functions are given by integrals analogous to (10.9) and
(10.10). Their integrands contain polynomials of the
2eth degree in the amplitude variables a~ and Pi' in
place of the quadratic forms which occur in the first-
order functions.

The energy spectrum of a radiation field is easily
derived from a knowledge of its first-order correlation
function. If we return for a moment to the expansion
(2.19) for the positive-frequency field operator, and
write the negative-frequency Geld as its Hermitian

g G„&'&(rt,rt') =2L 'P A&e(n&, ,&,
)e'"&' '& (10.14)

in which we have explicitly indicated the role of the
polarization index X. If the volume which contains the
field is sufBciently large in comparison to the wave-
lengths of the excited modes, the sum over the modes
in Eq. (10.14) may be expressed as an integral over k
space I P& —&J'L'(2m) 'dk). By defining an energy
spectrum for the quanta present (i.e., an energy per
unit interval of ~) as

w(&e) = (2s.)
—%k' Q (e&, ,&,)dQ&„(10.15)

g G &'&(rt, rt')=-' m(co)e'"(' '&C&d. (10.16)

With the understanding that w(ar) =0 for &e '.0, we may
extend the integral over co from —~ to . It is then
clear that the relation (10.16) may be inverted to ex-
press the energy spectrum as the Fourier transform of

where dQ&, is an element of solid angle in k space, we
may then rewrite Eq. (10.14) in the form
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the time-dependent correlation function,

1
w(cg) =— g G„„~'&(r0,rt)e'"'dt. (10.17)

A pair of relations analogous to Eqs. (10.16) and
(10.17), and together called the Wiener-Khintchine
theorem, has long been of use in the classical theory of
random fields. "The relations we have derived are, in a
sense, the natural quantum mechanical generalization
of theWiener-Khintchine theorem. All we have assumed
is that the field is describable by a stationary form of
the P representation of the density operator. The proof
need not, in fact, rest upon the use of the P representa-
tion since we can construct a corresponding statement
in terms of the more general representation (9.5).

Stationary fields, according to Eq. (6.10), are
represented by entire functions R=S({n&*P&}),i.e.,
functions which depend only on the set of products
ai'Pq. For such fields, then, the integral over the n and P
planes which is required in Eq. (10.10) takes the form

which excite many modes at once. Ke shall suppose
that the sources (j= 1 ~ 1V) are essentially identical,
and that their contributions to the excitation are
described by a weight function p({n;&}).The weight
function P({a~})for the superposed Gelds is then given
by the convolution theorem as

(10.21)

Since the individual sources are assumed to be sta-
tionary, the function p({n,&}) will only depend on the
variables n;I, through their absolute magnitudes, In;J, I.

The derivation which leads from Eq. (10.21) to a
Gaussian asymptotic form for E({nI,}) is so closely
parallel to that of Eqs. (8.1)-(8.8) that there is no need
to write it out in detail. The argument makes use of
second-order moments of the function p which may,
with the same type of vector notation used previously,
be written as

(Pl' &I")= &({&&P&})PI' &&"II ~~' '~u(&l)dt's(P~) ~

(10.18)

Since the range of integration of each of the n and P
variables covers the entire complex plane, this integral
cannot be altered if we change the signs of any of the
variables. If, however, we replace the particular
variables u& ~ and P& by —ui and —Pi the integral
is seen to reverse in sign, unless we have

(10.19)

The average (PI,*O.&), we may note from Eqs. (5.11) and
(6.5), is just the mean number of quanta in the kth
mode)

We have thus shown that the general expression (10.10)
for the erst-order correlation function always satisfies
Eq. (10.14) when the Geld is described by a stationary
density operator. The derivation of the equations
relating the energy spectrum to the time-dependent
correlation function then proceeds as before.

The simplest and most universal example of an
incoherent field is the type generated by superposing
the outputs of stationary sources. We have shown in
some detail in Sec. VIII that as the number of sources
which contribute to the excitation of a single mode
increases, the density operator for the mode takes on a
Gaussian form in the P representation. It is not dificult
to derive an analogous result for the case of sources

2' The Wiener-Khintchine theorem is usually expressed in terms
of cosine transforms since it deals with a real-valued correlation
function for the classical field E, rather than a complex one for
the fields E&+). The complex correlation functions are considerably
more convenient to use for quantum mechanical purposes, as is
shown in Ref. 3.

(+i&i )= +io'a p({&i})II d &i. (10.22)

The stationary character of the function p implies that
such moments vanish for k/k'. With this observation,
we may retrace our earlier steps to show that the many-
dimensional Fourier transform of P takes the form of a
product of Gaussians, one for each mode and each
similar in form to that of Eq. (8.6). It then follows
immediately that the weight function P for the 6eld as
a whole is given by a product of Gaussian factors each
of the form of Eq. (8.8). We thus have

(10.23)

where (ei) is the average number of photons present in
the kth mode when the fields are fully superposed. One
of the striking features of this weight function is its
factorized form. It is interesting to remember, therefore,
that no assumption of factorizability has been made
regarding the weight functions p which describe the
individual sources. These sources may, indeed, be ones
for which the various mode amplitudes are strongly
coupled in magnitude. It is the stationary property of
the sources which leads, because of the vanishing of the
moments (10.22) for k&k', to the factorized form for
the weight function (10.23).

The density operator which corresponds to the
Gaussian weight function (10.23) evidently describes
an ideally random sort of excitation of the field modes.
We may reasonably surmise that it applies, at least as a
good approximation, to all of the familiar sorts of
incoherent sources in laboratory use. It is clear, in
particular, from the arguments of Sec. VII that the
Gaussian weight function describes thermal sources
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correctly. The substitution of the Planck distribution
(43&)= Lexp putz/I&X) —1$ ' into Eq. (10.23) leads to the
density operator for the entire thermal radiation field.
To the extent that the Gaussian weight function (10.23)
may describe radiation by a great variety of incoherent
sources there will be certain deep-seated similarities in
the photon fields generated by all of them. One may,
for example, think of these sources all as resembling
thermal ones and diR'ering from them only in the
spectral distributions of their outputs. As a way of
illustrating these similarities we might imagine passing
blackbody radiation through a filter which is designed
to give the spectral distribution of the emerging light a
particular line profile. We may choose this artificial line
pro6le to be the same as that of some true emission line
radiated, say, by a discharge tube. We then ask whether
measurements carried out upon the photon 6eld can
distinguish the true emission-line source from the
arti6cial one. If the radiation by the discharge tube is
described, as we presume, by a Gaussian weight func-
tion, it is clear that the two sources will be indistin-
guishable from the standpoint of any photon counting
experiments. They are equivalent sorts of narrow-band,
quantum-mechanical noise generators.

It is a simple matter to 6nd the correlation functions
for the incoherent fields' described by the Gaussian
weight function (10.23). If we substitute this weight
function into the expansion (10.9) for the ffrst-order
correlation function we find

G„„&I&(rt,r'f') =-', p A&dus„*(r)gs„(r')(I2)e'"&I '& (10.24)

When the mode functions us(r) are the plane waves of
Eq. (2.9), and the volume of the system is sufficiently
large, we may write the correlation function as the
integral

G„&I&(rt, rV) = Q e„&"&'e,&"&(23I,,1)k
2(22r)s

&(exp( —st k (r—r') —o3(t—f'))}dk, (10.25)

in which the index ) again labels polarizations. To find
the second-order correlation function defined by
Eq. (10.2) we may write it likewise as an expansion in
terms of mode functions. The only new moments of the
weight function which we need to know are those given
by (~n2(4)=2(~a2~2)2=2(n&)2 We then find that the
second-order correlation function may be expressed in
terms of the first-order function as

G&3122&33&34 ( I 2) 3 4) IIII33 (xi xs)Gs2s4 (xsI 4)

+G„,„,&I&(xi,x4)G„,„,&I&(xs,xs). (10.26)

It is easily shown that all of the higher order correlation
functions as well reduce to sums of products of the first-
order function. The nth-order correlation function may

be written as

G331 ~ ~ 332„(xl' ' ' xa2xn+I' ' ' xsa) =2 II Gs3'~3 (x22$1) I
(p

j~l

(10.27)

where the indices v; and the coordinates y; for j=1~ ~ e
are a permutation of the two sets p, „+~ ~ ~ ~ p, 2„and
g„+~ x2„, and the sum is carried out over all of the
n t permutations. One of the family resemblances which
links all 6elds represented by the weight function
(10.23) is that their properties may be fully described
through knowledge of the first-order correlation
function.

The 6elds which have traditionally been called
coherent ones in optical terminology are easily de-
scribed in terms of the first-order correlation function
given by Eq. (10.25). Since the light in such ffelds is
accurately collimated and nearly monochromatic, the
mean occupation number (21&,,1)vanishes outside a small
volume of k-space. The criterion for accurate coherence
is ordinarily that the dimensions of this volume be
extremely small in comparison to the magnitude of k.
It is easily verified, if the 6eld is fully polarized, and the
two points (r, f) and (r', t') are not too distantly
separated, that the correlation function (10.25) falls
approximately into the factorized form of Eq. (2.4).
That is to say, fieMs of the type we have described
approximately fulfill the condition for first-order
coherence. ' It is easily seen, however, from the structure
of the higher order correlation functions that these
fields can never have second or higher order coherence.
In fact, if we evaluate the function G&"& given by
Eq. (10.27) for the particular case in which all of the
coordinates are set equal, x&= =x2 =x, and all of
the indices as well, pj = ~ =p2„=p, we find the result

G„...„&"& (x ~ x,x ~ x) = 23!LG„&I&(x,x)j". (10.28)

The presence of the coeKcient e ~ in this expression is
incompatible with the factorization condition (10.4) for
the correlation functions of order e greater than one.
The absence of second or higher order coherence is thus
a general feature of stationary fields described by the
Gaussian weight function (10.23). There exists, in other
words, a fundamental sense in which these fields remain
incoherent no matter how monochromatic or accurately
collimated they are. We need hardly add that other
types of fields such as those generated by radio trans-
mitters or masers may possess arbitrarily high orders
of coherence.

During the completion of the present paper a note by
Sudarshan~ has appeared which deals with some of the
problems of photon statistics that have been treated
here." Sudarshan has observed the existence of what

22 In an accompanying note, L. Mandel and E. Wolf LPhys.
Rev. Letters 10, 276 (1963)g warmly defend the classical approach
to photon problems. Some of the possibilities and fundamental
limitations of this approach should be evident from our earlier
work. We may mention that the "implication" they draw from
Ref. 1 and disagree with cannot be validly inferred from any
reading of that paper.
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we have called the P representation of the density
operator and has stated its connection with the repre-
sentation based on the n-quantum states. To that
extent, his work agrees with ours in Secs. VII and IX.
He has, however, made a number of statements which
appear to attach an altogether diGerent interpretation
to the P representation. In particular, he regards its
existence as demonstrating the "complete equivalence"
of the classical and quantum mechanical approaches to
photon statistics. He states further that there is a
"one-to-one correspondence" between the weight func-
tions P and the probability distributions for the field
amplitudes of classical theory.

The relation between the P representation and
classical theory has already been discussed at some
length in Secs. VII—IX. We have shown there that the

weight function P(n) is, in general, an intrinsically
quantum-mechanical structure and not derivable from
classical arguments. In the limit A —+0, which corre-
sponds to large amplitudes of excitation for the modes,
the weight functions P(a) may approach classical
probability functions as asymptotic forms. Since
infinitely many quantum states of the field may
approach the same asymptotic form, it is clear that
the correspondence between the weight functions I'(n)
and classical probability distributions is not at all
one-to-one.
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