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The contribution of intermolecular dipole-dipole interactions to the nuclear magnetic relaxation of identical
spin--, nuclei at equivalent positions in spherical molecules in a liquid is calculated. The assumptions made
are that: (1), the effect of cross correlations of different dipole-dipole interactions is negligible, so that the
relaxations of the longitudinal and transverse components of the nuclear magnetization are simple exponen-
tial decays with relaxation times T& and Ts, respectively; (2), the motions of the molecules can be considered
to be translational and rotational diffusion; and (3), the correlation time re= (2o /D), w—here o is the radius
of a molecule and D is the translational ditlusion coefficient, is sufficiently short that (~oro) &&1, where cue is
the Larmor frequency of the nuclei. As a result of the short correlation time assumption (3), the contributions
of the intermolecular interactions to (I/Ti) and (I/Ts) are found to be the same and are given by an infinite
series, the first three terms of which are

i+0.233 — +0.15 — +
where I is the number of spins per unit volume, p is the gyromagnetic ratio of each nucleus, and b is the dis-
tance of each nucleus from the center of the molecule in which it is contained. The first term in the series is
the result obtained in previous calculations in which the effect of the rotations of the molecules was neglected.
In a typical case in which (b/a) =q, the second and third terms are 6.8% of the 6rst term

1. INTRODUCTION

HE dipole-dipole interactions between the mag-
netic moments of spin-~ nuclei in molecules in a

liquid contribute significantly to the nuclear magnetic
relaxation of the liquid. The dipole-dipole interaction
between a pair of spins depends upon the position vector
of one spin with respect to the other. The relative posi-
tion of nuclei in liquid molecules changes with time as
a result of the translational and rotational motions of
the molecules. The dipole-dipole interactions thus act
as time-dependent perturbations on the Zeeman energy
levels of the nuclei and produce transitions between
these energy levels, which results in the relaxation of
the nuclear magnetization.

Since the distance between nuclei in the same mole-
cule is effectively constant, the time dependence of
intramolecular dipole-dipole interactions in liquid mole-
cules is due just to the rotational motion of the mole-
cules. The time dependence of the relative position of
two nuclei in different molecules depends on the transla-
tional motion of the molecules and also on the rotational
motion of the molecules, unless both nuclei are at the
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centers of their respective molecules. Hence, the con-
tribution of intermolecular dipole-dipole interactions to
the nuclear magnetic relaxation of polyatomic molecules
in a liquid depends on both the translational and rota-
tional motions of the molecules.

Previous treatments of the contribution of inter-
molecular dipole-dipole interactions to nuclear magnetic
relaxation in liquids have taken into account only the
translational motion of the molecules, on the assumption
that the nuclei can be considered to be at the centers of
spherical molecules which approach each other no
more closely than a molecular diameter. ' 4 This assump-
tion is valid only for liquids containing monatomic
molecules. In the case of liquids containing polyatomic
molecules, the distance of closest approach of nuclei in
different molecules is less than the diameter of a mole-
cule, which means that a correct treatment might give
a greater contribution to the relaxation rate, since the
magnitude of the dipole-dipole interaction varies in-
versely as the cube of the distance between the spins. On

' N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).' H. C. Torrey, Phys. Rev. 92, 962 (1953).

3 I. Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961).' A. Abragam, The Principles of Nttclear Magnetism (Clarendon
Press, Oxford, 1961),p. 300.



PAUL S. HUBBARD

the other hand, if the nuclei are not at the centers of
molecules, and the rotational motion is taken into
account in addition to the translational motion, the
time dependence of the relative position of nuclei in
different molecules is different from the case in which
the nuclei are at the centers of molecules. This addi-
tional motion can be expected to reduce the relaxation
effect, since the previous calculations indicate that the
rate of relaxation decreases as the rate of molecular
motion increases for the conditions that exist in most
liquids. ' It is not obvious a priori which of the two
effects mentioned above is more important. The follow-

ing calculation shows that the first effect dominates, and
that the contribution of intermolecular dipole-dipole
interactions to the nuclear magnetic relaxation of poly-
atomic molecules in a liquid is greater than that pre-
dicted by the previous approximate treatments.

J(~(~)=2'(1—4)J())())"(~)~
where

00

J('t) (v)'"(~) =-
2—c,;;„;,, '"( ) '"'d .

(2.3)

(2.4)

The correlation function in Eq. (2.4) is defined by

c, ,„,, (,)=&v,, (t+,)U„'(t)),
where

(2.5)

(1/Ts)= P (—1) (6—t )Jp, p(
—l(pp)~ (2.2)

l=2

where cop is the I.armor frequency, which in terms of the
applied magnetic field IIp, is given by orp=pBp. The
function J(s((p) is defined by

2. RELAXATION BY DIPOLE-DIPOLE
INTERACTIONS

Consider a system of E identical nuclei, each having
a spin of ~ and gyromagnetic ratio y. Suppose that the
nuclei are at equivalent positions in spherical molecules
in a liquid. The calculation of the nuclear magnetic
relaxation of the system resulting from the time-de-
pendent dipole-dipole interactions between the nuclei
can be formulated by use of the density operator theory
of relaxation. ' The equations so obtained are found to
involve certain correlation functions of each dipole-
dipole interaction with itself and with other dipole-
dipole interactions. The calculation predicts a simple
exponential decay of the longitudinal and transverse
nuclear magnetization if one retains in the equations
only those terms that involve the correlation of each
dipole-dipole interaction with itself. The validity of the
omission of the other terms is not obvious a priori, since
the magnitudes of some of the omitted terms are as
large as the magnitudes of the terms that are retained.
However, in the few calculations in which the cross
correlation terms have been included, it has been found
that they produce a negligible effect. ' ' These calcula-
tions do not prove that the cross correlation terms
always have negligible effect. Nonetheless, in order to
obtain a tractable expression for the relaxation effect of
the intermolecular dipole-dipole interactions, in this
paper we shall employ the approximate expressions ob-
tained by omitting the cross correlation terms. Thus, the
longitudinal relaxation time T~ and the transverse
relaxation time T2 are given, respectively, by'

The F2~ are normalized spherical harmonics. The mag-
nitude of the position vector r;; of the ith nucleus with
respect to the jth is denoted by r@', and its polar angles
by (0@',g;,'). The time dependence of the functions U;ts
is due to the change with time of r@' as a result of the
molecular motion in the liquid. In the present paper,
the molecular motion will be considered to be classical,
and a stationary random process. Hence, the correlation
functions (2.5) are independent of t. By replacing t by
t r in —(2.5), one obtains

C(' &(' &'"(r) =Cw&(* &"'(—r) (2.7)

The quantity (1/Ti) given by Eq. (2.1) can be written
as the sum of two terms which contain, respectively, the
effects of intramolecular and intermolecular dipole-
dipole interactions:

(1/2' ) = (1/2' )'+(1/2" )",
where

(2.8)

l=2

the sum P;" being over all the nuclei not in the same
molecule as the jth nucleus. Similarly, it follows from
(2.2) and (2.3) that

(1/2')'=2 2 (—1)'t'2''J' ' ' '(—t o), (29)
l 2

the sum P being over the other nuclei in the same
molecule as the jth nucleus, and

(1/Tr) =2 Q (—1)'tPJ((( t(pp), —
l=2

where
(1/2'. ) = (1/2'.) +(1/2'.)-, (2.11)

' P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).
6 P. S. Hubbard, Phys. Rev. 109, 1153 (1958); 111, 1746 (E)

(1958).
7 G. W. Kattawar and M. Eisner, Phys. Rev. 126, 1054 (1962).
P P. S. Hubbard, Phys. Rev. 128, 650 (1962).' Reference 5, Eqs. (165a) and (165b).

(1/Ts)'= Q (—1)'(6—t')Q ' J(")("&' '(—l(pp), (2.12)
l=2

and
2

(1/2's)"= 2 (—1)'(6—t')2*"J())('t)' '(—t~p) (2 13)
l=2
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3. INTERMOLECULAR CONTRIBUTION function fop(r; ) about the point R gives the expression

Let E"be the total number of spins in the sample less
the number of spins in a single molecule. Since the spins
are all in equivalent positions, it follows that

&'"~(') ")"()=&"(-"' ""() (31)

(e

foe(r; )=P —(r V~) f,'(R)..=o g!

But (r V))) can be expressed as

(3 4)

where the i and j subscripts in the right-hand member
of the equation refer to any two nuclei in different
molecules. By use of Eqs. (2.5) and (2.6), one can obtain
from (3.1) the relation

2'" C(' )(' )"(r)=&"(3~/10)(7'&)'(—1)'+'

X(Lfp '(r~j') ji+,Lfp '(rg')$i), (3.2)

where

and

(1"V )g) =xpBp s—iBi x—)8

~o—=s, x~i= W2 '~'—(xaiy),

8 ( 8 8
Bo=— , B~,—=~2-i~PI az

BZ (BX BY

(3.5)

(3.6)

(3 7)

where

f."(r;;')= (r;;') -Y."-(8;;A;;'). (3.3)
Furthermore,

(spBo —s iBi $)8 i)
The position vectors of the ith and the jth nuclei with

respect to the laboratory coordinate system are denoted,
respectively, by r and r, so that r; =r —r, '. The
position vector of the ith nucleus with respect to the
center of the spherical molecule in which it is contained
is denoted by r;, and the position vector of the center of
the molecule with respect to the laboratory coordinate
systemby R;.Hence, r =R~+r;and r, '=R+r;. There-
fore, r@'——(R;—R,)+(r;—r,). It is convenient to intro-
duce the quantities R—=R;—R, and r—= r;—r;, in terms
of which r i' ——R+r. No confusion arises from the omis-

sion of subscripts i and j on R and r because we hence-
forth are concerned only with a single pair of spins in
diferent molecules, as in Eq. (3.1).

A three-dimensional Taylor series expansion of the

K g,!
(xoBo)&( x —iBi)"( xiB—L,) o,

!uvre p V go1! !
(3 8)

where the summation extends over all non-negative
integers )((, v, )), such that )(i+v+))=». Use of (3.5) and
(3.8) in (3.4) gives

oO K 1
f'(r*')=2 2 ( )"(—-)"(—*)"

K=O Pvy P !V!/!
XBo"Bi"8 if p( R) (3.9).

It is assumed that the rotational motions of the
molecules and their translational motions are inde-
pendent, so that r and R are independent. Thus, if
(3.9) is used in Eq. (3.2), the result can be written

/3ir) 00 K $ 00 K 1
2 "C(")(")"(r)=

i

—~(V'&)'(—1)'+' 2 2
(, 10) !!V!~~!

X(L(*o) (—* i)"(—*i) j(+,L(*p)"(—~ i)"'(—*i)'j()X"(LBoBi"8 i fo-'(R)j,+,LBo"8,"8,'fp-"(R)j,). (3.10)

The first correlation function in Eq. (3.10) depends on the rotational motion of the molecules, and the second
correlation function depends on their translational motion. If a model of the rotational and translational motions
of the molecules is adopted which permits the calculation of these correlation functions, the contribution of the
intermolecular dipole-dipole interactions to the nuclear magnetic relaxation can then be obtained by use of (3.10)
in (2.10) and (2.13).

The correlation function in (3.10) that depends upon the translational motion can be written in a diA'erent

form which facilitates its evaluation. It is a consequence of Eq. (A11) of Appendix A that

Bo"Bi"8—i"fpo(R) = (—1)"
(2 k+» v+,g)!(2+k+»+v )))

f P+v—
o(R)

2"—v(2»+5) (2—k)!(2+k)!
(3.11)

Hence,

1)))'"(LBp&Bi"8 i&fp '(R)j,+,(Bo&'Bi"'8 ip'fp '(R)fi)

(2+1+» v+ r))!(2 1+»+v—rj)!(2+k—+»' v'+—i)')!(2 k+»'+—v' —))')!—
2"+"'-v-v'(2»+5) (2»'+5) (2+3)!(2—1)!(2+4)!(2—k)!

X (—1)"+"'51P'(Lfp+„'+" P(R) jg+,$fp+; P+"' &'(R) jg). (3.12)

In order to evaluate the correlation function on the right-hand side of Eq. (3.12), we assume that the transla-
tional motion of the spherical molecules is a classical diffusion with diffusion coeNcient D, and that the distance
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of closest approach of two molecules is 2a, where u is the radius of the molecules. By use of this model, it is shown
in Appendix B that

where

G«'" '(r)—=&"([f~ (R)7t+.[f~ '(R)7t)
"bL''Lb M'M—( 1) GI(r)y

(—DIr IN'
G'(r) =(2a)-'~' expI [Jg i~o(N)7B VQy

o k 2a'

(3.13)

(3 14)

and n is the number of spins per unit volume. Use of Eq. (3.13) leads to the following expression for the right-
hand side of Eq. (3.12):

5(2+i+x—v+q)!(2—l+~+v —q)!(—1)-t+y-o
e8„, 8 )+„„p „.+„. Go+.(r).

(2m+5) [2'" v v'(2+')!(2—$)!(2+k)!(2—k)!7»o

Thus, Eq. (3.10) can be written

(3.15)

where

P "CI.&I "&'o(r)=em(r'k)'( —1)o P C Iy&(r),
K=o

(3.16)

3(2+1+x—v+g)!(2—l+K+v —g)!

~Go+y(r)([(~o) (~—i) (~i) 7t+y[(~o) ( ~-i) ( ~i) 7t) (317)

K i K

Cto (r) Q Q b lay o, k y'+o'— — —
vyo p!vial o"'o' p'! v!g'I ( ~+5)[ ' v N'(2+~)!(2—')!(2+k)!(2—k) I7"'

The first term in the sum in Eq. (3.16) does not
depend upon the rotational motions of the molecules.
It is

C "'()=b-', (—'.)G() (31g)

Previous treatments of relaxation by intermolecular
dipole-dipole interactions have included only this term.

If ~=1in Eq. (3.17), there are nine terms in the sums,
in each of which one of the indices p, v, q is unity and
the other two are zero, and one of the indices p', v', g' is
unity and the other two are zero. Hence, there occur
correlation functions of the form ([x„7t+,[x,7t). It is
shown in Appendix C that, if the rotational motion of
the molecules is isotropic rotational diffusion,

&[.7'[,7)=(2/3)b'b-, .(-1)"-"", (3 19)

where b is the distance of each spin from the center of
the molecule in which it is contained, and D' is the
rotational diffusion coefficient introduced by Furry in
his theory of isotropic rotational Brownian motion. "
Thus, the only nonzero terms in the sums in (3.17) are
the three terms for which p'=@=i, v=v'=g=g'=0;
v=g'=i, p, =p'=v'=q=0; and q=v'=1, p=p'=v=g'
=0. Hence, one finds that

Ct&yt'&(r) =8-, ,3b' 'e '
yolGl, (r) -(3 20)

The calculation of Ctolo&(r) from (3.17) is more
complicated. When ~=2, it is apparent that the cor-
relation functions that occur in (3.17) are of the form

([eve„'7t+,[x,x„'jt). These correlation functions can be
evaluated by the same procedure used in Appendix C
to calculate (3.19). It is found that they are zero unless

' Q'. H. Furry, Phys. Rev. 107, 7 (1957).

p+p'+g+q'=0, and that in particular the only nonzero
values are

(['+'*+'7+.['+ + 7 )
=(4/45)b'(Se ' ' '+3e—' ' ') (3.21a)

([ 6»Fo7t+y[*7»o7t)
= —(2/45)bt(5e —4o'Iyl+3e —o&'l~l)

(L*+»+&7t+.[*~»+&7t)
=(2/45)b4(10+5e tn'Iyl+e oo'Iyl)

([&pi&p&7t~r[&o&07t) =([zo&07t~ygyl&p17t)
= —(4/45)b'(5 —e on'I'I)

([xo'o7t+, [xoxo7t)
= (4/45)b4(5+5e 4&'I'I+2e oo'Iy—l)—

(3.21b)

(3.21c)

(3.21d)

(3.21e)

It is of interest to note that the three terms in the
expansion (3.16) which have been calculated above are
each zero unless 0= —/. In the derivation of theex-
pressions (2.1) and (2.2) for the relaxation times, terms
containing the functions Jto(u) with kN —l can be
omitted because their rapid oscillation makes their
effect on the relaxation negligible. However, the above
calculation indicates that the contribution of the inter-
molecular dipole-dipole interactions to Jp, (~) is zero
unless k= —/. At least, such is the case for the three
terms in (3.16) which have been calculated.

If the above quantities are used in Eq. (3.17) to evaluate
Cto&'&(r), one obtains the surprisingly simple result

CtoIo&(r)

=b i o(14/5)bt(5e ~'I'I+3e 'I'l)G4(r). (3.22)



279( pOLE , ZTERAC T(ONS(pOLE —D&pECULAR

follows

ER. MPL

']ar manner, it fom Eqs ('.22)
3 23) can be

In a sim
third germ» Eq'(313) that th« '

expressed
7b

, (» r)o d
p~pDj o

,i.o.d, . (3.23)C, ,
'"

2

6) t fpllows thatFrom Eqs ( ' )

[J7(o(u)3

.. i.-i,—l~o)P;"Jl'j) ('l&

}u—idu (3.29)(~,+ uo)
—iy3(&'+u

. 1
2 —l

o -iudu, (( )]o[uo+(loporo)
i,40Daj

time « 's defined bywhere the correlation
' 's

oID

Vi) ( 1)=nx(V ~
„=o 2

the sum pve "
14 After perform

here g'=—( ii D;
been assumed t

The first «r '
(3 18) and (3 '

f~llowing
3 29) it has aga'

written
~

r T
by use of Eq . '

~bt~~~~ the
Eq'

2~(~4 C4

'
te ration ove 7

pr that (opp

th p» of the tra
diffusion

7'0 Q )

nslationa

ing the
the first term:

According to the
'

]. s the translatio

ression for the s

herical partic ~

=I T where & is

expl

'
nt canbe exP es

m erature, an
coefficien

t nt Z' is the temp
If the viscous

( lo)(r)8

s retarding force p
x ression, —6

2 —00

viscous re
b the Stokes exp

l cular radius

00

force
—6 +l where ~

h Quid. Hence,

given
~

h mo ecu afollows
facient of vlscosl y

1 diffusion co-

that = ' '
sit

0

is the coe c
e rotationa

cl
viscous retar ing

the expression
e the

~

ciently
ue is give

3 Therefo re

su
viscous t»q,

d gy = pT/8orUIi
&, nts fpr

the correlate» ';
time is short

th t g =Soroiii a"
'

al diffusion coe

In most liqu»
1 If the correlation '

f (3.24) bv t a;o al and rotation

h rt that (oioro) & ' .
the evaluation . '

ase trans "' .
les are related 3'

. 0)(3.3D=-'u'D .
'

troduced previous y

btains the resu

A~an C

one o a

e uantities
h

(o)(r)o il~ordr—

3

)

. Af fo. ,3.20) d (3.14 .
obtains the expression

'
n over 7-, one o a'integr

)$'u 'du= (100Da) (3.26)[Jo~o(u 'u u=

atio

~
3b'

(I) r)o-ilruordr —
~

[Jodo(u).j'

'(A'+u')u du, 3.27L(A'+ u') '+ (lopprp) 'g—X

ia ain if (opprp)'«1, or f
fi d in practice,hi h' 1o

' can be neglected wit ithe term (lpoprp)' can e wit
which case

Hence t q
ave the values

(3.31)A'=3, 8'=6, C'=9.

ion o s 3.31), the integralser ion of the values (3.3
s. (3.28) and

.'4 The results are
rrin in Eqs.

numerically. " e

3.32a)'u 'du=0. 0124,[Jgo(u) j'(3+u' —u—

[Ji o(u))'{5(6+u') '

u' '}u 'du=0. 034. 3.32b)
0

+3(9+ )

ermolecular ipdi ole-dipoleution of the interm
't dinal relaxatio

d fo b
in e

'
the longi u

'

d
'

the following ormpressed in
2.10):

ill( ) rilocuopdr'
(
(16aoDj p

'u 'du. (3.28)[ J( ))u'(A'yu&) 'u u. --
8=1,utting p=v=-;,1' o yp

f P~~~ci
b . nd F. Oberhettinger e sb W. Magn sanPhysics, by

Company, New or,

C), I,
" v- e-. ( ) ClcdQTd~

(3.33)

ar Rov. . s. 15, 1 (1943), Chap. II,ar Rev. Mod. Phys.
c 2
' H am, numics (Cambridge niv

h ~ ~~ tio

N. B. S. (Columbia uiv



280 PAUL S. HUBBARD

Substitution of expressions (3.26), (3.28), and (3.29) for
the first three terms in the sum over ir in Eq. (3.33) and
use of the values given by Eqs. (3.32) gives

(1/Ti)"= (epr74h'/5aD)

X{1+0.233(b/a)'+0. 15(b/a)4+ . ). (3.34)

The same expression is obtained for (1/Ts)" by use of
Eqs. (3.23), (3.26), (3.28), (3.29), and (3.32), which was
to be expected since the correlation time 7.p has been
assumed to be short. The first term in Eq. (3.34) is the
expression that has previously been calculated. ' '

The above calculations have been based on the as-
sumption that the Taylor series expansion (3.4) con-

verges if )r~ & ~R~, which is plausible but difFicult to
prove rigorously. Since, in the calculations following the
expansion (3.4), one has ~r(&2b and ~R~&2a, the
condition

~

r [ & (
R

~

is satisfied if b&a. The series in the
result, Eq. (3.34), appea, rs to converge if b&a. In a
typical case, (b/a) might have the value —',, so that
Eq. (3.34) would give

(1/Ti)" = (err''b, '/5aD)
X{1+0.0583+0.0094+ . ). (3.35)

If the ratio of the successive terms in the remainder of
the series were not greater than (b/a)'= 4, the remaining
terms would not contribute more than 0.31% to the
value of (1/Ti)".

5. CONCLUSIONS

The contribution of intermolecular dipole-dipole in-
teractions to the nuclear magnetic relaxation of identical
spin- —, nuclei at equivalent positions in spherical mole-
cules in a liquid has been calculated. The assumptions
made were that: (1), the effect of cross correlations of
different dipole-dipole interactions is negligible, so that
the relaxations of the longitudinal and transverse com-
ponents of the nuclear magnetization are simple ex-
ponential decays with relaxation times T& and T2 given,
respectively, by Eqs. (2.1) and (2.2); (2), the motions
of the molecules can be considered to be translational
and rotational diffusion; and (3), the correlation time
r p, Eq. (3.25), is sufFiciently short that (Mprp)'«1, where
cop is the Larmor frequency. As a result of the short
correlation time assumption, the contributions to the
longitudinal and transverse relaxation rates were found
to be the same, and are both given by Eq. (3.34) in
the form of an infinite series, the first three terms of
which have been evaluated. The 6rst term in the series
is the result obtained in previous calculations, in which
the eGect of the rotations of the molecules was neglected.
In a typical physical situation, in which (b/a) =„the-
sum of the in6nite series appears to differ from the sum
of the First three terms by less than 0.31%, and the sum
of the first three terms is greater than the previously
obtained first term by 6.8%.

4. INTRAMOLECULAR CONTRIBUTION

The contributions of intramolecular dipole-dipole
interactions between identical spin-~ nuclei in equiva-
lent positions to the longitudinal and transverse relaxa-
tion rates are given, respectively, by Eqs. (2.9) and
(2.12), if the effect of cross correlations of different
dipole-dipole interactions is neglected. The vectors r;,
between nuclei in the same molecule vary with time only
in direction and not in magnitude. If the liquid mole-
cules undergo isotropic rotational Brownian motion, the
correlation functions (2.5) involving two nuclei in the
same molecule can be calculated by use of I'"urry's

theory in the same manner described in Appendix C.
Thus, one can obtain the result

APPENDIX A

Hobson has shown that, if n&ns&0,

c!$ m ( ri Q )I
]

—~s—)—
r)sn — (cig eiyP

(—1)" "(n—nz)!
e+impp m(p) (A1)

yn+1

where 0 and p are the polar angles of r, and p= cos8."
Hobson's definition of the associated Legendre function
is~5

(- ' ' '"()=b-, (3/40)(v'&)'("') '(—1)'
Xexp( —

~
r ~/r2) (4 1)

where

( 1)na dn+m

P "(ii)= sin 8 (p' —1)".
272gg f dpn+m

(A2)

rs ——(6D') '

-(2m+ 1)(rs—m)!—"'
eimsp m(&) (A3)y m(g y)

4pr(is+ m)!
(1/Ti) '= (3/10)y'f'i'rs P, '(r,,')-P

X{[1+(pppr2)pj '+4[1+(2ppprp) ] ) (43) "E. Ql. Hobson, The Theory of Spherical and Ellipsoidal
Harmonics (Cambridge University Press, Cambridge, 1931),
p. 134.

"A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press), 2nd ed. , Eqs. (2.5.29) and (2.5.17).

(1/T,)'= (3/20)~~a'r, P,'(r, )-
X {3+5[1+(oiprs)'j-'+2[1+(2o~prp)')-') (4 4)

(4.2) The spherical harmonics I'„(g,p) used in the present
paper" are given in terms of (A2) by

and D' is the rotational diffusion coeKcient. Hence one
obtains from Eqs. (2.4), (2.9), and (2.12) the familiar
results
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By use of (A3), Eq. (A1), written with the upper sign,
can be expressed as

8"—"( c) c) i 1

as"-"&ax ay) r

(—1)a—~ -42r(n —r)z) !(n+ nb)!
—»2

(2n+1)
I'-"(&,e). (A4)

c) f 8 c)
Dp= , D~(—=—W2 'I2~ +—i

Bs &Bx By

A similar equation, but with —i in the left-hand member,
can be obtained by taking the complex conjugate of (A4)
and using the relation F„(8,(i) = (—1) F' *(0,It). If
one introduces the operators

Eq. (A4) and its complex conjugate lead to the equation

D,a-~D,m(1/r)

(—1) 4-2r(n —nZ). ( n+ n)b( I-
V.+"(0y). (A6)

ra+) 2~(2n+. 1)
Since 7'(1/r) =0 if r) 0, it follows that

D.'D .'(1/) =(!)"(D.'—~')'(1/)
= (-', )"D "(1/r). (A7)

Hence, if a, b„and c are non-negative integers whose
sum is e, and if b&c,

D 'D&'D &c(1/r)=(-,')cD a " 'D (~'(1/r). (AS)

Similarly, if b&c,

D aD&bD c(1/ )r(2) bD a (c b)D——(c—)b(1/ )r(A9)
It follows from (A6), (A7), and (AS) that, for any non-
negative integers u, 6, and c whose sum is n,

y n+1 2" (2n+1)

(—1)" 42r(n b+c)—!(n+f)—c)!
DpaDxbD )c(1/r) = (A10)

(2k+1) (k 2n+ I( —I +2))!(k—+m+ I(+I rt)!—
D aD vD p(Iv va/rb+)) —( 1)c

2" "(2k+2((+1)(k —rn)! (k+nb)!
(P' va+v vI/rb+a+ I) (A

—11)

Finally, it follows from Eqs. (A10) and (A6) that, if t(, v, and )t are non-negative integers with sum K, and
~

nb
~
&k,

Q,MM'( )
—y M(il)—

P(R,Rp, r)
R~&

-Fr, M'(0 )
X P(R(I)d'Rd'R(I. (82)

R L'+z

The above expression can be evaluated in the same
manner used by Abragam. 4 If the translational diffusion
coeKcient of the molecules in the liquid is D,

P(R,Rp, r) = (s2rDr) 2(2 exp( —(R—Rp)2/sDr). (83)

The probability density P(Rp) is simply unity divided

by the volume of the sample. Hence, since lP' is large
and differs negligibly from the total number of spins in

APPENDIX B

Substitution of the expression (3.3) for fr, M into the
definition (3.13) gives

G,MM'( )
=E"(LVr,M(Q)/Rc+'jc+, [I'r, M(0) E/~' +'

jI), (81)

where R is the magnitude of R, and 0 represents the
polar angles specifying the direction of R. If P(R Rp, T)
is the conditional probability density that the relative
displacement of the centers of the molecules is R at time
t+r if it is Rp at the earlier time t, and if P(Rp) is the
probability density that the relative displacement is
Rp at time t, then

the sample, 1V"P(Rp) is equal to n, the number of spins
per unit volume in the sample. The integrals in (83)
are over all space for which R and Rp are greater than
2u, the distance of closest approach of the centers of
two molecules.

The expression (83) can be expanded in terms of
spherical harmonics by first using the Fourier integral
expansion

exp
8Dv

(2Dr~
'(2

exp( 2D&p2)c(v ~ (R—Rc)dpIp (84)

and then replacing exp(iIp R) and exp( —it) R,) by their
expansion of the form

e"R=42r(pr/2pR) "g i'F'&™~(Q)I'&"(0')7I+»2(pR), (85)
ml

p exp( —2D7 p')

X Jr+q~2(pR)R + I dR dp (86).
2Q

where 0' specifies the orientation of y, and the J~+~/2 are
Bessel functions of the first kind. After these expressions
are substituted in (82), and use is made of the orthogo-
nality of the spherical harmonics, one obtains

Gr,z'(r)=n, hg. L,b M M( 1)—
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Bessel functions satisfy the relation

[E 'J.(pR))= —pR 'J,pg(pR).
4R

(87)

If s is replaced by L——,
' in (87), where L)0, and the

equation is integrated from 2a to ~, one obtains

APPENDIX C

Since r=—r,—r, , where r; and r; are, respectively, the
position vectors of the ith and jth nuclei with respect
to the centers of the two different molecules in which
they are located, it follows that

Jz+ytg(pR)R dE

=p '(2&) '"~r—~t2(2&p) (BS)

The above equations have been derived on the assump-
tion that r&0 Since. the average in (81) is independent
of t, replacement of t by t rgiv—es GI.I. ~~'(r)
=Gr, z

'
(—r). Hence, substitution of (BS) into (86)

followed by a change in the variable of integration from

p to N=2ap gives Eq. (3.13).

From Furry's theory of rotational Brownian motion"
it follows that the probability of a rotation of the spheri-
cal molecule during time ~ through an angle between
n and n+dn about an axis c pointing into the solid
angle dQ'= sin8'd6'd@' is P(n, r)dndQ', where

P(n, r) = (1/4w') P (2m+1)
n=o

X [cosnn —cos(m+1)n)e "'"+'&n". (C5)

The probability that at time t r; points into solid angle
dQ is simply dQ/4n. . Hence,

([& 7~+.[»7~)

(11
dQ dnP(n, r) dQ's'(r, n, c)z

&4~).

2'
dQ duP(n, r) dQ'[s cosn

+ (c r)c, (1—cosn)+(c,y —c„x) sinn)s. (C6)
Xg) Sgp SJp7

where the spherical components are defined by

(C1)
The integrations in the above expression can be per-
formed easily, with the result

x,,=—s, , x, ,=a2—'t'(x, sty, ).
Since the motions of r; and r; are independent,

(Lx' 7~+.[».)~&
= (Lx' 7~+.)([x'.7~&.

(C2)

Suppose that r, has the value r at the time 3 and the
value r' at time t+r. If the molecule in which r, is 6xed
rotates through an angle a about a direction specified
by the unit vector c=(sino' cosg', sing'sing', coso') in
the time r between t and t+r, then

r'= r cosn+(c r)c(1—cosn)+(cXr) sinn (C4)
= r'(r, n, c).

Since the motions of r, and r, are isotropic, ([x;„),+,)=0
and ([x,,),, )=0 for any t. Furthermore, since r; and r,
have the same length b, and undergo the same kind of
motion, ([x;„),+,[x;,),)= ([x;„)~~,[x;,)~&. Therefore,

([s 7~+ [s 7~&=(1/3)&'e ' " (C7)

([» 7+.[xt.) &=(1/3)b'( —1)'~,—e ' " (CS)

The above expressions were derived for ~&0. Since the
average in (CS) is independent of t, replacement of t by
t r in the correla—tion function on the left side of (CS)
leads to the conclusion that it is an even function of 7-.

Hence, substitution of (CS) into (C3) gives (3.19).

The same result is obtained for ([x,)N.,[x;)~& and

([y,),+,[y,),&. The correlation functions that involve
two different Cartesian components of r;, such as
([y,),+,[»),&, are found to be all zero, as is obvious from
symmetry considerations. The expressions for the cor-
relation functions of the Cartesian components of r, lead
to the following expression for the correlation functions
of the spherical components:


