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Higher order weak-interaction effects are studied in the framework of vector meson field theory. We find
that such effects may be observable even at low energy. The cause of this can be traced precisely to the
unrenormalizability of the theory in the sense of conventional perturbation expansions. These expansions
are circumvented by new techniques for summing the most singular parts of perturbation graphs. In this
first paper we study in detail the infinite subset of uncrossed ladder graphs. Purely leptonic processes are
considered to begin with. The corresponding Bethe-Salpeter equation is soluble by a new iteration scheme.
In leading order we reproduce the conventional zero-energy results provided g? is replaced by 3¢2/4. (g=bare
meson lepton coupling constant). An argument is presented which leads to the conjecture that this result
is valid for larger classes of graphs. However, there exist energy-dependent deviations from the conventional
second-order results. These are in principle observable in x decay. The applicability of the theory to semi-
leptonic and nonleptonic phenomena depends on properties of the baryon and meson currents and on the
effects of the strong interactions. Preliminary considerations along these lines are given.

I. INTRODUCTION

N this paper we present a new approach to the study
of higher-order effects due to weak leptonic inter-
actions. It has often been remarked that this is an
interesting theoretical problem in connection with the
meaning and the limitations of field theories. It is
usually assumed, however, that at least in the low-
energy region such effects will be (or, indeed, ought to
be) too small to be observable. As will be noted in due
course, our present treatment of the higher order effects
is incomplete in several respects. But if the partial
results to be reported here are correct at least to order
of magnitude, one will have to abandon the view that
even at low frequencies (100 MeV) the higher-order
effects are negligible.

Until now, the description of the weak-interaction
phenomena has usually been in terms of a phenomeno-
logical or “‘S-matrix theory.” By this we mean that for
each weak process, the transition matrix element is
taken to be the simplest one consistent with the sym-
metry properties imposed. To give some background
for the considerations which led us to the present under-
taking, we shall begin by listing some of the reasons
why this procedure is in general unsatisfactory.

(1) Unitarity catastrophe. The matrix elements
which describe weak interactions at low energy cannot
represent these processes adequately at high energies
because they give cross sections inconsistent with uni-
tarity.! For example, the cross section for the “leptonic”

process?
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* Supported in part by the U. S. Atomic Energy Commission.

1 Alfred P. Sloan Foundation Fellow.

1 This seems to have been emphasized first by W. Heisenberg,
Z. Physik 101, 533 (1936); Ann. Physik 32, 20 (1938).

2 We shall call reactions “leptonic” if they involve leptons only,
and “‘semileptonic” if they involve strongly interacting particles,
in addition to leptons.

is proportional to the incoming neutrino energy in the
lab system if we consider the four-fermion S-matrix
coupling for u decay to be valid at all energies. In ac-
cordance with recent observations® we introduce here
and throughout the distinction between two kinds of
neutrinos »,, v, which are paired with u and e, respec-
tively. We only consider such reactions which obey the
additive laws of conservation of lepton number and of
& number.

(2) K1—K, mass difference. The measurement of
this quantity provides for the first time a numerical
value for an effect not included in the conventional
theory of the weak interactions. That is, since the
“effective coupling constant” for this mass difference is
107 times smaller than the Fermi constant, it is neces-
sary to conclude either that there are “very weak inter-
actions” in addition to weak interactions or else (as is
customarily assumed) that the K;— K, mass difference
is a “higher order effect” in the weak interactions. In
the latter case we are directly faced with the problem
of how to compute such higher order effects, which
necessarily takes us beyond the S-matrix theory.

(3) The foregoing is a special example of a more
general question which we shall discuss in this paper:
Can some weak processes be generated by others, in cases
where the two are nof linked by strong interactions?
The S-matrix theory begs this question which is of
particular interest in connection with the recent indi-
cations of AS=—AQ decays,* and the difficulty of con-
structing a simple system of weak currents consistent
with such decays.

3 G. Danby, J. Gaillard, K. Goulianos, L. Lederman, N. Mistry,
M. Schwartz, and J. Steinberger, Phys. Rev. Letters 9, 360
(1962).

4R. Ely, W. Powell, H. White, M. Baldo-Ceolin, E. Calimani,

S. Ciampolillo, O. Fabbri, F. Farini, C. Filippi, K. Huzita, G.

Miari, U. Camerini, W. Fry, and S. Natali, Phys. Rev. Letters
8, 132 (1962).
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(4) There is a further and related group of problems
that find no place in an S-matrix theory, namely the
estimates of corrections to the matrix elements due to
other weak effects. As a result it is not clear how ac-
curate the predictions of the theory are meant to be.
It is our purpose to show that the points 3 and 4 are
far from academic.

All the problems raised could be handled if we had a
Lagrangian field theory of weak interactions. Evidently
we should understand by such a theory more than only
a Lagrangian with commutation relations. In addition
we would need meaningful approximation methods for
dynamical calculations. In such a theory unitarity
difficulties should not arise. The computational methods
which form part of it should allow of estimates of
“weak” corrections to leading terms and it should be
manifest which processes are consequences of the
original Lagrangian.

While these are well-known desiderata, the construc-
tion of a field theory of weak interactions has neverthe-
less not made much progress. The main reason for this
is that the field theories of weak interactions which
have been proposed so far are all unrenormalizable.
Two possibilities have been thought of: (a) Fermi field
theory. One considers the familiar Fermi interactions
as a field theoretical coupling rather than as an S-
matrix interaction. We shall not examine this possi-
bility here, but hope to come back to this in a sequel
to the present paper. (b) W theory. It has been widely
conjectured that weak interactions are mediated by
massive bosons with spin one, generally referred to as
W’s in what follows. Although at the time of writing
the question of the existence of WW’s is experimentally
still open, we shall assume throughout this paper that
W interactions are indeed the dynamical origin for
phenomenological Fermi couplings. Even if W’s would
not exist, the methods and results presented here may
be instructive for the study of higher order effects.

As is well known, the W theory is much less singular
than the Fermi field theory in the lowest nonvanishing
order for processes of the type (1.1). But this distinc-
tion does not exist for higher order effects in the con-
ventional power-series expansion. Counted in powers of
divergence, both theories are equally unrenormalizable.

We expect that these difficulties of the W theory may
lie only in the application of the perturbation expans-
sion and that a suitable technique of resumming graphs
so as to let the principal singularities damp themselves®
will provide the way of obtaining finite answers.

In this first paper on the field theory of weak inter-
actions we report in detail on a calculation which ap-
pears to indicate the correctness of this hope. In par-
ticular, we have considered for leptonic processes like
Eq. (1.1) the graphs which generate the Bethe-Salpeter
equation (uncrossed ladder graphs). For the perturba-
tion expansion, these graphs have divergences as serious

8 This line of thought has previously been followed by T. D.
Lee, Phys. Rev. 128, 899 (1962) in finding the leading radiative
correction for electromagnetic W couplings.
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as any in the theory. -However, a formal summation
of the most divergent terms of the series gives a finite
result which differs by a measurable quantity from the
lowest order perturbation term. The formal summation
we use is shown to be equivalent to solving exactly a
modified Bethe-Salpeter equation (Sec. IV). The solu-
tion to this modified equation may be iterated with the
correction terms in the original Bethe-Salpeter equa-
tion. We do not know whether this new successive ap-
proximation procedure converges as a whole. However,
we show (Sec. VI E) that each order is finite, and more
specifically that the first step in this iteration gives
negligible additional corrections. The extension of these
techniques to arbitrary (crossed) ladder graphs for
lepton-lepton scattering appears possible. We shall re-
turn to this problem and to the problem of other types
of graphs (propagator, vertex, meson scattering, etc.)
in future papers.

In this framework, the divergence of the perturbation
series can be recognized as being due to the use of the
perturbation-series expansion of the true solution in a
region where it does not converge. More explicitly,
what happens is the following. First one introduces a
provisional cutoff which makes finite every individual
term of the conventional perturbation expansion. This
cutoff should evidently be introduced in a covariant
way. For this we use a regularization-type procedure,
the details of which are discussed in Sec. IV A. We
then find an unprecedented situation (which has, in
particular, no counterpart in the calculation of the
leading radiative correction of vector meson electro-
dynamics). Namely, for sufficiently large but finite
cutoff, the series as a whole is divergent. Only after
having suitably defined the meaning to be attached to
this divergent series were we able to let the cutoff tend
to infinity. The final results are then cutoff-independent.
A qualitative way of showing how this could come about
is given in Sec. III.

The present procedure leads to experimental pre-
dictions which can possibly be tested in the rather near
future. Just as the Lamb shift and anomalous magnetic-
moment measurements provided not only the impetus
for but also the justification of the renormalization pro-
gram, so the present technique of extracting finite
results from the W theory can find its justification only
in confrontation with experiment. Just as it is not
known till this day what is the (presumably asymptotic)
sense in which spin 4 electrodynamics is valid, so do we
have no idea about the sense in which the present ex-
pansion is true—if true at all. As is well known, the
success of renormalization depends on the fact that the
infinities in spinor electrodynamics can be identified
with unobservable changes in mass and coupling con-
stant. Our procedure is distinct in many respects so we
wish to give it a distinct name. After a consultation of
one of us with his friend, Professor Harold Cherniss,
we propose to call it “peratization.’’®

6 &reipof means: boundless, infinite, that “in which one is en-
tangled past escape,” see H. Liddell and R. Scott, Greek-English
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In Sec. IV we derive and give a formal solution for
the Bethe-Salpeter equation for lepton-lepton scatter-
ing. In Sec. V we give a reduction formula for Fourier
transforms, in a 4-dimensional hyperbolic space, of
functions of the interval ? in that space. The reduction
formula is then applied to the solution of the integral
equation which leads to a form convenient for further
analysis. In Sec. VI we discuss the mathematical prop-
erties of the solution for various ranges of the parameters
involved, which are the momentum transfer, coupling
constant, and boson mass.

The procedures mentioned in the foregoing can be
applied to leptonic reactions other than Eq. (1.1). In
this context it is of particular interest to discuss the
“first and higher forbidden processes.” By this we mean
reactions that do not violate lepton and p-number con-
servation but are nevertheless zero in second-order per-
turbation theory. Some questions related to these
processes have been touched on elsewhere.” 8 In Sec. IT
we give a comprehensive survey of these reactions.
Their inclusion in the present considerations is abso-
lutely essential, as will be clear from the following
example. There is good evidence that (at least at low
energy) neutral lepton currents (if not zero) are much
weaker than charged ones. In a theory which does not
introduce neutral lepton currents in the basic inter-
actions (like the present one) but in which it is claimed
(as is done here) that higher order weak effects can be
significant, one has to face the question whether neutral
lepton currents induced by weak radiative corrections
are suitably small. More generally, Sec. II is devoted
to an enumeration of all such effects, leptonic, semi-
leptonic, and nonleptonic which led one to assume that
at low energies all higher order weak effects should be
negligible.

Of course there is no evidence one way or the other
as to the existence of neutral currents in leptonic? re-
actions. Nevertheless, we believe it to be an encourag-
ing feature of our method that it shows (at least at low
energies) that the amplitude ratio of first-forbidden to
allowed leptonic processes is of order g? Ing, where g is
the dimensionless W-lepton coupling constant. A result
of this kind raises an interesting question. g is related to
the W mass m and the Fermi constant G by

2-IG=gt/m?. 1.2)
This does not tell us how big g2 Ing is. However, if W’s
do exist, it is most natural to presume that their mass
lies in the 1-BeV region in which case g?lng is very
small (~1074).

These and other physical results pertaining to lep-

Lexicon (Oxford University Press, New York, 1940), p. 184. On
the other hand, the affirmative 78 mépaf means: “to cut a long
story short,” see 1bid; p. 1365 s-v wépat IV.

7 G. Feinberg, Brookhaven National Laboratory Lectures, 1962
(to be published).

8 A. Pais, in Theoretical Physics (The International Atomic
Energy Agency, Vienna, 1963), p. 593.
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tonic processes are summarized in Sec. VII. Our main
conclusion is the following. For allowed leptonic proc-
esses, the leading approximation in peratization theory
is of order g2, just as in perturbation theory. Upon
identification of (3g?/4) in peratization theory with g
in perturbation theory, the zero-energy results of the
two theories become identical in their respective leading
approximations. However, again for allowed processes,
there are finite distinctions between the two theories
in as far as energy-dependent terms are concerned. As
examples we mention new corrections to the u-decay
parameters, see Sec. VII, Table I. These results may be
understood in a simple way from the structure of the
W propagator. This follows from an identity discussed
Sec. VI D. We indicate there why this identity leads
us to conjecture that the results just mentioned will be
maintained even beyond the uncrossed latter graphs.
The question of unitarity in leptonic processes is dis-
cussed in Sec. VII.

In as far as semileptonic processes are concerned, we
shall mention some qualitative aspects in Secs. II and
III. Section VIII is devoted to a discussion of possible
implications of our method for reactions of this class.
Such a discussion has necessarily to be largely con-
jectural in nature, because of the unknown high-energy
behavior of strong-interaction form factors. Neverthe-
less, on the basis of our results on the leptonic processes
we are led naturally to several conjectures about the
semileptonic processes. It is noted that the AS/AQ=—1
processes may be of the same order (g?) as the AS/AQ
=-1 decays, even in a theory where there are no
AS/AQ= —1 currents in the Lagrangian. A related con-
jecture is that the semileptonic transitions involving
effective neutral lepton currents are of higher order in
g (~g*Ing), as they are, indeed for the corresponding
leptonic processes. Of course, we assume here that there
are no neutral-lepton current interactions in the Lagran-
gian. Some further experimental consequences of our
conjectures for semileptonic processes are discused. [ See
the note added in proof to Sec. VIIL.]

If further study will substantiate the semileptonic
conjectures, the attractive possibility can be reenvisaged
that one pair W+, W~ of charged vector mesons would
be sufficient for the description of all weak phenomena.
As will become clear from what follows we shall have
nothing definite to say either about possible neutral
vector mesons or about nonleptonic phenomena.

In Sec. IX we list some of the questions which we
hope to discuss in the future. These include the applica-
tion of the peratization program to other weak graphs,
electromagnetic and strong-interaction corrections, etc.

Finally, it will be seen below (see Secs. IV ff) that in
the leading approximation of the peratization program
the mass of fermions can be neglected in as far as these
particles play a virtual role only. This may clearly
have far-reaching implications for the study of strong-
interaction symmetries. It tends to further substantiate
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the view? that weak interactions may provide a basic
tool for the study of strong interactions.

II. POSSIBLE EFFECTS OF THE WEAK
INTERACTIONS IN HIGHER ORDER

In this section, we shall discuss qualitatively some
physical effects which might be expected to occur if the
corrections to the weak interactions coming from higher
order graphs are comparable to the contributions of
lowest order graphs. We shall at the same time consider
some of the experiments which yield information about
the possible magnitude of such effects. The analysis
given here is more general than the specific results we
later obtain.

We consider in this paper a theory in which a single-
charged vector meson interacts with lepton pairs,
baryon pairs, and boson pairs or single bosons. We do
not exclude the possibility that the full Lagrangian also
contains interactions between baryons and bosons on
the one hand and neutral vector mesons on the other,
though we shall have no occasion to discuss such
couplings in this paper. However, it will be assumed
throughout that the Lagrangian does not contain neu-
tral vector meson-lepton interactions. By lowest order,
we mean the exchange of a single vector meson, while
by higher order, we mean the exchange of several vector
mesons or the emission and reabsorption by a particle
of a vector meson. We do not imply that these higher
order corrections (in the sense of perturbation theory)
are small compared to the lowest order, although they
may appear to have more powers of g2 As we shall see,
in some cases, the magnitude is quite comparable.

As we start out with an open mind about the relative
magnitudes of contributions in various “perturbation”
orders, it has to be in the spirit of our work to consider
all reactions not forbidden by absolute conservation
laws, which we take to be the conservation of charge,
baryons, leptons, and u numbers. Indeed, all such re-
actions have to occur to some ‘‘perturbation” order.
In this connection it is important to recall that some
of the selection rules proposed for weak interactions
can only be valid to lowest order (such as the AS<2
rule), and therefore we must expect them to be violated,
at least to some degree, by the higher order weak
corrections.

A. Leptonic Reactions

Here we consider processes where only leptons occur
in the initial and final states. The simplest possibility
is a single lepton in the initial and final state. By the
conservation laws, this must be the same particle and
so we are dealing with the lepton propagator. There are
several kinds of effects possible here. These include a
contribution to the lepton self mass, a wave function
renormalization, and a change in the momentum de-

9 A. Pais, 12th Solvay Conference Report, Brussels, 1961.
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pendence of the propagator. For the first two of these,
we only mention that even in a renormalizable theory,
they are not computable, but must be inserted as un-
known constants to be determined by experiment. It
would be surprising if the situation were different here.
However, it may be mentioned that, provided that our
fundamental interaction satisfies <ys-invariance, the
neutrino mass remains zero in all orders of weak inter-
actions. Furthermore, if it is assumed that the inter-
action is symmetric® between u and e, then the u—e
mass difference cannot be obtained from the theory.

The momentum-dependent corrections to the meson
propagator are an interesting possible higher order
effect. The agreement of the muon g—2 value with a
theory which neglects such corrections indicates that
these corrections must be small for momenta less than
the nucleon mass.!! A power-counting argument of the
type we give in the next section indicates that this is
indeed the case in the theory we consider, where the
corrections are expected to be ~Gp? Ing? We will return
to this question in a later paper.

Consider next the lepton 4-point function. This
governs such processes as p decay, electron-neutrino
scattering, etc. There are a number of new phenomena
which might be expected here if higher order effects are
important.

(1) Occurrence of ‘‘forbidden” processes. The La-
grangian usually chosen for the leptonic weak inter-
action, in the 2-neutrino theory has the form

igW { v, (1+vs)vutey,(1+vs)ve} +Hee.  (2.1)
It is clear that, with this Lagrangian, such processes as

vt = vt (2.2)
or
e+et— v+, (2.3)

do not occur by exchange of one W meson, whereas
they do occur through the exchange of 2, 4, 6, - -+, 2n
mesons (Fig. 1). We call these forbidden processes.
The detection of such processes as (2.2,3), if they are
at all comparable in magnitude to the ‘“‘allowed” proc-
esses which do occur in lowest order, namely reactions
(1.1) and also
Vc+ e— Ve+e N

e+et— v,+7.,

1 G, Feinberg and F. Giirsey, Phys. Rev. 128, 378 (1962).

1 G. Charpak, in Proceedings of the 1962 Annual International
Conference on High-Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), p. 476.

(2.4)
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may be possible via astrophysical methods!? or labora-
tory measurements.!3

We note that a modification of the Lagrangian (2.1)
to “allow” the processes (2.2,3) via one meson exchange
would necessitate the violation of the additive conserva-
tion of u number, or the introduction of new bosons
which do not interact with baryons. However, the re-
actions (2.2,3) can occur by combining electromagnetic
interactions with the lowest order weak interactions
through the generation of a charge form factor!* for ,.

(2) Violation of local action of lepion pairs. It has
been noted!® that in a theory where the interaction (2.1)
is taken only to second order, the scattering amplitude
for processes such as (1.1) and (2.4) depends only on
the momentum transfer between the particles occurring
in a boson-lepton vertex, and not on the incident energy,
for example. This result essentially follows because these
leptons occur at a single space-time point in the lowest
graph. If, however, the higher order graphs are im-
portant, this condition is violated and we may expect a
dependence also on the other parameters such as the
incident energy. Such dependence may not be easy to
detect.

In the special case of the u decay, the lowest order
graph has a definite momentum-transfer dependence
which changes the electron spectrum in such a way that
the Michel parameter is >%. This result would not
hold in general if higher order effects are important,
although as we shall see in Sec. VII, it remains true for
the particular graphs we consider in this paper.

(3) Change of effective coupling for ‘‘allowed” proc-
esses. If the higher order corrections to allowed processes
are important, we may expect that the effective Fermi
constant defined by calculating the matrix element for
say u decay at ¢?=0, will differ from the lowest order
value g2/m?. This might show up as a difference in the
vector coupling constant for 8 decay and u decay, in
contradiction to experiment, unless a corresponding
change occurs for the B-decay constant. This we discuss
further below, under semileptonic processes. Note how-
ever that the conserved-vector-current hypothesis does
not ensure equality of Gg and G, once higher order weak
corrections are included, since the vector current is not
conserved in the presence of weak interactions, at
least in a theory with a single charged boson. Because
of this nonconservation the W theory is also not
renormalizable.

It might also be expected that the higher order cor-
rections will produce deviations from the V—A4 theory
in p decay. Such effects, however, are expected to be
proportional to the lepton mass, and so probably will
be very small corrections.

12H, Y. Chiu and R. E. Stabler, Phys. Rev. 122, 1317 (1961).

18 M. Schwartz (private communication).

¥ M. Ruderman, G. Feinberg, and J. Bernstein (to be
published).

16 A, Pais and S. Treiman, Phys. Rev. 105, 1616 (1957). A. Pais,
Ref. 8 and Phys. Rev. Letters 9, 117 (1962). T. D. Lee and C. N.
Yang, Phys. Rev. 126, 2239 (1962).
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B. Semileptonic Reactions

We now consider processes involving lepton pairs to-
gether with strongly interacting particles. Here again,
various new phenomena may occur when we include
contributions beyond the lowest order. However, the
classification of such phenomena becomes more difficult,
because there is no obvious guide to the correct inter-
action between the weak vector mesons and the strongly
interacting particles. For our considerations we will
take as a model a single-charged boson interaction with
AS=0 currents and with AS=-+AQ=1 currents, e.g.,

Ling= iglwuﬁ')’#(1+75)?
+ig2W“X’Y“(1+’Y5)p+H.C.+ Tt
For this Lagrangian, together with (2.1), we again

classify processes as allowed or forbidden. The allowed
semileptonic processes include, for example,

(2.5)

n— p+e+v.,
A— pte+v..

Forbidden processes include 3 types:

(2.6)

(a) Transitions involving neutral lepton currents,
such as
vetp— vetp, 2.7
or

Kt —qattet4e, KLQ— ut+tpu.

(b) Transitions with AS=1, AQ=—1, such as

2t > ntut+to,,

K — a+et+u,. 28)

(c) Transitions with AS=2, such as

E-— nte+ 7.,

E— pte 7. (2.9)

All the above processes may be generated in higher
order with the interactions (2.1) and (2.5). Some
graphs are shown in Fig. 2. We note that the neutral
lepton currents occur in ladder graphs only through
even numbers of virtual mesons while the AS=—AQ
and the AS=2 reactions involve an odd number of
mesons greater than 1.

1Y

¢

~ 1 ‘e

(@)

F16. 2. Forbidden semileptonic processes: (a) for a theory with-
out neutral lepton currents in the Lagrangian; (b) for a theory
without AS=—AQ currents in the Lagrangian; (c) for a theory
without |AS| =2 currents in the Lagrangian.
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The relevant experimental facts concerning the for-
bidden processes are that the AS=—AQ reactions
appear to occur with amplitudes comparable to the
AS=-AQ reactions,* while reactions involving neutral
lepton currents appear to be absent.! No examples of
AS=2 leptonic decays have been reported but ap-
parently no systematic search has been carried out as
yet for them.

We shall see later how the difference between the
odd- and even-order graphs may be decisive in account-
ing for why the reactions (a) do not go.

There are also a number of novel effects for the
allowed reactions:

(1) Change in the effective vector coupling constant
in 3 decay. We mentioned above for the u decay that
the higher order effects could modify the effective
Fermi constant. The same may in principle occur in 8
decay. The observed equality of G, and G to within
49, then implies that if such effects do occur, they
should be the same for G, and Gg. If such is the case,
it is likely to put restrictions on the form of the weak
interactions. We will return to this point in Sec. VIII.

(2) Nonlocal action of lepton pairs. It has been pointed
out by several authors's that there are detailed theorems
about the energy and angular dependence of cross sec-
tions, following from the assumption that the leptons
emitted in a weak decay occur at a single space-time
point. Since this is not in general the case for the
higher order corrections to allowed processes, we would
expect that these theorems may be violated if the cor-
rections are important. An experimental test of some
of the theorems may soon be forthcoming in the high-
energy-neutrino absorption experiments.

(3) Violations of the AT=1 rule!” Since the AT=1
rule is a lowest order selection rule, it may be that
higher order corrections will violate it. It is therefore
important to test this rule experimentally, particularly
in the high-energy-neutrino reactions.

C. Nonleptonic Processes

The nonleptonic processes will perhaps furnish some
of the most searching tests of any field theory of the
weak interactions, due to the wealth of experimental
material concerning such interactions. Indeed, the only
presumed effect of the higher order weak interactions
observed to date is the K;—K, mass difference, a
nonleptonic matrix element.

The most important bits of information we can ex-
tract from the experiments concerning the nonleptonic
interactions are that for these interactions, there is a
hierarchy of strength in the following sense:

(1) The symmetries of the strong interactions, such
as strangeness conservation and parity conservation are
valid to about 10~7 in amplitude.

18T, D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960).
17T, D. Lee and C. N. Yang, Phys. Rev. 126, 2238 (1962).
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(2) The consequences of the combination of the
strong interaction with (2.5) taken to second order are
valid to about 10~7 in amplitude. Specifically, the
K;1—K, mass difference which arises as a combined
effect of the strong interaction with (2.5) taken to
fourth order (emission and absorption of two virtual
vector mesons), is smaller by a factor 10~7 than proc-
esses occurring to second order in (2.5).

On the basis of these points it seems very reasonable
that for the nonleptonic interactions, successive orders
of g? are indeed smaller by factors of 107,

We wish to point out that this conclusion, if accepted,
does not commit us to the view that the same result
follows for leptonic or semileptonic processes. This is
because of the possible damping effects of the strong
interactions which are most pronounced in the non-
leptonic processes, where every vector meson must be
emitted and absorbed on a strongly interacting particle.
Thus, if the strong interactions do damp the W vertices
at high energies, we expect that this damping effect
will be most pronounced in the nonleptonic processes.
In the leptonic processes, such damping is of course
absent, while in the semileptonic processes, it is less
pronounced, since W mesons may be emitted by a
baryon and absorbed by a lepton. We shall indicate in
Sec. VIII circumstances which lead to large higher-
order weak effects for semileptonic processes, and small
effects for nonleptonic processes.

With this we conclude our qualitative review of the
possible effects of higher corrections to weak inter-
actions and turn now to more quantitative estimates.

III. THE POWER-COUNTING ARGUMENT

The starting point in this section is conventional
perturbation theory. We consider the contributions of
nth order in g to the amplitudes, for processes to be
specified. In particular we determine the maximum
degree of divergence which occurs in that order by
means of a simple counting of powers of virtual mo-
menta. We show how this information leads one to
anticipate the maximum possible g dependence of the
leading approximation in the peratization method.
None of the results of this section constitutes definite
proof. However, it has been our experience that, before
one goes into mathematical detail, one obtains from
this preliminary power counting a very helpful qualita-
tive orientation as to what can be expected.

As a first example we consider the reaction (1.1).
In this case, as for all two-body reactions, four quantities
enter which (in our units) have the dimensions of
momenta: energy and momentum transfer, the W
mass 7, and a cut off A for virtual momenta. For
orienting purposes it is most convenient to consider
the low-energy limit where the amplitude dependence
on energy and on momentum transfer can be neglected.
Then only A and m appear (we may neglect the de-
pendence on the lepton masses).
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g % reaction (1.1).
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It is helpful to consider first the uncrossed ladder
graphs. They are defined by the condition that mesons
emitted by one fermion are absorbed by the other
fermion, and that the orders of emission and absorption
are the same. The lowest two ladder graphs for our
processes are drawn in Fig. 3. Their general structure
is as follows. There is a “u line” which has alternating
p and v, sections and similarly an ‘e line” with e, v,
sections. As noted in Sec. II, for this allowed process
the number of W rungs in a ladder is odd. In powers
of g, the orders are 2(2n+1), #=0, 1, - - -

We now count powers as follows. Each integration
over a virtual momentum gives A* from a volume
element. Each fermion propagator counts as A~%. Each
W propagator counts iz general as A° This is true be-
cause this propagator is of the form (g,=momentum

transfer)
—i(@wtm?u0,)/ (+m?). 3.1

In order g2 this operator is sandwiched between spinors
referring to the real initial and final states. As is well
known, the ¢,g, term in Eq. (3.1) then becomes pro-
portional to (lepton mass)?. Thus in this special case
the propagator counts as (momentum)—2. This argu-
ment does not apply whenever a W propagates be-
tween virtual fermions.

Collecting powers of A and taking note of proper
dimensions, one sees that the general ladder graph has
a leading singularity proportional to m~2g*"+2(A/m)*",

n=0, 1, ---. The sum over these leading singularities
contributes
gF(x), x=(gA/m)*, F(x)=2 am", (3.2)
n=0

where the numbers a, do not depend on g or A.

Let us now assume® that we can define a limiting

process

F(w)=lir£1°F(x), (3.3)
such that we get a finite number F(). In Secs. V and
VI we shall see that this is possible. Then, like in
perturbation theory, our leading approximation is still
0(g?, and F() redefines at zero energy the strength
of the effective interaction. It will become clear in
Sec. VI that one should not consider g?F(«) as a re-
normalized coupling strength in the usual sense.

Let us next apply a similar reasoning to the forbidden
process (2.2). The first two ladder graphs are drawn in
Fig. 1. Only ladders with even numbers of W’s con-
tribute. In the same way as above, one finds that the
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leading singularities contribute

©0
=423 Buxm,

n=0

gH(x), H(x) (3.4)

where «x has the same meaning as in Eq. (3.2) and where
the B, are another set of numbers independent of g and A.

If there were to exist a finite H (%) it would appear
that according to the present method the allowed and
forbidden processes would be of the same leading order
in g. However, in Sec. VI B we shall develop a limiting
procedure which applies uniformly to allowed as well
as to forbidden processes and which yields

F(o)=%, H(x)=0. 3.5)

It will turn out that the leading order for reaction (2.2)
actually is g*lng (at low energies). Thus, the power-
counting method suggests the maximum possible order,
it remains to be checked whether this order actually is
nonvanishing.

In the above discussion we have only used ladders.
To be complete we need the leading singularities of all
other topologically different types of graphs. At this
point we merely state the following: (a) We have so far
not found any classes of graphs whose power-counting
is essentially different from the uncrossed ladder class.
(b) In particular, if we consider ladders with arbitrary
crossings of rungs, it still remains true that in the
processes (1.1) and (2.1) the number of W’s involved
are always odd and even, respectively.

We have found it very instructive to consider similar
ladder graphs for semileptonic processes in which we
ignore all structure in the (baryon, baryon, W) or
(meson, meson, W) vertices. Even though this cannot
possibly be the full story, let us for a moment assume
that, at least as far as power-counting is concerned, the
results are not completely falsified thereby. It need
hardly be said that, even to this limited extent, we have
no guarantee whatever that this is true. (We come back
to these and related questions in Sec. VIIL.) We never-
theless present the results of this power counting because
it leads to certain conjectures. We meet the following
classes of processes:

(a) Allowed reactions like (2.6). The argument here
leads to an F()-type limit.

(b) First forbidden. These involve all effective neu-
tral lepton current processes. Here we meet the H (< )-
type limit. On experimental grounds it is to be desired
(see Sec. IT) that results like Eq. (3.5): F ()50, H(x)
=0 are also valid for these semileptonic phenomena.

(c) Second forbidden. In Eq. (2.5) we considered the
example of a basic interaction between W’s and strongly
interacting particles which contains |AS| =1, |AT|=%
but not |AS|=1, |AT|=% terms. In such a dynamics
the reaction

Zt—ntet+tv, (3.6)

is twice forbidden. By this we mean that the lowest
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order perturbation which gives a contribution is g¢ [see
Fig. 2(b)]. We noted earlier that in this case the graphs
involve an odd number >3 of W’s. Counting powers as
before we find for the contribution from the leading
singularities

PK (), K<x>=x§07,.xn. 3.7)

Thus, the possibility arises that the second forbidden
processes are O(g?). [See, however, the note added in
proof, Sec. VIIL.]

We conclude this section with brief remarks on two
previous physical applications of the method of sum-
ming singular terms in a power-series expansion. The
purpose of these comments will be to bring out some
essential differences with the present case.

(a) Quantum mechanical treatment of the virial ex-
pansion for a hard sphere gas by the binary collision
method.!® Here one encounters expansions in (a/\),
a=particle radius, A=thermal wavelength. The so-
called cluster expansion for the pressure and the density
consists of a power series (in the fugacity), the co-
efficients of which individually tend to e« as the tem-
perature — 0, (A\—c0). The requirement that the
pressure and density be finite in this limit then deter-
mines the asymptotic behavior of the power series.!®

Here, too, one deals with ladder graphs. It is im-
portant to note that each individual nth-order graph
contains a factor (»!)~! which stems from the indis-
tinguishability of the particles. Thus, even though the
number of nth-order graphs increases rapidly® with #
there is no need for special summation devices to sum
up all the leading singular contributions and take the
appropriate limits after that.

The important qualitative difference between the
mathematics of the hard-sphere gas and our case lies
in the following. The total number of nth-order graphs
(of which the uncrossed ladders are only a special case)
increases rapidly with %, here too. However, in our case,
we have no “factors ~ (n!)~ per graph.” Accordingly
we anticipate that the procedures of conditionally sum-
ming series will be different in the two cases.

(b) Vector meson electrodynamics.® This problem
differs in another important aspect from the present
one, in that gauge invariance alters the nature of the
leading singularities in an essential way. We can para-
phrase Lee’s detailed proofs on power counting as
follows. Consider the electromagnetic radiative correc-
tions to the vertex describing one W in an external
electromagnetic field. Count volume elements and W
propagators as before, count photon propagators as

18T, D. Lee and C. N. Yang, Phys. Rev. 117, 12 (1960). We
refer specifically to the case that the number of particles as well
as the volume are infinite, but in such a way that the density
remains finite.

19 See also T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev.
106, 1135 (1957).

2 See Ref. 18, Appendix C.
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F16. 4. The sum
of uncrossed ladder + + + .-
graphs.

A~% In order a”, (@=1/137) this would give a”A?",
However, gauge invariance suppresses by 2 the order
of divergence for each n. Hence, for n=1 we get A%
This means of course a behavior like /"*p~ldp, i.e., a
logarithmic singularity. Hence, as found by Lee, in
the electromagnetic case one has a contribution from
leading singularities given by

Awaln(A/m)4a S A (ah?/m?)1= —3 410 Ina+ad(z),

n=2

x=aA/m?, ®(x)=1A4;lnx+Y 4.7,

n=2

where A4, is a number characteristic for the »th radia-
tive correction.

Let us now assume that ®(«) exists. Then a®(x) is
of lower order compared to the alna term. Thus we
note the following basic difference in the electromag-
netic and the weak-interaction problem. If one assumes
that ® () exists, one needs to compute only 4, which
is found from a lowest radiative correction calculation
in the conventional perturbation sense. The limit value
& () itself does not enter in this leading approximation.
On the other hand in the weak-interaction problem one
needs already in leading order the limit values them-
selves of infinite series.

We conclude that to find the leading approximation
in weak-interaction theory raises mathematically dif-
ferent questions from those encountered in the leading
approximation for the electromagnetic case.

IV. THE UNCROSSED LADDER GRAPHS

In this section we treat a set of graphs (Fig. 4) re-
ferred to as the uncrossed ladder graphs. As we have
seen in the previous section, these graphs give some
terms contributing to the leading order of powers of
(gA), if we use the perturbation solution with a cutoff A.
We will show, however, that it is possible to sum, in a
very natural way, the most singular parts of these
graphs to give a finite result. The result of their sum is
a finite function of the coupling constant and momen-
tum transfer, whose properties we study in the next two
sections. We also define an iteration scheme by which
the corrections to the sum of the most singular terms
can be obtained. Some of the properties of these cor-
rections will be discussed in Sec. VI E.

The ladder graphs can be studied independently of
the quantum numbers of the fermions along the poles
of the ladder. However, we already noted in Sec. III
that the conservation laws imply that for a scattering
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involving specific leptons, only some parts of the full
ladder will contribute. The process (1.1) and also

Tl 7

go via the exchange of an odd number of W mesons
only. The reactions (2.2) and (2.3) will get contribu-
tions only from an even number. From here on through
Sec. VI, equations marked ‘“‘allowed” or “forbidden”
refer to processes in which only an odd or even number
of W’s, respectively, can be exchanged. In spite of this
distinction we will find it convenient to work with
suitable sums of the odd and even powers of g The
amplitudes for particular reactions like those just
mentioned are easy to obtain from these.

A. Feynman Rules and Regularization

We begin with the interaction (2.1). The Feynman
rules we use for the amplitudes in momentum space are
the following: (We omit the spinor factors for the
external lines.)

(1) At each W-lepton vertex, insert a factor

gvu(1+7s). (4.1)

(2) For each fermion propagator, insert a factor

Se(p)=1i/p, p=—inpr. 4.2)

In using this form we have neglected the lepton masses
in all intermediate states. We expect that this is a very
good approximation, since the important higher order
contributions are likely to come from momenta much
greater than even the muon mass. Also, the ladder
graphs cannot give any infrared divergences due to
neglect of lepton masses. Finally, the accuracy of this
approximation can be tested with our iteration method.
(3) For each W propagator, insert a factor

== (5 +22) L3,

Note the presence of a bracket { ) in the definition
of the W propagator. This is to indicate a regularization
procedure applied to the propagator. This regulariza-
tion is carried out in order that the formal manipula-
tions that we do can be given a precise meaning. It is
to be expected that any regularization procedure which
allows the manipulations we do will lead to the same
answer.

The regularized propagator that we use is given by

(4.3)

qugv 1
<Aw<q>>s(aw+ )< ). aw
H mZ q2_|_m2
ere
S ws)
<q2+,m2 _i=, q“’+m,-” '

and thea;are to be chosen as needed to make {(g?+2)~1)
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fall off sufficiently rapidly at large ¢2, so that the inte-
grals over ¢ involving (A,,(¢g)) converge. In most cases,
we will need only a single regulator so that

< 1 > 1 1 M2—m?
= — —
P+-m? F+m? P+ M2 @20 ¢

(4.6)

It is also useful to express the regularized propagator
in coordinate space, given by the Fourier transform of
(4.4):

0,9,
<Aw<y>>5(aw——)<m<yz>>, =, (@7)
m? OYu
(Ar(3?))=2_ a;Ar(¥2,m?). (4.8)

Ar(y?m?) is the Feynman A function in coordinate
space with mass m; Eq. (4.8) is taken up again in
Sec. VI A.

We note that this regulator method does not consist
of adding the propagators of vector mesons of different
masses, but rather of first factoring the projection
operator (8., ¢.g,m %) and then superposing the func-
tions Ap(g2m2). This gives essentially the same answer
as the £-limiting process of Lee and Yang.?

It must be emphasized that the regularization is a
mathematical device which we use to give meaning to
mathematically ambiguous quantities. The physically
relevant amplitudes are to be obtained by taking the
limit M — after all mathematical operations have
been carried out. The answer obtained this way will
have no further dependence on regulator masses.

B. Evaluation of the Ladder Graphs

We label by M ™ the contribution of the ladder
graph in which » W mesons are exchanged. With our
form (4.2) for the lepton propagator, M ™ is the same
for all choices of leptons in the initial and final states,
although as we have remarked, only some of the M
will contribute to specific amplitudes.

As the labels on Fig. 5 show, we call py, po the mo-
menta of the initial leptons, 1/, po’ those of the final
leptons. We also define a momentum transfer

g=p’'—p1=pa—p7. (4.9)

Then the M are given by the following recurrence

g'/ &K \p2
-F"; . ~7~P—Z——— F1c. 5. The general uncrossed
' ladder graph. The graph is divided
as indicated for the derivation of
the recurrence relations (4.10),
(4.11). The labels denote the 4-
momenta of the particles.
1 AR

a 'I; D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962) and
Ref. 5.
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relations:

MO (q)=—ighy, D (14+v:D)y, @ (1475;®)
X @ tm2qu0,){ (*+m*)™), (4.10)

where y,® means vy, has spin indices referring to the
left pole of the ladder, etc.

M D (P1’>P2l;P1,P2)

.y 1
- /w“)(1+75(“)—7y<2)(1+75<”)
(27'")4 pL”
1
X=—M™ (Pl”,P2H,P1,P2)
p2/I

r_ u r_ K 1

y (6#”+(q 9ulg’—9) > < >d4p1”d4p2”
m2 (q/_q)2+m2

X84 (p1/ "+ p2' — p1—p2),
q'=p1"—pr=pa—ps".

The recurrence relation is obtained by the standard
method of cutting the (z41)st ladder graph just before
the last boson exchanged and identifying the remainder
with M (Fig. 5).

Now define the odd and even ladders by

(4.11)
where

N

Moga=lim >° M @D (allowed), (4.12)
N >0 n=0
Mevcn= hm Z M(Zn) (forbidden) . (413)

N -0 n=1

By carrying out a sum over the two sides of Eq.
(4.11), we find that Moaqa and Meven satisfy the following
coupled integral equations:

ig? 1
Moa= MO+ /’Yu(”(1+’Ya<”)‘“‘w<2)(1+’)’5(”>
2,". 4. pll/
1
K——(Au)Mevendipt”’, (4.14)
p2//
102

1
Mo ( / 7D (175 0)——,® (1 75®)
pll’

(2)*\.

1
X;:<A#V>Moddd4plu_R> . (4:15)
2

Here, since we have carried out the integral over p,”,
it is necessary to set po”’=p14p2— p1”’. The remainder
term R is given by

1
R=lim /w“)(1+75“))—7»<2)(1+75(2))
N> pln

1
X—<AM)M(2N+1)d4P1H . (4.16)

2
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We cannot prove mathematically that this remainder
term goes to zero. However, in the derivation of the
Bethe-Salpeter equations,?? which we are reproducing
here, this is assumed. We shall see that the equations
we obtain by assuming this have a formal solution
which is equivalent to summing the ladder graphs in
coordinate space, for values where the sum actually
converges, and then continuing the sum to other values.
We discuss this point further in Sec. V. In the mean-
time, we drop the term R.

Let us now define amplitudes M. by

M:E: =M oaaz=M even .
the

(4.17)

These amplitudes satisfy uncoupled integral

equations

18 1
Mi:M(l)i*/VM(l>(1+'Y5(1))‘—'Yv(2)(1+75(2))
(2m) b
1
XF(A#,)Mid“pl" . (4.18)
2

Some further reductions of Eq. (4.18) will be described
in Appendix A.

C. The Iteration Procedure

Let us introduce our expression (4.4) for the regu-
larized propagator into Eq. (4.18). We obtain

g
MizM“):l:—/'y,L“)(l-i—w(l))
(2m)*

1 1
X—7,@ (1+75®)
pl’/

1
PR
[ (p1"—=p)u(ps” — ")y
X auv—’

m?

]Mid‘*pl”. (4.19)

We note that the term with the highest power of the
integration variable ;" in the numerator comes from
the term p1./'ps/” in [ ]. We therefore isolate this
term, since we expect that it will contain the leading
contribution. This corresponds to the procedure of first
summing the most singular terms in the perturbation
expansion.

Furthermore, upon contracting the p1.”, p2” with
7. Y, v,® we note that the fermion propagator factors
cancel in this term. Thus,

102

M=M=+ /(1—75“))(1—75(”)

(2m)*m?

1
WAL
G—piyrmil
[ karadip (4.20)
(2#)4/ et &

22 M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951).

=+
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where we have written symbolically /" KM d*p," for
the quantity

/7 @ (1+75“>)—7 @ (147s

1
PR e

Pll‘ sz )Midllplll )

X («sw+pl"lp2"”+[h"”p2”1_ (4.21)

m2

We can now define an iteration scheme for solving the
Eqgs. (4.18) as follows. Let

Mio=M®L

fuvwm 75®)

m? (2mr)*
1
X <"—__‘—>M +od'pr”’, (4.22)
(p1""—p1)P+m?
and, for n>1,

7 2
Myn== M 4 (1)@ p1”!

/avwm.wm

m"’ (2m)*

1
X <—————>M @ (4.23)
(?1”—P1/)2+’m2
Then clearly 3, M. ™ =M, satisfies Eqs. (4.20).

Our division of the amplitudes into this form is based
on our expectation that the dominant part is contained
in M (o), and that M . (»y are small corrections to M L (o),
which can be calculated by successive approximations.
The validity of this will be examined in Sec. VI E.
We shall in the meantime study the quantity M.
in detail.

D. The Equation for M

We will refer to Eq. (4.22) for M (o) as the approxi-
mate integral equation. We reproduce it here with all
the variables included:

M oy (py', 02,01, 02)

=M (p/—p1)=£

g
1y @
m2(27r)4/ (=)

1
X (1_ (2))<_____—>
NG =y

XM g0 (p1", 2", pr,p2)dp1""

Since the expression (4.10) for the inhomogeneous term
M® contains y matrices only in the form v,(141s),
and the kernel of the integral contains the projection

(4.24)

G. FEINBERG AND A.

PAIS

operator (1—1;), it is clear that M. o, must have the
form

M..-E(O):’Yy(l) (1+75(1))79(2) (l—l—’Ya(z))Mﬂyi.

Substituting this into (4.24) and using the independence
of the v matrices, we obtain the following integral
equation for M ,,*.

(4.25)

) 1
o —ig2<6 0 )<
mZ g2+m2
2
NIy
m2(27r)4/M'” (B, 02", p1,02)

1
X<——>d4p1”. (4.26)
(B —pi)+-m?

Since the inhomogeneous term only depends on ¢
=p'—p1, and the kernel depends only on p,"— py/
=¢’'—gq, it is clear that M ,,* will also depend only on g,
so that the equation may be rewritten, by a change of

variables
qug 1
m? ) <g2+m2>
4,i 2

+ (Zr)im2 / wr (g’ )<m>d49'

(4.27)

MM@F—MG

The dependence of M,,, and, hence, of M, on g
only and not on p; or p, is a remarkable phenomenon,
which greatly simplifies the remainder of our analysis.
It arises solely from our approximation of choosing the
most singular terms in the full equation (4.20). We may
picture what happens by noting that for these terms,
the ladder collapses as in Fig. 6, with all the mesons
emitted or absorbed at a point, which immediately
gives the dependence on ¢ alone.

The equation (4.27) has a standard form, and may
be solved by taking Fourier transforms to obtain the
amplitude in coordinate space. We define

Mu*(y)= /an (q) - oy d4q,
. W 0/ 1
M;ty( >(y) /d ( wt " ><q2+m2> (4.28)
3,0,
= (o0~ )ar
m
Then
4ig?
Mwi(y) = (—ng)Mw(l) (y)ﬂ:’q;é'(AF ()’) >M1-wi (y) . (4.29)
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Therefore,

Mo ()= -—’L'g“’[aw_ (0,9,/m*) J(Ar )

1[— (4ig/m?) (e (y))]

with the scattering amplitude in momentum space
given by

(4.30)

M#Vi(q):/eiquyv:‘:(y)d4y- (431)

The simple form of (4.30) in coordinate space indi-
cates that if we had used the Feynman rules in co-
ordinate space, we could have obtained (4.31) directly.
It is not hard to see that this is so. But for the purpose
of our iteration scheme, it was more convenient to work
in momentum space.

For the manipulations we are going to perform in the
next section, it is useful to carry out some preliminary
reductions on M ,,%. Note first that since M ,,* depends
only on ¢, it has the general form

M (@) = (¢*)8u+B+(¢°)gugs - (4.32)
Furthermore, as Ap(y) is a function of y? only,
6#6yAp(y)=25,w<aAF> ! 4y,‘y,<(Sl AF). (4.33)
9?2 3(}12)2
Therefore,
M5 ( )”/eiqyd%] Sul (Ar(¥))
w\q)= Di(yQ)[ #V< ¥y
2 r WYy (O*Ar
2404 >>_4y ¥y (0% q, (434)
m2 ayz m2 49(y2)2
where
4ig?
De(A)=1( - arO))).  @39)
Now
/ ei11y, 3,0 f () =— / cf(y?)dty
99,9¢»
a
= —26F,—(/eiqyf(y2)d4y> (4.36)
a¢*
LI P
— q;:.q:f—2—2 ety 4y .
Therefore, o)
(Ar(y))— (2/m*)(8/3y*){Ar (%))
a:l: 2) — Diqydzl
(¢®) / ) y
2 2)2 7 iqyd4
8 0 (OISt
m? ag) D*(y?)
o r[6%/a(y*)KAr(y))
ermie | oy,
q ) a(qz)z Di(y2) Y
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Fic. 6. The “collapsed” ladder graphs. These
directly generate the approximate integral equa-
tion (4.27).

=

We stress that the solutions obtained here still are
purely formal, since they involve integrations over
singular functions, and also involve a limiting process
M —» to get the physically meaningful answers. In
the next two sections, we discuss these questions in
detail.

We conclude this section with the observation that
the formal solutions Eqs. (4.30) and (4.31) demonstrates
in more detail what the power-counting argument of
Sec. IIT amounts to. To see this, expand formally the
denominator in Eq. (4.30) in powers of g% Next, imagine
for a moment that all functions (Ar) are replaced by
the nonregulated quantities Ar(y,m?). As is well known,
the latter has singularities ~y2 for small y. Imagine
further that we cut off the integrals such that |y?| >A~2
only. Using Eq. (4.17) it is then readily checked that
we again produce the power-counting argument of the
previous section. It is going to be our prime task to
give the “summed” formal expression Eq. (4.30) such
a meaning that all infinities vanish from the final
answer.

V. A TRANSFORMATION OF THE FORMAL SOLUTION
A. A Reduction Formula

In order to discuss the mathematical properties of
the formal solution (4.34) of the approximate integral
equation (4.24), we next give a reduction formula for
integrals of the type

I(@®)= / iU (y)dby | (5.1)

where ¢y means ¢,,, and where ¥ only depends on the
square of the invariant four-distance y*=y:—yg We
show in Appendix B that, for a specified class of
functions ¥,

i
q

4
¢>0: I(g) =f—[ / Hy D (gy)¥ (y*)y*dy
(o}
- [, 62
4im? 24
£<0; z@z):-q_-[— / Ki(a)¥ (5)y°dy
mwmJ e

- fo mJ 1(Qy)\I'(—y2)y2dy:|- (5.3)
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The meaning of the symbols is as follows: As regards
the various kinds of Bessel functions H, J, and K, we
follow throughout the notations and conventions of
Watson? In Eq. (5.2), ¢=(»"% in Eq. (5.3), ¢
=(—¢)"2. In both equations the contour C in the
complex v plane is the one drawn in Fig. 7(a). In the
following we refer to integrals involving C as “the
contour integrals’’ and to the integrals involving J; as
“‘the Bessel integrals.” ¥(y?) as it appears in the con-
tour integrals, is the function ¥ (y?) of Eq. (5.1) in the
region 0 <y< . On the part 0<y<tw of C it is this
same function with y replaced by —iy. As will be dis-
cussed in Appendix C, the Egs. (5.2, 3) are only mean-
ingful if ¥ is at worst as singular as y~2 or as §(y?) for
y— 0. Higher inverse powers of y or derivatives of 6
functions can in general not be tolerated. Our regu-
larization procedures mentioned in Sec. IV are so
designed that these conditions are met. Anticipating
what is to follow, we may also directly point out that
we have manipulated the various Bessel functions in
such a manner that, for all instances of interest for this
paper, it is allowed to close the contour in the manner
indicated in Fig. 7(b). Apart from possible complica-
tions at the origin, we shall only encounter such func-
tion ¥ which have no singularities in the first quadrant.

As a further preliminary to the application of the
reduction formula to Eq. (4.34), we discuss the singu-
larities of the Feynman propagator and its derivatives
in coordinate space. We have (a prime denotes dif-
ferentiation with respect to 3?)

1 m
Ar(y*,m) =—06(y")+——K.1(my)0 (y*)
4 4rly
m
———H,® (my)0(—»*), (5.4)
8y
1 m? 1m?
Ar' (y2,m)=—5'(y*)+—0b(y")— Ko (my)6(y*)
4qr 167 8my?
m?
————H,® (mg)6(—»*), (3.5)
16732
(5 ) =" () )
A 17 y27m :___61/ y2 +__6/ y2
i 4 167
)+ Ky (my)6 (")
8 () K (my)6(y?
1287 16729
m3
- H;® (m7)6(—»*), (5.6)
32w ip?
where
0(x)=1, x>0, y=(?'"2,
e(x):07 x<05 ?7=(—3’2)1/2-

2 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, New_York, 1944), 2nd ed.
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Vo
;r Fre. 7. (a) The
c contour C goes from
R y=+4i0 to y=0,
then on to y=+4o;
(b) The closed con-
tour. The radius R is
supposed to tend to

' -4 00 inﬁnity.

(@) (b)

As was explained in Sec. IV, we will have to regulate
expressions like (5.4-6) before inserting them into inte-
grals of the general form Eq. (5.1). In accordance with
the notations of Eqs. (4.7, 8), we define {(Ap(y?)), and
other similar functions of y between brackets, to be
“sufficiently regulated functions.” By this we mean that
the regularization process makes the functions in ques-
tion sufficiently smooth at y*=0 for the applicability
of the reduction formulas (5.2-3). As we shall see, it is

most often sufficient to regulate only once, in which
case [cf., Eq. (4.6)]

(Ar(y))=Ar(y*>m)—Ar(y*,M),

where the regulator mass M eventually tends to in-
finity. There is one special case in which we must
regulate twice, so that

(5.7)

m2— M

- 2
(Ar(¥?))= Ar(y*m)——————Ar(y*, M)
2—=M,
mr— M
+——__AF(y2;M2) ) (58)
M2— M2

where M, M, tend to infinity. Note that Eq. (5.8) goes
over into Eq. (5.7) if either M or M, tend to infinity.
We can therefore imagine to have performed a uniform
regularization process throughout, but have let some
regulator mass go to infinity early in the game, where-
ever this does not lead to complications.

B. Application of the Reduction Formula

We shall next write the formal solution (4.34) of the
integral equation in the form corresponding to Egs.
(5.2, 3). In order to do this we perform the differentia-
tions with respect to ¢ as indicated in Eqgs. (4.36, 37)
and further assume that it is legitmate to differentiate
under the y integrals. This will again turn out to be
valid for sufficiently regularized functions. Let C, de-
note any linear combination of J, and ¥ ,. We have

-y

a Cilgy)  Cilgy) »Cs(qy)
— =—Cy(qy), = .
it ¢ 2¢ @ ¢ 4¢°

Instead of working with M ,,*, we shall from now on
use the corresponding “odd” and ‘“‘even’’ combinations
defined in Eq. (4.17). We recall that the former refers
to the allowed, the latter to the forbidden amplitude.

(5.9)
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In either case we can write the amplitude M, as

Mu=Cu+By,
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(5.10)

where C,, will be the contour integral and B,, the Bessel integral which appears in M ,,.

¢>0

H,0 (gy) H,0 (gy) 9 (gy)

cw=ig2[aw{ a2 ok )yt — / dy(——ﬂwwmy)>——f"’3<msf<a<my>>)}
c q c q q
3(1)
iq"q" / dyH (qy)<m3Ks(my)>]<I>(y2), (5.11)

m )¢ ¢

1(gy)

(mK(my))y+— / dy(

(gy
oo [
0 q

Here
®(y)=1/D (allowed),  (5.13)
= —N[(mK1(my))/y](1/D) (forbidden), (5.14)
D=1—{(N[(mK1(my))/y]}*, (5.15)
Ne=g?/mm?. (5.16)

The terms involving K1,Ks,K; arise, respectively, from
A, A’, A” taken for ¥2>0, as is seen from Egs. (5.4-6).
Let us see what regularization is implied by the ex-
pressions (5.11) and (5.12). As we have represented A
terms by their K, part, a single regularization is implied
to suppress a § term. Likewise a double regularization is
necessary to represent A’ by its K, part, and even a

7a(gy)
e ]
q

udv ® 3( )
+ 24 / iy L <’m3Ka(’my)>y:l‘I’(y2) (5.12)
m 0 q

triple regularization to represent Ar” by its K part.
However, it will turn out from a term-by-term discus-
sion of the integrals that less regularization is sufficient.
Wherever we shall make this claim, it will be necessary
to refer back to the expressions (5.5) and (5.6) for the
derivatives of A in order to ascertain whether certain &
functions not explicitly written down in Egs. (5.11) and
(5.12) are truly harmless. This last point is discussed
in detail in Appendix C and Sec. V D.

We simplify Egs. (5.11) and (5.12) further by means
of the identities

Ca(gy)/¢= (3/49)[C1(gy)+Cs(gy) ],
—imyK(my).

(5.17)
Ky (my)—imyKa(my) = (5.18)

One finds

o) 1
cy,=¢gﬁ[aw / df——@—)[<myK1<my>>—M<mﬂyK1<my>>}

q

—(qnq» 10uq") / dy——

J1(gy)

B,,= —ig{ /
0 q

H(l)(
D) ik my>>y]¢<y> (5.19)

1
{<myK1<my>>——<m3yK1<my>>}
4m?

<mzz<3<my>>y]q><y2> (5.20)

_(‘quv 20, 2)/ dy

Note that at various places in Egs. (5.18) and (5.19) there appears a factor m~2 without angular brackets. This
factor does not participate in the regularization. This 72 originates from the propagator Eq. (3.1) of the vector
meson,
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<0

By a reasoning similar to the one above one gets

™

c“y=-2—g[ap, / K‘fy){<myK1(my>>——<m3yK1(my>>}

+—_"(Quqv 46qu )/

* J1(gy)

1
+__2(QM‘IV Buvq )/
m

In Eq. (5.21), #(3?) is again given by Egs. (5.13-16).
In Eq. (5.22) we have

®(y1)=1/D", (allowed) (5.23)
= —LieN[(mH ® (my))/y](1/D’), (forbidden)

(5.24)

D' =1+43m{(N[(mH 1 (my))/y]}*. (5.25)

C. Peratization, the First Step

It has been stressed in Sec, IV that the solution (4.34)
is a formal one; it remains to examine in which way it
is possible to give meaning to the various singularities
in the integrand. For this purpose, the division of the
formal solution into a contour integral and a Bessel
integral is quite convenient. In this subsection we dis-
cuss the contour part and show that it is natural to
define various operations and the order in which they
shall be performed in such a fashion that the contour
integrals C,, are zero for all values of g. We give the
argument for ¢2>0. The case ¢2<0 can be treated en-
tirely similarly.

As a first orientation it is helpful to discuss the in-
tegral Eq. (5.19) for the case that $(y?)=1. Evidently,
this corresponds to taking the familiar second-order
matrix element. For the calculation of that quantity
the machinery of Egs. (5.19) and (5.20) is, of course,
not at all necessary. It is, nevertheless, instructive to
make the calculation in this roundabout way, especially
because even in this simple instance it is necessary to
exercise some caution in the handling of singular func-
tions. The details are given in Appendix C. There it is
shown that, even for this simple case, regularization is
necessary to make the reduction formula meaningful.
This is due to the singular character of the Hankel func-
tions near the origin. The result we find is that, for
®=1, the contour integral vanishes for all g. Thus, the
second-order matrix element in its entirety is given by
the Bessel integral (5.20) with ®=1. This we shall verify
below, see Eq. (6.10).

3(gy)

<m3y1<3<my>>dy}z><yz>, (5.21)

[<myH1<2><my>>~~<m3yH1<2><my>>}

s(qy)
——ql<m3st(” (my)>dy:|<1>( ). (5.22)

Once this property of C,, for =1 is recognized, it is
trivial to prove (see Appendix C) that C,, also vanishes
if we take ®=(Ar(y?))", where # is an arbitrary posi-
tive integer.

This shows a natural way of handling the functions
® defined in Eqgs. (5.3, 14). Put

N 4ig2 2n
D'=lim Y {——(Ap(yz))} . (5.26)
N> n=0 m2
According to the foregoing, for any finite NV, C,,=0, for

either the allowed or the forbidden case. Counting
powers of g, we see that the limitation to finite N means
that for the allowed (forbidden) process we take at
most 2N+1(2N+-2) virtual W’s. We now declare C,,,
to be equal to zero for the solution of our integral equa-
tion in the following sense: First, the functions Ap
occurring in D are sufficiently regulated. Second, D!
is defined as in Eq. (5.26). Third, first perform the con-
tour integral, then let regulator masses as well as N
tend to infinity. In a sense we consider therefore first
the contribution due to at most ~2N bosons, perform
all integrations and tken let the number of W’s tend to
infinity. In this way C,,=0 also for ¢?<0.

As we have said earlier, our present method for ex-
tracting possibly meaningful answers from the W theory
may not be right. We are convinced, however, that any
alternative treatment of the C,, integrals leads to
physical absurdities.

D. Meaning of the Bessel Part of the
Formal Solution

First we have to define what we shall consider to be
sufficient regularization. In every instance we shall
mean single regularization. Consider first the case ¢2>0.
We have to go back to Eq. (5.12) and check whether &
and & functions may indeed be dropped. The K; term
comes from a A function, so single regularization elimi-
nates the 8 term. The K, term comes from the A’ func-
tion. According to Egs. (5.5) and (5.12) we must,
therefore, inspect the integral /" J1(qgy)Ar’ (32)y*®(y2)dy.
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Af’ contains a term proportional to 8(y?). For =1
this term evidently vanishes. As we shall see shortly,
& is treated in such a manner that the integrand be-
comes even less singular for y=0 than it is for =1,
This then justifies single regularization for the A’ term.
The same argument applies also to the K5 terms which
stem from A”. From Egs. (5.5) and (5.12) it follows
that in this case the worst term which appears in a
single regularization process is /" J2(gy)d’' (32)y*®(y?)dy.
Also this term gives zero for ®=1 and will vanish
a fortiori for the actual ®’s we need.

Next we must ask what is the meaning to be given to
D' which appears in ® for both the allowed and the
forbidden cases, see Egs. (5.13-16). Let us again start
from the formal expression Eq. (5.26) and observe that

x=— (4ig®/m®){Ar (%))
= (\/y)[mK1(my)—MK.(My)]. (5.27)

For such values of y and M for which this quantity is
smaller than one, there is, of course, no problem in
defining D to be

1 1
D 1— (/98 [mKy(my)— MEL(My) T

(5.28)

However, there is clearly a regime for which x of Eq.
(5.27) does become larger than unity. To see this, con-
sider the y region y<KM~, where both K; functions
may be expanded around the origin so that

x= (g%/2x*)[Inmy— (M /m)* InMy]
+0(y) = (g8/2x*) (M /m)*|InMy]| ,

for large M. Thus, the expansion of Eq. (5.26) repre-
sents a geometric series of the type 14+a?+«*4- - -. For
x<1 this equals (1—x?)~1 which is Eq. (5.28), for >1
the series is divergent. As we already stated in the
Introduction, this divergence has nothing to do with
the limit M — o, it is rather a “divergence as a whole”
of a series of regularized contributions.

We now follow the procedure, common in the theory
of divergent series, of defining 1+a?+x*--- to mean
the continuation of the value of the sums of the series
for x<1. This means that we consider D' to be defined
by Eq. (5.28) for all values of M and vy.

There remains the question of what to do when we
reach the value x=1. At this point we meet a pole in
the integrand of Eq. (5.20) and we must prescribe in
which way we pass it. We shall find in Sec. VI C that
this question is relevant for the high-energy behavior
of the amplitudes.

We therefore study the case x=1. It is consistent to
drop the M term of Eq. (5.27) at this point, so that
x=1 corresponds to

(N/y)mKy(my)=1.

For the case g<1 of interest, this equation is solved
to a very good approximation by putting K;(my)

(5.29)

2739

= (my)™!; hence, :
(5.30)

This value justifies the neglect of the M term just men-
tioned, as at y=AX it is already asymptotically small.

We now recall that the quantity mK,(my) appears
in the theory as a contribution to the Fourier transform
of the momentum space function [g*+m?*(1—ie)1™,
where e is a small positive number. Everywhere but at
this specific instance it causes no problem to take the
limit e=0 from the start. However, in solving Eq.
(5.29) it is essential to note that the m’s which occur
explicitly in that equation have a small negative
imaginary part. Note that A? contains a factor m™2 as
well [see Eq. (5.16)], but this m is truly real, it can be
traced back to the #~2 which occurs in the numerator
of Eq. (3.1).

To see how a nonzero e affects the solution of Eq.
(5.29) we must develop K1(z) one step further:

Ki(z)=z"14%z1n}z+0().

The leading term leads to Eq. (5.30), € plays no role
at this point. The logarithmic term gives a small
imaginary part to y of Eq. (5.30), given by

Im(y/N)=—e (8/2x%) In(g/)>0,  (5.31)

where we use gr1<1. Hence, in the integrations of
Eq. (5.20) the pole in Eq. (5.28) has to be bypassed
via a small semicircle below it.

The same considerations applied to the case ¢?<0
leads us to define 1/D’ as the inverse of the right-hand
side of Eq. (5.25) for all values of M and y. Here too
we meet a pole for Rey=\. The way it is bypassed is
determined in this case by the intrinsically complex
character of H;® for real argument. One finds that in
Eq. (5.22) we must pass above the pole which is situated

at
y2\[1— (ig2/8m)].

Now that we have given the full meaning of the Bessel
integrals, we are ready to evaluate them. Unless other-
wise stated we consider the case ¢2>0.

y=A\.

(5.32)

VI. MATHEMATICAL PROPERTIES OF THE SOLUTION
A. Peratization, the Second Step

This step consists in the performance of the limiting
process M — ., The result can be stated concisely as
follows.

The peratization of the Bessel integrals B,, given by
Egs. (5.20) and (5.22) is performed by dropping all
the M-dependent terms in these equations, also as
they are contained in the functions ®(==3?) defined by
the Egs. (5.13)-(5.16) and (5.23)-(5.25). As we shall
see in a moment, this procedure is made possible by
specific properties of .

A detailed proof of this result is given in Appendix D.
At this point we shall treat the limiting process M — o
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in Eq. (5.20) in a way which is not rigorous, but which
has the advantage of an easy qualitative orientation.

For this purpose we note the following properties of
K functions:

lim MPK(My)y=43("), (6.1)
Lim MyK,(My)=¢(), (6.2)
lim M2y’ Ko(My)=84(y), (6.3)
Y(0)=1, ¢(y)=0 for y50. (6.4)

The combination M3yK;(My) occurs in the J; part
of Eq. (5.20). Near y=0, we can drop the 1 in D which
appears in ®, see Egs. (5.13, 16) so that the relevant
integral behaves as

M3yK,\(My)y*dy*
/ 1i(@)
[myK1(my)—MyK,(My) T
1 (allowed),

X< myK(my)— MyK.(My) (6.5)
LT IIEETY) torbidden),

y2

in an integration region near y=0. Now, nonrigorously,
we apply Egs. (6.1) and (6.2) separately under the
integral. According to Eq. (6.2), the leading term in
myK1(my) near y=0 gets cancelled. For the forbidden
case we therefore end up with an integral /6(y%)
X (Iny)~'dy?*=0, while for the allowed case we get zero
a fortiori. Note that this result is valid for all gq.

The remaining terms with M in the numerator are
even better behaved as is verified by repeated applica-
tion of Egs. (6.2) and (6.3). Instead of a factor §(3?),
we pick up only a finite step in the numerator near
y=0. In the same nonrigorous sense all these terms
therefore tend to zero as M — . The same is true for
the M-dependent effects which appear in the remaining
numerator terms.

The arguments given in Appendix D substantiate all
these conclusions. In the rest of this section we therefore
consider this limit to have been taken. This means that
all M terms in Eq. (5.20) are dropped, the integration
region being 0<y< «, Thus, Eq. (5.20) now reads

. [3m m
Buy= —1g2[—6w‘1 1t —(gugr—1dg")4 s] ,
4 ¢

} (6.6)
An= / ]n(qy)Kn (my)y@ (yz)dy )
2()=
1= (\/y){myK1(my)}?
y { 1 (allov.ved) s 67
(—N2/y2){myK1(my)} (forbidden).

AND A. PAIS

It should be emphasized that this further reduction
of the Bessel integral is made possible by the fact that
®(»?) tends sufficiently strongly to zero for y — 0. We
shall come back to this very point in Sec. VI D.

It is most instructive to see what happens to B,, for
the case =1, that is, for the second-order perturbation
result. We go back to Eq. (5.20) and now use

f (@) Kn(my)dy
by
= {m\T 5 (@A) K 1 (mN) — N 1 (M) K (mN) }
q2+m2
(6.8)
which for A=0 reduces to
@)K n(m)d (q> L 69)
n n M =\ .
fo Wol@NKalm)iy=\T" )~

Inserting this into Eq. (5.20) with &=1, B,, reads in
term by term form

Lol GG )
1g i q2_|_m2 q2+M2 4_ q2+m2 mZ q2+M2

1
. (6.10)
q2+m2 q2+M2

For M — o, the M terms now do give a finite con-
tribution —4g?(4m?)~%,, and we get back the well-
known expression Eq. (3.1). Note that we would have
obtained the same result by the “nonrigorous” applica--
tion of Egs. (6.1-3).

We next turn to the discussion of Eq. (6.6) which is
best done by considering separately the cases for
“small”” and ““large” ¢. The natural dividing point will
turn out to be A< or >1, or

q§7|'>< 2—1/4/G1/2 s

in terms of the Fermi constant. Thus, conservatively
speaking, “small ¢”’ covers a momentum-transfer range
up to several tens of BeV’s.

1
+—2(quq»—i6wq2)<
wm

(6.11)

B. B,, for qAK1

We divide the integration domain in an ‘“inner”
region 0<y<2\ and an outer region 2A<y< . The
dividing point is somewhat arbitrary. It is so chosen
that in the inner region we may develop J.(gy) (for
gA\K1) around y=0, while at the same time we may
develop in the outer region the denominator in Eq.
(6.7) in powers of AL [Note that zK;(z) <1 and is
monotonically decreasing for positive increasing z.] We
discuss the inner and outer regions for the various in-
tegrals as they contribute either to the allowed or the
forbidden process.

(1) Allowed process, outer region. Develop the de-
nominator of Eq. (6.7) as indicated. The leading term
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(i.e.,, ®=1) in the integrals gives, see Eq. (6.8),

3ig ¢\ 4qug
po= 25, (12 )22
4 3m) 3 m?

1
X——0(g"), (6.12)
E+-m?

using the small-argument expansion for J and K.

We get a crude but sufficient upper bound for the
other terms arising from the development of ®, as
follows. We have to consider a,,, defined by

An,p= GNP / Ja(gy)Ka(my)

2\

X[myK1(my) ] (6.13)

P,
4
¥

where n=1 or 3, p>1 and integer. Replace all J and
K functions by the leading small-argument term. Thus,
Ja~vyn, instead of its true oscillatory behavior, while
K.~y instead of its much faster true decrease. Thus,

g\" 1 = dy
an,p<g2>\4p<_) _

m/ 2n) gyt

g\"1 1 1
— g2>\2<_> — _
m/ n2p—12%
The right-hand side, summed over p from 1 to o yields
g* times a finite number. Therefore the complete answer
for the outer region with the exact expression for ® is
also given by Eq. (6.10). Note that Eq. (6.14) is valid
for all q. However, for large ¢ one can make better
estimates, as we shall see.

(2) Allowed process, inner region. Here the argument
of K,(my) is at most equal to 2gn<1, so that the
leading order is found by putting K, (my) =2%*(n—1)!
X (my)~". As we deal with the case gAX1 we may also
put J.(gy) = (#!12%)"(gy)". Thus, we see from Eqgs.
(6.6) and (6.7) that we need the value of

q n 1 2\ yde
bn=g2<—') _/ )
m/ 2nJo y—\*
for n=1 or 3.

The integrand has a pole at y=\. We noted in con-
nection with Eq. (5.31) that we need half the residue
of this pole. This yields a negligible contribution O(g*).
The remaining principal value integral likewise con-
tributes O(g?) to b,. Hence, the inner region gives only
a higher order correction to the leading g* term in Eq.
(6.12). This equation, therefore, gives the complete
answer for the Bessel integral, grh<1.

(3) Forbidden process. Develop the denominator as
before in the discussion of the outer region. The leading

(6.14)

(6.15)
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term yields integrals of the type

c,.=)\2m/ Jn(@)Kn(my)K 1 (my)dy, n=1or3.

2\

The integrand is ~y~ near the lower limit, from which
region the main contribution arises. To isolate the
anticipated In\ term, put mK(my) = —dK o(my)/dy and
integrate by parts. This yields c.=—N2(g/m)* (2n)~!
XIng+0(A\?). Insert this into Eq. (6.6). The result is

3igtIng
8wim?

py

4
[aw+——(quqy—ia,w 2>]+0(g4>. (6.16)
Om?

By a similar argument as used in the discussion of Eq.
(6.13) one shows next that the higher terms in the
development of the denominator of Eq. (6.7) yield an
O(g*) contribution, just as for the allowed process.

The contribution from the inner region consists again
of a principal-value integral plus a contribution from
the pole at y=\. By the same methods as used before
one sees that the inner region gives an O(g?) effect.

Thus, the complete answer for the forbidden process
(xK1) is also given by Eq. (6.16). It is readily shown
that Egs. (6.12) and (6.16) apply as well to ¢2<0.

C. B,, for ¢a>1

In this subsection we discuss some limit properties
of amplitudes for extremely large g. We now have two
small parameters, namely, g2 and (A\¢)~L. In order to
get limit theorems we consider the latter to be the
smaller of the two. As was already noted at the end of
Sec. VI A, this regime is not of great practical im-
portance. However, the limit properties in question are
interesting theoretically, especially in connection with
the problems of unitarity.

It is our next purpose to show that, as ¢— =, the
amplitudes of the allowed and the forbidden process
become equal (to leading order in g), for ¢2>0. It will
indeed be proved in Appendix E that the leading terms
stem entirely from contributions at A=7y. Once this is
established it is immediately evident that the allowed
and forbidden processes tend to the same limit. For
according to Eqgs. (6.6) and (6.7) the integrands of the
A, integrals differ by a factor N2y—2{myK,(my)} for al-
lowed as compared to forbidden processes, and for y=2\
the factor in curly brackets is equal to 1+0(g? Ing).

More specifically, we show that for ¢2>0 the leading
terms in the inner region (0<y<2\) give the following
contribution to B,,:

3¢ H 1(1)(9)\)‘s
16mm2  gn
+g2 (Q#qf'%aﬂv 2) H3(1)(q)‘)
m? ¢ qA

~

w=

. (6.17)
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In Eq. (6.17) the H;® term dominates and gives

22 g 5, Tr
By,~— (—) —_ exp[i(qk———)]. (6.18)
/) Am? (g\)*2 4

It will be true for this as for other contributions that
[see Eq. (6.6)] 435 dominates over 4 at high energies.
The reason evidently is that Ji(¢gy) and J3(gy) are
asymptotically of the same order, while their asymptotic
behavior is already reached there where K;(my) and
K;(my) are still dominated by their leading singularity
near y=0. Thus the stronger singularity of K;favors 4.

For the discussion of unitarity questions (Sec. VII)
it turns out to be necessary to give also the principal
correction terms to Eq. (6.15). These stem from the
region near y=0 in the 4 integrals, as will be proved in
Appendix E. They are

8ig® (qugv—10wg?) 1 (8(Ag)72 (allowed),
- Ap2l—1 (forbidden).

As stated earlier, the results Egs. (6.18), (6.19) come
from the inner region. It remains to ask what are the
contributions from the outer region 2\ <y< . Just as
in Sec. VI B, we first consider the leading terms, ob-
tained by replacing the denominator in Eq. (6.7) by 1.
In this case one has, for the allowed process [use Eq.
(6.8)], ¢>0,

(6.19)

m? q2

— 22

J4(2gN).

1
A1’~v ———J2(2q)\) 3 A3z
mq

(6.20)
g'mg

Evidently the main contribution comes again from 43,
it gives a term ~g?m2(gA\)~2J4(2¢)\) in the amplitude.
One next estimates that the further terms in the ex-
pansion of the denominator of Eq. (6.7) cannot give
contributions bigger than Eq. (6.20). The same is true
for all contributions to the forbidden process, in as far
as they stem from the outer region.

For ¢*<0 the situation is somewhat different. The
main reason for this is that in this case the pole lies
at a finite distance away from the real y axis, as was
noted in Eq. (5.32). As a result there arises a contribu-
tion analogous to Eq. (6.15), but with Hankel functions
which turn out to be H,®{g\[1—ig?(87)~1]}, (and
with ¢ replaced by ¢ elsewhere), see Appendix E. The
imaginary part leads to an exponential damping of the
Hankel functions. These terms are therefore insignifi-
cant as compared to the contribution which is the
analog of Eq. (6.19). We shall see in Appendix E that
for ¢?<0 the region near y=0 contributes again to the
order indicated in Eq. (6.19), while the outer regions
can again be ignored.

D. An Identity and a Conjecture

In this section, we present a simple mathematical
identity which gives a more intuitive reason for the
factor § which occurs in Eq. (6.12) for B,,.
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Using the expressions (4.30-4.32) which define
M,,%(q), we can write

()0 +B%(¢") qug>
(8,y—m720,9,)Ar (y)

= —z'g"’/eiq" - dty.
1L (4ig*/m?)Ar (v) ]

We perform some transformations on this relation,
in which we formally treat Ar as unregularized.
We compute the trace of Eq. (6.21):

(6.21)

. _ (@—mO)Ar(y)
dot-BE= _¢g2/ezqu - . (6.22)
A 1£[(—4ig?/m?)Ar ()]
s
LlAr(y)=mAr(y)—6'(y),
we have
3A 254 d*
ot e —ig em[ r(y)+m264(y)] y 6.23)
1£[(—4ig®/m?) Ar ()]
We now note that
/ e'25* (y)dty 1
1 [ (—4ig¥/m)Ar(5)]  12=[(—4ig?/m?)Ar (0)]’
(6.24)
which is equal to zero as Ap(0)= . So
1Y A d*
dottgpt= ——34,’g2/ earO)dy . (6.25)
1[(—4ig®/m?) Ar (y)]

We can see the damping due to the denominator D%,
which appears only when the whole perturbation series
is summed. The effect of this is to completely eliminate
the contribution of the 6*(y) to the trace. Note that if
the denominator were not present, then the 6*(y) term
would contribute a finite constant —ig?» 2, which is
what occurs for the lowest order graph alone. Thus, the
effect of summing all the ladder graphs is to destroy
one term, which comes completely from the light cone.

Let us now treat Eq. (6.25) with our previous tech-
niques. The numerator now contains only Ag(y) and
not its derivatives. Thus what was apparently the most
singular part of M ,,(¢q) does not occur in M ,,(q), having
given only the nugatory term §*(y). We can now analyze
Eq. (6.25) by our general reduction formulas. First, we
note that, if we take ¢?=0, then the term ¢28%(¢?) will
give zero, provided that 8%(g?) is not singular at ¢>=0.
We have no reason to expect such a singularity, because
singularities at ¢= 0 normally are produced by massless
particles. It may also be seen by examination of our
expression (6.6) for B,,, that B(g?) is regular at ¢?=0.

Thus,

. 3ig?

at(g?=0)= ; lim

WAL (y)dly
1£[ (—4ig/m?)Ar(y)]

(6.26)
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The integral may be seen, by our previous discussion,
to give

1/(¢+m*)+0(g* Ing),
so that
af(¢=0)=—3ig?/4m*+0(g* Ing). (6.27)
Thus,
callowed (g2 =0) = — 3ig?/dm? , (6.28)
aforbidden (¢2=0)=0(g* Ing) . (6.29)

These formulas may be compared with the results for
« of the lowest order graph, which gives

Qlallowed (q = 0) = "7:g2/m2 ’
aforbidden (¢2=0)=0.

We see the reduction by a factor £ of the allowed
amplitude from its lowest order result.

As we have stressed, this reduction occurs because
of the damping effect of the denominator, which elimi-
nates the contribution of the term §*(y). We conjecture
that even if graphs other than the simple ladder graphs
are summed, this damping effect on the light cone will
persist, and the contribution of such terms as §(y) or
5(y?) will be zero. We, therefore, believe that the re-
duction of the amplitude at ¢2=0 by a factor of § from
the lowest order result is a likely feature of any vector
meson theory which sums graphs to all orders in g2, and
for which a damping effect occurs on the light cone.
The physical implications of this will be discussed in
Sec. VIII.

E. Corrections to the Approximate
Integral Equation

Let us recapitulate the main steps of the argument
given in Sec. IV. We first derived the exact integral
equation (4.18) for M . We then expanded,

M =M, o+M . oyt Mo p+---, (6.30)

and showed that each M4 (s satisfies an integral equa-
tion, see Eqgs. (4.22), (4.23). The leading term M (o) is
the one discussed in the foregoing, it satisfied our ap-
proximate integral equation (4.22) which we solved rig-
orously. According to Eq. (4.23), we get, for n>1, a set
of sequential integral equations in which the inhomo-
geneity of the (n+1)st equation is determined by the
solution of the nth one. The question of course arises
whether the expansion (6.30) converges. We have no
answer to this. However, we shall show next that, for
small ¢ (\¢K1), it is indeed so that M, is a small
correction to M 4 (o).

In order to state in what sense this is true, we write
the result for My in the following symbolic form
(always for N\g<K1).

My0=agl+bg! Ing+0(g) (6.31)

where ¢ and b are functions of ¢, but independent of g.
Let us recall that Moqq and Meven, defined by Eq. (4.17),
refer to the allowed and forbidden processes respec-
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tively. Thus, Eq. (6.31) summarizes our previous
conclusion that the approximate integral equation
(4.22) yields solutions for the amplitudes which are
0(g?) (allowed) and O(g*Ing) (forbidden).

When we say that M, ) is small compared to M4 (o
we mean by this that the corresponding symbolic
form for M, ) is given by

Myay==cg*Ing+0(gh, (6.32)

where ¢ is a further g-independent function of ¢. The
detailed proof of Eq. (6.32) is found in Appendix F.
It should be stated that we have not actually evaluated
the quantity ¢. This would be a laborious process which
hardly seems worthwhile. Indeed there is every justifi-
cation for letting the case rest once one compares Egs.
(6.31), (6.32) and notes that M, ) is small compared to
M 4 0y by an order which is at most g2 Ing.

With regard to the allowed and forbidden processes
the implications of Eq. (6.32) are the following. The
M @) corrections to the allowed reactions are O(g*). The
forbidden processes get further contributions of the same
order gtlng as were obtained from M (5). It should be
stressed that this result in itself does not imply a lack
of convergence of our method. As we have pointed out
repeatedly, uncoupled integral equations exist only for
the linear combinations M4, and Egs. (6.31, 32) show
that it is meaningful to consider M) as a correction
to M 4 (o).

The question can be asked whether each term in our
procedure is finite, in other words, whether M ) [see
Eq. (6.30)] is convergent for general #. In Appendix F
arguments will be given which indicate that this is
indeed the case.

VII. LEPTON PHYSICS

We shall now apply our solution to the approximate
integral equation to various physical processes involv-
ing leptons.

A. u Decay

The only weak leptonic process observed until now
has been the u decay

= e+ vty (7.1)
and its charge conjugate. The alternate decay mode
= et vty

does not conserve u number and so is forbidden in this
theory.

As we have remarked, the p decay occurs via ex-
change of an odd number of W’s, and hence the ampli-
tude is given by

odd=%5(M+M_). (7.2)

We note further that for our solution the amplitude de-
pends only on ¢*= (p,—p,,)? which is negative for u

4 pdecay =
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TaBLE I. The parameters of u decay.
Peratization Lowest order
theory theory
Michel parameter o 3+@/9) (mu/m)t  §+3(mu/m)?
Asymmetry parameter ¢ —1—%(m,/m)? —1—E(m,/m)?
Lifetime 7 1o 14+-$(my/m)2T T o[1-4+2(m,/m)* ]

decay. Hence, we must take the solution for <0. As
|| <m,? we can use the expression valid when gh<1.
We noted at the end of Sec. VI B that we may use
the Eq. (6.12) in this instance. Therefore,

—i3g? [1—(¢*/3m?) ]
ey, (14vs)
4 ¢+

Ay decay ((12) =
m2

Xu”ed”l"YP(l—l_'Yﬁ)up- (7.3)
This may be compared with the lowest order expression

’ o2

g
N zae'Yp (1 +’Y5)
qTm
Kty UiYp (1 +'YE)7/‘M .

Lu decay (qz) =
(7.4)

We note two differences from the lowest-order expres-
sion. Firstly,
___1'3 2

g
a67p(1+75)uv,ﬁvu7p (1+75)up. )

4m?

A(g=0)= (7.5)

or G,=3gV2/4m? in the usual notation. The “effective
coupling constant” is therefore reduced by the factor £
from the lowest order result. Evidently, if this result is
correct, a similar reduction must occur for Gg in order
to preserve the observed equality Gg=G,.

Secondly, there is a momentum-dependent correction
factor (1—¢?/3m?) compared with the lowest order re-
sult. We can see the effect of this by expanding the
denominator in powers of ¢2/m? and keeping only the
first two terms, as is usually done. We then get

—i3g? 4 g
A~ <1——-—)dm(1+75)
4m? 3 m?

Xttt p(1H75)4. - (7.6)

From this expression we may draw the following
conclusions:

(a) Since the usual V—4 form is maintained, the
polarization of the electrons will be given as in the
local theory, or by the lowest order result.

(b) The momentum dependence of 4 is of the form
given by the lowest order matrix element, provided
that the W mass squared m? is replaced by 3m?/4. That
is, the matrix element (7.6), apart from an over-all
multiplicative factor, is that which would be obtained
from the lowest order theory for a meson of mass m(2)%2,
From this we can immediately write the correction to
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the Michel parameter, asymmetry parameter, etc. For
convenience, we compare our result for a boson of
mass m, with those of the lowest order matrix element,
again for a boson of mass m (see Table I).

It is clear that an accurate measurement of these
parameters, combined with a measurement of the W
mass, can distinguish between the two sets of predic-
tions. Such measurements are in progress.?* If the W
mass should be fortuitously very close to its lower
limit of 500 MeV, then the distinction can possibly be
made without measuring the W mass, since the pera-
tization theory predicts a p value of 0.768, whereas the
maximum possible value in the usual theory is 0.764.

In view of the possibility of testing our theory in
this way, we wish to note that the additional factor
1—¢?/3m? in the matrix element (7.3) can be under-
stood in a way quite similar to the way the factor
arises, which we have discussed in Sec. VI D. Specifi-
cally, it occurs because the amplitude in coordinate
space is bounded in the inner region. The inner region,
therefore, gives a contribution proportional to its four-
dimensional volume, or A\ The total contribution of
order g® comes from the outer region, where the ampli-
tude can be approximated by the lowest order ampli-
tude. It is easily seen that the lowest order amplitude in
the outer region contributes the result (7.3). On the
other hand, the lowest order amplitude is not bounded in
the inner region, but rather goes as y~2. It, therefore,
gets a contribution of order g? from the inner region,
which is just the difference between the expressions
(7.3) and (7.4).

We expect that if the amplitude depends only on ¢?,
and can be written as a Fourier transform of a function,
bounded in the inner region, and agreeing with our
function in the outer region, then to order g2 it will
have the form (7.3). We therefore expect that this
expression will be valid beyond the uncrossed ladder
graphs.

In addition we can show that the deviations ~ ¢2/m?
from the conventional second-order matrix element are
quite generally determined completely by the zero-energy
modification of the second-order result. The argument
goes as follows. Write the contribution ~g? to the
amplitude as 4 (g?). For any set of graphs we have

A(g)=—1ig/(¢+m?)+A4'(g?).

The first term is the second-order contribution, the
second one is due to the higher order graphs. The point
is now that the power-counting argument of Sec. III
shows that, to the order g considered, 4’ has to be
independent of ¢. In Sec. IIT we put all external mo-
menta equal to zero. Had we allowed small values of
these momenta to occur, then we would have had to
include also powers of ¢2/A? in the power counting. Such
terms are less singular than the leading terms, however,
and therefore are of higher order in g. Note that for

2 Juliet Lee (private communication).
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TasLE II. The independent lepton-lepton scattering reactions. Other reactions can be obtained from these by CP. The notation E
means that the reaction can occur electromagnetically; the notation W1, that it can occur by exchange of a single W meson. In the last
column, the matrix element coming from the uncrossed ladder graphs is given. M stands for the odd graphs in the “scattering’’ channel,
M, for the even-order graphs. T stands for the odd graphs in the “annihilation” channel, Z, for the even graphs. The quantities Z,,, M,
are actually the same functions of their arguments, only the spinor factors being different. The variable on which M, 2 depend is indi-

cated in parenthesis.

Allowed in lowest

Lepton Third component of order or allowed
number leptonic spin Reaction electromagnetically Matrix element

2 +1 e+t =e+te E 0
e +ve = e +tre w1 il/lO(Pe_Pu’)‘i‘Ms (Pe—j)el)
Vs+1’e = Ve+1’e 0

2 0 w e = u e L 0
wFve ill—"‘l’e Mz(Pu"'pul)
wtve &= e_'f"'u w1 MU(PM_pVM/>
v, =+, M (pe—pe)
vetvy = vetwy 0

2 -1 T T A N L 0
Wt =t w1 MO(Pu_Pvu’)“i"ME(Pn_Pu,)
vty = vty 0

0 +1 Ve+l’-+ = Ve+,“+ Me(?y_Pul)
e +ut = e tut 0
e‘—f—,u.* = Vz+1_/p w1 lwﬂ(pe_ﬁv,)
Vutve = Vptve 0
eV, = e+, Meo(pe—p.)

0 0 e+, =e 4V, w1 Zo(petp0) Mo (pe—p.")
eV =u+v, w1 Zo(petp7)
BT =T w1 Zo(puttnd +Me(pu—pu")
wtut = p et L 0
wut = e tet E 0
wtut = w47 Ze(putpu*)
AR vutPy w1 MO(Pu_qu’)+Ee(Pu'+Pu+)
e tet e +tet E 0
e tet =t w1 Mo(pe—p0,)FZe(petpe")
Ve+172 = Ve+1-/e 0
vetVe = vty 0
vutvy S vptv, 0

small ¢ we cannot have inverse powers of ¢. Nor can
we have powers of ¢2/m? to leading order, as such con-
tributions do not come from the most singular regions
in momentum space.

On dimensional grounds, A’(g?)=1ng?/m? where 7 is
a number. For the uncrossed ladder graphs, n=%. For

any n,
ig*(1—n) 1 ¢
4 @)= (1_1 ;n;)

-

m2

This proves our assertion that the ¢* corrections are
completely determined by the zero-energy modifications.

B. Matrix Elements for Lepton-Lepton
Scattering

The only lepton-lepton scattering processes which
have been observed are e—e scattering and u— e scatter-
ing, both of which occur via electromagnetic inter-
actions. There exist 60 possible lepton-scattering re-
actions consistent with the conservation laws of lepton
number and p number. Some relations among these

follow from CP invariance and the principle of detailed
balance so that there are only 29 reactions with inde-
pendent amplitudes. These are listed in Table II. There
we also state whether the reaction can occur electro-
magnetically or by the exchange of a single vector
meson. Since we have not considered electromagnetic
effects in this paper, we will call a lepton reaction
“allowed” if it can occur by exchange of a single vector
meson, and ‘“first forbidden’ otherwise. This is a change
from our previous phraseology, in which allowed and
forbidden referred to odd- and even-order graphs,
respectively.

In order to list the different scatterings that may
occur, we have used the lepton number, electric charge,
and the third component of the leptonic spin® to classify
the states containing two leptons. We recall that the
leptonic spin is defined so that
¢ and v,,

Ly=+41 for

7.7
—% for pand y,, (7.7)

and is an additive quantum number.
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Fic. 8. A graph with
crossed external lines. This
graph is obtained from our
standard graph by the sub-
stitution rule.

1

Table II is constructed according to this scheme.
Note however that these quantum numbers are in-
sufficient to completely describe the states. For ex-
ample, the states

lyy=(1/V2)(|ete )+ |wtu)),
hh): (1/\/2—)“ vehot l VuPp))

have the same value of all three quantum numbers.
The theory we are considering has no further conserved
quantum numbers to distinguish these states. Whether
this lack could be remedied in a theory including electro-
magnetism is an interesting question which we cannot
enter into here. We only remark that for the strongly
interacting particles, such situations have often led to
the introduction of new symmetry groups.?

In Secs. IV-VI, we have calculated the contribution
of uncrossed ladder graphs to the “black box’ repre-
senting lepton-lepton scattering. We must now indicate
how the external lines are attached to the input and
output terminals to give the matrix element for a given
scattering process. Note that in addition to the usual
possibility of change of sign of the external momenta
(substitution law) we have the possibility of associating
particular leptons with the external lines in different
ways. For these reasons, it is necessary to define care-
fully which graphs are actually included in the un-
crossed ladder graphs.

We first adopt the convention that particle (u™,e=,v,,ve)
lines go upward in a diagram, antiparticle lines go down-
ward. Next we use the convention that there are no
crossings of external lines. That is, graphs such as Fig. 8
are redrawn as in Fig. 9, which is clearly equivalent.
The latter convention is required because, as is im-
mediately evident from these figures, there is no dis-
tinction between uncrossed graphs and certain “‘com-
pletely crossed graphs” if the external lines are not
drawn in a prescribed way.

We now define the uncrossed ladder graphs for par-
ticle-particle scattering as those graphs which with
these conventions have uncrossed meson lines.

For particle-antiparticle scattering, we consider only
those graphs which can be obtained from the above by
“bending”’ the external fermion lines in arbitrary ways,

(7.8)

25 Certain higher symmetries such as “The Eightfold Way”
introduce new quantum numbers which distinguish between
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i.e., by application of the substitution law,?¢ followed if
necessary by rigid rotation of the diagram to make the
true direction correspond to the usual one. Some of
the diagrams obtained this way, if redrawn in con-
formity to our convention about crossing of external
lines, will appear to have crossed meson lines (Fig. 9).
This, however, is only appearance and it is easy to
show that the set of graphs obtained in this way have
the right properties to be summed to give our integral
equation.

An alternative way of stating the graphs we take is
to require that they should be topologically equivalent
to a graph in which the directional arrows on fermion
lines are parallel, and the meson lines are uncrossed.

This restriction on the graphs is necessary so that the
amplitudes can be expressed in terms of the amplitudes
M that we have derived. One result of it is that some
of the lepton-lepton scattering amplitudes will be zero,
whereas certain other graphs which are not dissimilar
to our graphs give finite contributions to them. We
return to this problem in a future paper, as it is related
to the problem of the other crossed graphs.

In Table II, we have written the matrix elements for
the 29 independent processes in terms of the even- and
odd-order amplitudes. We have also indicated the
variable on which the matrix element depends. This is
necessary because the substitution law changes the sign
of some 4 momenta. It turns out that apart from the
spinor factors which multiply M, all graphs in the
momentum-transfer channel depend only on the mo-
mentum-transfer variable $1—p;" whether they involve
particles or antiparticles. However, the graphs in the
energy or annihilation channel depend only on the total
energy variable p1 ps.

The main result for scattering processes that follows
from the graphs we have summed is that the amplitudes
for both allowed and first-forbidden reactions are finite
functions of momenta and coupling constant [Egs.
(6.12) and (6.16) . This is of course not the case in the
perturbation expansion and, hence, our summation pro-
cedure has succeeded in giving meaningful answers
where the perturbation result is divergent.

Let us consider the order in g? of allowed and first-
forbidden reactions. It is easy to see that all of the
first-forbidden reactions (those without a W1 entry)
either have vanishing matrix element, or have an ampli-
tude proportional to

Meven=%(M+—M_) ,

which as we have seen [Eq. (6.16)] is of order g*Ing
provided gA<<1. On the other hand, the allowed re-
actions always have a term in the amplitude propor-
tional to

Moqa=5(M+M_),

which is of order g for gA< 1.

26 See J. M. Jauch and F. Rohrlich, Theory of Photons and
Electrons (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955), p. 161.
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If this result remains true when other graphs are
included, then at energies available in the forseeable
future (Ee.m. <300 BeV), the first-forbidden scattering
amplitudes remain forbidden, that is, are smaller by
g2 Ing than the allowed amplitudes. It follows that only
those lepton-scattering processes which occur electro-
magnetically, or via the exchange of a single vector
boson will be observable.

It is, of course, assumed here that g1, which is
equivalent to assuming that m<<300 BeV. If this is not
the case, the whole idea of obtaining an expansion in g2
is useless anyway, and the weak interactions will be as
complicated as the strong. Our Egs. (6.30)-(6.32) are
an expansion in g? although evidently not a power series.

The most promising way of testing the conclusion
that first-forbidden processes remain forbidden would
be to compare the scattering of high-energy 7. on elec-
trons with the scattering of high-energy 7, on electrons.
An examination of Table IT shows that the former has
two reactions with amplitudes of order g i.e.,

Ve'!"e — Va—l’e ) (7.9)

vete— v tu,
while the second has available only the first-forbidden
reaction

pyte— vt (7.10)
Hence, the cross section for the latter should be smaller
by a factor g*ln%g, which would make it unobservable.
A test of this using neutrinos from u or K .5 decay may
be feasible within a few years.

We note that a somewhat larger amplitude for
scattering of #, by electrons might come from electro-
magnetic effects such as a charge form factor of »,. This
would probably still be smaller by a factor 1/137 than
the allowed processes.

We note finally that since the theory we are con-
sidering is invariant under the leptonic spin group of
Ref. 10, we expect that the amplitudes will satisfy the
triangular relations given there. It may be seen from
Table II that this is indeed the case, if we compare
with Egs. (3.10-3.13) of Ref. 10.

C. High-Energy Lepton-Lepton
Scattering and Unitarity

We have indicated that one of the objections to the
phenomenological S-matrix theory of weak interactions
is that it does not give unitary scattering amplitudes at
very high energies. This is also true for certain processes
when the lowest order matrix element of the vector-
meson theory is used.’® In particular, it is true for a
process such as (1.1), where the lowest order matrix
element occurs in the ‘“momentum-transfer channel,”
and depends only on momentum transfer. In this case,
the partial-wave amplitudes do not satisfy the asymp-
totic unitarity condition. By this we mean that the
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F1c. 9. This graph is topologically equivalent to
Fig. 8, but is now drawn with crossed meson lines.
This is one of the allowed graphs for particle-anti-
particle scattering.

partial-wave amplitudes, defined by

a (k)= k/ P(cosb)d cosb M (g?) (7.11)

-1

are not O(1/k) as k— o, but rather go as £1lnk. On
the other hand, for a process like e~+et— v+,
where the process occurs in the “energy channel,” the
matrix element depends only on the total energy, apart
from a kinematic dependence coming from the spinor
factors. In this case, the partial-wave amplitudes ob-
tained from the lowest order result do indeed go to
zero as rapidly as required by unitarity, although the
full unitarity condition

W(Tt—T)=T1tT (7.12)
is not satisfied.

It is, therefore, of some interest to check whether the
solution we have obtained satisfies unitarity. We have
not done this in detail. However, we have succeeded in

demonstrating the following results.

(1) For processes which in our approximation (un-
crossed ladder graphs) occur in the energy channel, the
amplitudes still satisfy the asymptotic unitarity condi-
tion. This follows immediately from our expressions
(6.19) for the amplitudes when ¢><0, since in this
channel ¢®=—FE.m2 [We noted in Sec. VI C that
Eq. (6.19) gives the leading orders for ¢2<0, ga3>1.]
Upon substituting these amplitudes into Eq. (7.11)
above, we see that a;(k) =0 (k™) for large %, as required.

(2) For allowed processes which occur in the mo-
mentum-transfer channel in odd-order graphs, such as
(1.1), the amplitudes now also satisfy the asymptotic
unitarity condition. This is not immediately obvious
from our expressions (6.18,19) for (gA\)2>1. In fact,
in order to verify unitarity we must in this case first
integrate over all allowed momentum-transfer values.
For this reason it is actually convenient to revert to
the general expressions Eq. (6.6). In this way, asymp-
totic unitarity for the allowed processes can be verified
by the direct computation of the partial-wave ampli-
tudes in the high-energy limit. It turns out that the
leading term for large g, which is the oscillating term
(gN)TH; W (@A) of Eq. (6.17) does not give the main
contribution at high energy. Instead, the correction
terms in Eq. (6.19) coming from very near the light
cone and the low ¢ terms from the outer region give the
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dominant contributions to the high-energy limits of the
partial waves.

(3) For the processes which get contributions from
even-order graphs, such the the first-forbidden re-
actions and the allowed elastic-scattering reactions, we
have not been able to demonstrate that the asymptotic
unitarity is satisfied. We believe that this is because
for the even-order graphs at very high energies, the
correction terms in our iteration scheme are not negli-
gible. It seems probable that the solution to the full
integral equation of Appendix A satisfies the unitarity
condition (7.12).

We conclude this section with the remark that the
leptonic processes are the place where any theory of
weak interactions is likely to be most reliable, since
they are unaffected by strong interaction corrections or
by the ambiguities concerning the form of the La-
grangian which arises for semileptonic reactions. It
would therefore be of great interest for measurements
to be made of the various electron-neutrino scattering
processes to see whether our theory, or any of the ideas
about leptonic weak interactions are valid there. In our
opinion, the detection of such processes would be an
important step in the understanding of leptons. In par-
ticular, the existence of the scattering of v, by eis a very
clear-cut test of the hypothesis that the weak inter-
actions have the structure of the product of currents.

VIII. EXTENSIONS TO SEMILEPTONIC AND
NONLEPTONIC PROCESSES

In the previous sections, we have confined ourselves
to the interactions of W mesons with leptons. The ad-
vantage of this is that the interaction to be used is
rather definite, if the vector mesons exist. Also, there
are no complications due to the strong interactions. Of
course, most of the experimental information on weak
interactions concerns the interaction of leptons with
strongly interacting particles, and the nonleptonic de-
cay of strange particles. There are several serious ques-
tions of principle which arise when we try to extend our
results to such problems. In this section, we will indi-
cate what some of these problems are. Furthermore, we
shall make a number of conjectures about the role of
higher order corrections in these semileptonic and non-
leptonic processes.

A. Problems in Extending the Theory to Semi-
leptonic and Nonleptonic Reactions

There are three immediate problems which present
themselves if we wish to apply our results to the ladder
graphs for semileptonic reactions.

(1) What is the interaction between W mesons and
baryons or mesons?

(2) How strong do the strong interactions affect our
integrands at very high virtual momenta?

(3) Do the baryon masses play an important role
in the higher corrections?

G. FEINBERG AND A,
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Let us consider these problems in turn.

(1) The Baryon and Meson Currents

The Lagrangian (2.1) for the lepton W interaction
is strongly suggested by experimental information on
the symmetries of leptonic weak interactions. However,
the correct form of the weak Lagrangian for strongly
interacting particles cannot be so easily determined by
analysis of the experiments. In particular, with the
exception of the vector part of the AS=0 current, it is
not clear which fields occur in the currents, nor what
the ratio of ¥ to 4 terms is. Furthermore, there does
not seem to be any simple guide to the isotopic spin
properties of these currents.

What has often been done is to analyze?’ the decay
matrix element into products of currents and to assume
that any current phenomenologically present, is also
present in the weak Lagrangian. This procedure has not
led to any simple picture of the weak interactions, par-
ticularly with the indications of AS=—AQ transitions.

As we shall note below the procedure just mentioned
is surely wrong if higher-order weak effects are im-
portant in semileptonic decay. In that case, we believe
that a correct insight into the structure of the weak
baryon and meson currents will only come by seriously
considering the interplay between the structure of cur-
rents and the higher order effects. Indeed, it is possible
that the key to finding the primitive baryon currents
is the requirement that the higher order effects give
results in agreement with experiment. In particular, we
note that in the higher-order graphs, processes such as
the 8 decay, with AS=0, will get contributions from
AS=1 currents, and conversely (Fig. 10).

In some simple cases, we can see at once how these
effects may be incorporated into our previous work.
As an example, let us consider the matrix element for
B decay generated by ladder graphs for the following
interaction Lagrangian:

L:ingé’Yp(1+75)Ve+ingﬁ’yﬂ (1+75)P
+ ig2WpK'Yp (1+75)P . (8- 1)

For this Lagrangian it is clear that both A and # occur
in intermediate states along the baryon pole of the
ladder. Furthermore, only odd-order graphs contribute.
Let us now neglect the baryon masses and the possible
effects of strong interactions. Then the sum of the

LY 2

\ Ye

b z P X *=
» Ye A Ye

%’ See, for example, R. Behrends and A. Sirlin, Phys. Rev. 121,
324 (1961).

F16. 10. Some graphs il-
lustrating how AS=0 and
AS =1 currents get mixed in
higher order graphs. The
circled vertices are AS=1,
the uncircled baryon ver-
tices are AS=0.
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ladder graphs again satisfies an approximate integral
equation of the type (4.24), whose solution is

M=5,0A4v:D)y,® (1+y:sP)M 1 (g), (8.2)
(auv - 'm«_23“6 V) Ar (y)
M,,(q)=—ig? / d*yeiav ,  (83)
D(y)
D(y)=1+416g*(g>+g2") Ar*(y)m™. (8.4)

A comparison with the results of Sec. VI shows that
the leading term is independent of g¢® unless g><Kg2?,
which is most unlikely. This leading term is equal to
3g2/4m? at ¢*=0, just as in the case of u decay. There-
fore, if the Lagrangian (8.1) is assumed and the strong-
interaction effects are neglected, the equality Gg=G, is
maintained.

This result is only of limited significance because of
the restrictive nature of the model. Even so, it is im-
portant because it shows that, at least in principle, the
higher-order effects may be consistent with Gp=G,.
This is interesting, since when these effects are in-
cluded, the vector current is no longer conserved, so
that the original justification?® for the lack of renormal-
ization of Gg/G, is inapplicable. The equality therefore
requires a dynamical justification, at least in so far as
higher-order weak effects contribute to Gg, G,.

(2) Effects of the Strong Interactions

For processes involving strongly interacting particles,
there is the well-known complication that many dif-
ferent intermediate states are linked to the initial and
final states by strong interactions. Furthermore, there
is the additional complication in our case that con-
tributions come from very large values of the virtual
momenta. At such high momenta, the behavior of the
W-baryon vertices, baryon propagators, etc., may be
quite different from what is known at small momenta.
It is, therefore, important to know how our results for
the sum of ladder graphs vary with the high-energy
behavior of propagators and vertices.

As an illustrative example of this, let us reconsider
the power counting of Sec. ITI, modifying the baryon
propagators to behave as p~*# for large momenta.?®
We see that for a ladder graph in which # mesons are
exchanged, the leading contribution in the sense of
Sec. III is

2

—ay

for n=1,
mZ

1 AN\ @B (n—1)
__g2n<_> a, if B<2 for n=2, 3, .-, (85)

m? m

28 R) P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

2 We are aware that if the baryons are elementary particles,
this is contrary to Lehmann’s theorem. Nevertheless, we think
the example is instructive, and in the light of some current specula-
tion, may even be relevant.
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and
1
—g?b, if B>2 for n=2,3,---.
m2
Therefore, if <2, the sum gives
gz © A 2—f=-n—1
gl T, o
m? n=2 m.
and if we define x=g>(A/m)*#, this becomes
g g
—Lat+f(x)]— —[artf(=)]. (8.7)
m2 A—>0 m2

The result is essentially the same as for =0 (un-
modified propagator). We therefore expect that the sum
of the higher order graphs will not vary much with 8,
provided 8<2. A slightly more detailed consideration
shows that this statement is actually true for 8 <2.
(The case B=2 is characterized by the occurrence of
logarithmic rather than power singularities.) On the
other hand, for 8>2, the terms with #=2,3, --- are
finite and of higher order in g2, so that the lowest order
graph gives the dominant term. That is, the higher
order effects now do become negligible. These results
can be verified by examining a generalization of the
integral equation to include the correction to the
propagators.

We will return to a consideration of the questions 1
and 2 in another paper of this series.

(3) Effects of the Baryon Masses

In our treatment of leptonic reactions, we have sys-
tematically neglected the fermion masses. Since lepton
masses are small compared to the minimum possible W
mass, this is presumably justified. But the baryon
masses are not expected to be small compared to .
This raises the question of how our solution has to be
modified to include them. We can easily include the
baryon masses in a simple theory, where for instance
only # and p are considered along with leptons, by a
modification of our correction kernel K; (see Sec. IV).
This modification consists of replacing all momenta p
in K1 by p—ma, (m, is the nucleon mass). The extra
terms obtained this way will be even less singular than
the leading correction terms, and in fact behave very
much like the §,, term of Eq. (4.21). It will lead to
additional corrections of order g!(m,/m)?, which are
negligible for allowed reactions, and do not increase the
amplitude of forbidden reactions significantly. We there-
fore believe that the baryon masses can also be neg-
lected in intermediate states, in leading order. This
may be very important in applying approximate
symmetries of strong interactions to the weak inter-
actions.
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B. Conjectures Concerning Semileptonic
Reactions

We will now state a number of plausible conjectures
on the role of higher order weak corrections to semi-
leptonic processes. These conjectures are based on an
extrapolation to these reactions of our results on lep-
tonic processes. While we do not offer proof for them,
we are convinced that they are worth stating as indi-
cations of what the situation may be. If the conjectures
are true, it will become clear that current views on the
structure of the weak interactions must be substantially
modified.

(1) Equality of B Decay and u Decay Vector
Coupling Constants

We have seen that higher order graphs change the
effective u-decay constant G, by a factor 2. In view of
the approximate equality Gyg=G,, it then must be
that higher order semileptonic graphs give the same
reduction factor for Gys. As we have indicated above,
this is likely to be true only if the baryon currents
have a suitable structure, and if the high-energy be-
havior of propagators, vertices, etc., is right. We con-
jecture that a correct theory of the baryon and meson
weak interactions will lead to a similar reduction of
Gyg as for G,.

The more detailed question of whether the predic-
tions of the conserved vector current hypothesis,? par-
ticularly the ‘“weak magnetism’ remains true in the
presence of higher order graphs also will provide a test
of such a theory.

(2) Reactions Involving Neutral Lepton Currents

For a Lagrangian like (8.1) which does not contain
neutral lepton currents explicitly, the ladder graphs for
semileptonic reactions involving neutral pairs of leptons
always involve the exchange of an even number of W
mesons. We, therefore, conjecture that, as in the lep-
tonic case, the amplitude for all such reactions are
smaller by a factor g2lng (~107%), than the allowed
semileptonic reactions. (Damping due to strong inter-
actions may conceivably make this ratio even smaller.)
This should hold independently of the strangeness
change of the strongly interacting particles. We, there-
fore, expect that the reactions (2.7) will be too small
to be observed.®

(3) Reactions with AS=—AQ

Let us assume that the basic Lagrangian contains no
AS=—AQ or |AS|=2 currents. We have remarked
that then the AS=—AQ=1 reactions involve the ex-
change of an odd number of W mesons, starting with

30 Neutral lepton pairs such as e+, ¢~ or pt, = can be produced
by electromagnetic corrections to weak interactions. The question
of the distinctions between this mode of production and the pro-

duction by a primitive neutral lepton current has heen discussed
by M. A. B. Bég, Phys. Rev. (to be published).
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three. The sum of the ladder graphs for even processes
will therefore differ from the sum for an allowed process
like 8 decay just by the lowest order graph (apart from
complications involving the different kinds of baryons
which can occur in intermediate states). We have seen,
however, that if we represent the sum of all odd-rung
graphs by

3g/4m? at @¢=0, (8.8)

then the sum of the odd rung graphs with >3 rungs
gives

—g/4m? at ¢=0. (8.9)

Therefore, the amplitude for a “second-forbidden” re-
action like
>_:+ - n—*_ﬂ++ Vu

can be of order g* also, and be a finite multiple of the
amplitude forallowed reactionssuchat ) —— n—+u=+7,.
The multiplying factor [in this case (—3)]may depend
on the “Clebsch-Gordon coefficients,” which come from
the structure of baryon currents. But we believe that
in a theory without AS=—AQ currents in the Lagran-
gian, where the AS= — AQ reactions are a purely higher
order weak effect, the amplitudes for such reactions
may be comparable to the amplitudes for allowed reac-
tions. This reopens the attractive possibility of con-
structing a theory of the baryonic and mesonic weak
interactions with a simple set of currents, and with a
single pair of charged W mesons.® We shall return
to this question in a later paper. We only add the re-
mark here that very similar results will hold for AS
= —AQ) reactions involving bosons, such as the decay

Ko— ptet4v.

(4) Semileptonic Reactions with AS>?2

Here again, if we use a Lagrangian of the form (8.1),
reactions with AS=2 will involve the exchange of 3, 5,
-+ - W mesons. We, therefore, conjecture that the ampli-
tude for Z~— n-+e+» may also be of order g2, and,
hence, this process should be observable. It should be
noted however that this decay always involves at least
two strangeness changing weak interactions. The rela-
tive weakness of A-leptonic decays is believed to indicate
that the coupling constant g, for the AS=1 currents is
smaller than g by about a factor of 5. We might then
expect that the rate for &~ — # leptonic decay will be
decreased by two orders of magnitude compared to the
phase-space prediction of 209, of all &~ decays. This,
of course, has nothing to do with being a higher order
effect, and the reaction should be observable even in
this case.

It has sometimes been conjectured® that there may

3 In this paper, we do not go into the question of the need for
neutral W mesons to make the nonleptonic A7 =1 rule valid.

2 B, T. Feld, Ann. Phys. (N. Y.) 7, 323 (1959): M. Gell-Mann,
Proceedings of the 1962 Annual International Conference on High-

Energy Physics at CERN, edited by J. Prentki (CERN, Geneva,
1962), p. 805.
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exist a baryon (@) with 7=0, §=—3. If it is not too
heavy, @~ would be stable against strong decays. One
possible decay mode for it would be

QO — nte+v,. (8.10)

This is a AS=3 reaction, which also gets contributions
from the exchange of 3, 5, etc., W’s. It, therefore, also
could be of order g2, and, hence, be observable.

Note added in proof. Meanwhile we have looked fur-
ther into the ‘“‘complications involving the different
kinds of baryons which can occur in intermediate
states,” mentioned before Eq. (8.8). We have examined
uncrossed ladder graphs for semileptonic processes,
including @il intermediate baryons which are possible
for this set of graphs. We introduce only couplings of
the type (AS=0, |AT|=1) and (|AS|=1, |AT|=3%).
The various terms in the current may have different
coupling strengths. As in the discussion of Eq. (8.3)
it is assumed that these strengths do not differ very
appreciably, and again the model is studied where
strong interaction effects are neglected. We find the
following. (a) For 8 decays, AS=0, the desired relation
Gs=G, is indeed maintained, provided only that the
(Aip) and (@r,) currents have the same strength.
(b) The AS=—AQ amplitudes are finite but of kigher
than the second order in g, and the same is true for
AS=2 amplitudes. Thus, for this particular set of
graphs, the conjectures mentioned under points 3 and 4
are not born out. Details will be published elsewhere.

(5) High-Energy Neutrino Scattering

Our conjectures here are mostly negative. We con-
sider only the reactions with 2-body final states. Then
we expect that the leading term in the amplitudes will
still depend only on momentum transfer, and therefore
that the local action predictions!® will remain valid. In
our opinion, this result is likely to be true more gener-
ally, because a dependence on energy can only come
about by having less powers of the “cutoff,”” and hence
a higher power of g? after the sum.

For the same reason, we do not expect any admixture
of “second-class currents’ into the matrix elements,
at least to order g2

One possibly observable effect on the high-energy
v scattering would be an anomalous dependence on
momentum transfer. If we examine our matrix element
(6.12) for lepton scattering we see that for momentum
transfers satisfying m? <¢*<\?% it is roughly constant.
On the other hand, the lowest order matrix element
falls off as ¢~2 in this region. The effect of the higher
order corrections is to remove the damping provided by
the boson propagator, in this region of momenta. It is
not clear whether this effect should be superimposed on
the momentum-transfer dependence due to the strong
interactions. If this is so, we expect that the cross sec-
tions for » scattering to a 2-body final state will not

3 S, Weinberg, Phys. Rev. 112, 1375 (1958).

2751

decrease as rapidly with momentum transfer as other-
wise expected in an intermediate boson theory.

(6) u Capture

Suppose that the matrix element (6.12) derived for
allowed leptonic reactions also represents the higher
order effects for u capture. It may then be seen that
there will result small (£49,) corrections to the effec-
tive Fermi and G-T coupling constants in the u capture.
In addition, there will be an induced pseudoscalar term
due to the g,¢, part of the matrix elements. The size
of this term is given by

Gr'/Ga=%2mum,/m*)~0.3(m,/m)2. (8.11)

For m~500 MeV, this ratio is about 1. Therefore, there
is an induced pseudoscalar term about equal in magni-
tude to the axial vector term. We would expect that
this should be added to the induced pseudoscalar gener-
ated by strong interactions,® which is given by

GP/GA = 2mnm,,/ (q2+m,,2) ~6.5

for u capture in H. (8.12)

(C) Nonleptonic Reactions

For the nonleptonic reactions, we have remarked
that the experimental situation is such that the higher
order effects seem to be uniformly small. Evidence for
this is the small K;— K mass difference [O(gms) ], and
the small admixture of parity nonconserving amplitude
into the nuclear force. We cannot by the technique de-
veloped so far come to any conclusion about the K1— K,
mass difference, which is of course a 2-point function
rather than a 4-point function. However, one can see in
the following example how it is possible for the non-
leptonic higher order effects to be much smaller then
semileptonic or leptonic ones.

Let us again consider ladder graphs, this time for a
process like 54 p — n+n which is AS=2. It gets con-
tributions from graphs in which more than one W is
exchanged. If we do a power count with damped baryon
propagators as in subsection (b) above, we see that
since there are now baryons on both lines, the damping
effects will be accentuated. In particular, Egs. (8.5) are
now replaced by

(1/m2)g2"(A/m) @-28)(n—D)g if B<1
and (8.13)
(1/m®)g2nb, if B>1.

Thus, the higher order effects will be small in this
nonleptonic reaction if 3> 1, whereas they can still be
large in the semileptonic reaction provided that 3<2.

We believe that this is a general feature, and that
the effects of the strong interactions are such that
certain higher order corrections on the semileptonic re-
actions are large, but that their effects on nonleptonic

( MSM. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
1958).
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reactions are small. In a future paper, we shall try to
state conditions that the strong-interaction damping
must satisfy in order that this be true. We are however
convinced that both the small K;— K, mass difference,
and the “separation” of weak and strong interactions
can be understood in these terms. The hardest problem
may be to show that the strong interactions really act
in the way we require.

IX. FUTURE QUESTIONS AND CONCLUSIONS

We have presented in this paper a detailed treat-
ment of a selected set of graphs, and shown that it is
possible to obtain finite answers for the amplitudes of
various reactions. It is clear that many questions re-
main to be answered before we have a complete field
theory of the weak-interaction processes. In this final
section we list some of these questions. In some cases,
the answer is fairly straightforward and will be dealt
with in later papers in this series. In other cases, the
correct method of analysis remains unclear. We list
these questions in order to indicate some lines of
approach which we hope to pursue.

(a) Other graphs. The uncrossed ladder graphs that
we have summed are not more singular than many
other kinds of graphs, such as crossed ladder graphs,
vertex corrections, etc. In order to make a complete
theory of the purely leptonic weak interactions it is
necessary to devise methods for dealing with these
graphs as well. It appears that our method of summing
the most singular terms can be extended to a large class
of such graphs.

One novel problem that arises in this respect is the
fact that some of the particles (such as W and ) which
occur in intermediate states in our theory are actually
unstable.?® This does not appear to present any in-
superable difficulties, as the conventional field-theory
formalism is capable of dealing with such particles by
including the absorptive part of their propagator com-
ing from the decay. Nevertheless, it will be interesting
to see how the instability of the W meson affects our
results.

'(b) Electromagnetic effects. Remaining within the area
of leptonic reactions, the other coupling which could
have a sizable effect is the electromagnetic interaction.
This is because the electrodynamics of the W is itself
divergent, and must be treated by new summation
techniques.® The problem of counting powers is com-
plicated when weak and electromagnetic interactions
are both present, since there are now two parameters
(e and g) in addition to the cutoff. This problem must
be faced, however, particularly in computing quantities
which explicitly involve electromagnetism, such as the
neutrino charge form factors.

(c) Strong interaction effects. In extending our results
to the semileptonic reactions, we have mentioned that

35 This point was also raised by C. N. Yang in a private
discussion.
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it is necessary to understand the role of the strong
interactions. In particular, it is important to know
which of the many intermediate states linked by strong
interactions give the leading contribution in a particular
order of the weak interactions. There is the further
problem of estimating the behavior of their contribu-
tion for large momenta. Some techniques developed re-
cently for the study of the high-energy behavior of
Feynman graphs in convergent theories may be very
useful in this connection.

(d) Semileptonic boson interactions. For simplicity, we
have in this paper only considered fermion-fermion
scattering problems. The extension of our ladder graph
analysis to boson-fermion scattering and decay is not
difficult, although some differences appear, in particular,
a simple dependence of the answer on energy as well as
momentum transfer. For more general graphs, the
power counting for bosons is somewhat different than
for fermions, and hence these graphs should be treated
in detail.

(e) Structure of the baryon and meson currents. As we
have stressed in Sec. VIII, if our general approach is
correct, it is impossible to learn the structure of baryon
and meson currents from a phenomenological analysis.
Instead, we believe that a study of the higher order
effects will be a powerful tool in the determination of the
correct form of the currents. However, in doing this it
will be necessary to answer such questions as how to
treat currents which are not in the V— 4 form that we
have assumed. This is possible by a straightforward ex-
tension of the present methods.

(f) Four-fermion interactions. In spite of our op-
timism, it may be that the intermediate boson theory is
incorrect because the boson does not exist. If this were
so, physicists will probably return to the four-fermion
interaction. It would be of interest to apply our tech-
niques to that theory and see whether they lead to
finite results. This may also be useful in comparing the
four-fermion theory with a theory containing a very
heavy vector meson, in which the dynamic corrections
to u decay that we have computed are hard to observe.
Preliminary results show that the four-fermion theory
may be treated with our methods.

We conclude this first paper with a summary of
what we think has been accomplished. We have taken
a theory which is unrenormalizable by standard tech-
niques, and shown that a set of graphs which are diver-
gent in the perturbation expansion can be summed to
give finite results. The corrections to the lowest order
matrix element obtained in this way are in some cases
comparable to the lowest order matrix element, and
hence should be observable. This implies strongly that
the higher-order corrections to weak interactions cannot
be neglected. Finally, the results we obtained, if ex-
tended by analogy to semileptonic reactions, are quali-
tatively in agreement with known experiment.

Only further experimental and theoretical work can
tell whether this approach is correct. We believe that
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it is sufficiently interesting as a program to warrant
careful consideration.
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be applied to give finite results in unrenormalizable
theories.

APPENDIX A

The Complete Integral Equation for the
Uncrossed Ladder Graphs

In this section we will perform a few more manipula-
tions on the integral equation (4.19) for the uncrossed
ladder graphs which can be written as

144 17

"2
2

1
S
(b=
As in Eq. (4.25), we can set

Me= 1= A—7s®)n, @M,

>|:6 B (Pl//_Pll)a(Pzn_pzl)”

}Mi<p1",pz",p1,pz>d4p1". (A1)

m2

- MO =(1—y;®)y, O (1—y®)y, @M ,,O . (A2)
en
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1
x<m>d4p . (A3)
(Plu_pl/>2+m2 1

Put
(I =78)Yavev,= (1=75)appu¥u» (A4)
where
EaﬁnuzBaﬂépu“sap68n+aau56p+ €aBppu - (AS)
Note from its definition that £.g,, has the following two properties.
Eaﬂpuéorp;L: 45043717 ’ (A6)
EaﬂP#A puzaaﬁAM if Apft:Aup' (A7)

With this notation, and the use of the linear independence of the y matrices, Eq. (A3) becomes

M E(pL,pe s pr,p2) =M @ (py — p1) F

It may be seen that by taking the term p1./"p2s” in
the bracket, which is the one involving the most powers
of the integration variable, we obtain our approximate
integral equation in the form of Eq. (4.26).

APPENDIX B
Derivation of the Reduction Formula

In the first few steps we follow a procedure employed
elsewhere.3® Put |y|=7, yo=1t; |q| =%, go=1w. In the

38 A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950),
see Sec. B3. In that paper the functions ¥(3?) are essentially

1’16”1721”['6

4ig? /
Eaﬂ gu‘r)\v
(21r)4 pu

(Plll_Pll)a(lel_pzl)U}

112 //2L as 2
P17 P2 m

1
X<m>M At (P, pa prpa)dip)’ . (A8)

integral (5.1) perform the integrations over the direc-
tions of y. This gives

T 0 00
I= Py / / rdrdt¥ (y?)[expi (kr—wt) — exp— i (kr+4-wi)].
1RJ —0V —0

Divide the integration region into two parts. For
r>tputr=R coshe, t=Rsinhg;for r<¢putr=Rsinhe,

modified Feynman propagators in momentum space. The desired
behavior for g=0 was obtained there by differentiation of a step
function. In this respect, we shall not follow the method used
earlier.
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t=R coshe. In either region, — 0 <R< ®, — < o< . The Jacobian is equal to |R|dRd¢. As regards ¢,, we

must distinguish four cases.

(@) >0, E>w?: k=g cosha,
(b) w<0, k*>uw?: k=g cosha,
() >0, E<w?: k=¢sinha,
(d) <0, E>w?: k=g sinha,

With the help of the representations®”

Ko(x)=/ de cos(x sinho),
0

7‘. 0
~5Y0(x)=/ d¢ cos(x coshe),
0 .
one finds

6 0
¢>0: I=—8r— | R|R|dR
0¢?) —

X[¥ (R (—3m)Yo(qR)+¥ (—R)K,o(¢R) ],
6 0
£<0: I:87ra~q;/_wR[RldR

X[ (R)Ko(qR)+¥ (— R (—3m)Yo(qR)].

We now wish to interchange integration and differentia-
tion. This will lead to functions ¥, K; which at R=0
are more singular than Yo, Ko, The interchange is
therefore justified only if ¥ is sufficiently well behaved
at R=0. Our (regularized!) functions are all right in
this respect. Thus, we have

8w >
q2>O:I=—/ ydy
qgJo

x[—ng(qy)‘I'(y’*H—Kl(qy)‘l’(—f)]’ (B1)

8m [
¢?<0: I= ——/ yidy
0

><{-Emy)w—w)+K1(q-y>w<y2>]. (B2)

We next follow a procedure that is slightly different
for the case of positive as compared to negative g2
¢>0. In the K integral of Eq. (B1) put y=1y’. Use
the proper continuation®® K;(—igy’)=—37H 1% (¢gy).
In this same integral, replace ¥(—142), (0<y< «) by
¥ (y'2), (0<y’<i ). We assume that this continuation

37 See Ref. 23, pp. 180 and 183.
3 See Ref. 23, p. 75.

w=¢ sinhe,

g= ()= (B2 —w?)!2;

w=—¢ sinha;
w=¢ coshar, g=(—¢»)2= (w®—k2)'2;

w=—@ cosha.

is possible and that no singularities are encountered in
the first quadrant. This will be the case for our applica-
tions. In the ¥ integral put i¥;=H;®—J;. This leads
to Eq. (5.2).

¢*<0. In the Y integral put ¢¥;=J,—H,®. In the
H,® integral so obtained put y=—iy’. Use the proper
continuation®® H;® (—1igy’) = — (2/7)K1(gy). This leads
to Eq. (5.3).

APPENDIX C
Discussion of the Contour Integrals

We first prove the statement made in Sec. V C that
the quantity C,, defined in Eq. (5.19) vanishes for
d=1.

Actually, it is more appropriate to trace back Eq.
(5.19) to Eq. (5.11). As was pointed out after Eq.
(5.16), we must check whether the function 6(y?) and
its derivatives have been handled correctly. We, there-
fore, consider Eq. (5.11) term by term. Before doing so,
we note that it is legitimate to close the contour in
the sense of Fig. 7(b), because of the asymptotic
properties of the K and H® functions of various orders
which appear in Eq. (5.11).

(a) The K, term. Take a single regularization. Then
(mK1(my)) is ~y1Iny near y=0. Thus, y=0is a harm-
less point. There are no singularities within the con-
tour, so the integral vanishes.

Had we not regularized at all, the same result would
have been obtained for the integral

/ H:1® (gy)Ar (3?)ydy,
c

which then (apart from a factor) replaces the K; in-
tegral. We have now two singularities to be concerned
about. The term (4m)~%(»?) yields (¢%)~'. A second
singularity arises as 71K (z)~z"2 near the origin. Split
the contour integral into two parts as indicated in
Fig. 11. The part (a) gives zero, the part (b) gives

F1e. 11. The con-
tour of Fig. 7(b) as
the sum of two con-
tours. The radius of
the smaller quarter
circle tends to zero.

(@) (b)
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(—¢»)™ and cancels the § contribution, so the net
result is zero.

(b) The K term. According to Eq. (5.5), if we regu-
late twice, there are no & terms to worry about. The
result is zero. If we regulate once, a term proportional
to (m?—M?)8(y*) need be included. Its contribution is
readily shown to be canceled again by a contribution
from the (b) contour. If we do not regulate, the singu-
larities get too severe to make the reduction formula
meaningful.

(¢) The K3 term. At this place it is necessary to regu-
late at least twice. Doing so, there is again a cancelation
between a § term and the (b) contour of Fig. 11.

For ¢?<0 the discussion of Eq. (5.21) is essentially
identical with the foregoing.

The second step in the argument of Sec. V C was
based on the statement that C,, vanishes if we take
®(y?)={(Ar(»?))}", where single regularization in ® is
implied. To see this, note first that the closing of the
contour as in Fig. 7(b) is again legitimate. Now that
we are familiar with the prescriptions whereby one dis-
poses of all § functions and their derivatives, it is con-
venient to use Eq. (5.19). Let the K; terms appearing
there be twice regulated [this is necessary for making
the m3K(my) contribution manageable]. Then the be-
havior of the corresponding integrand near y=0 is as
v Inyd(y?), which is ~y(Iny)*+! for the ® under con-
sideration. This is sufficiently well behaved to give a
zero-contour integral. Let the K3 term in Eq. (5.19)
be three times regulated. Then (m*K3(my))=0(y* Iny)
which yields zero by the same token,

Alternatively, one can regulate twice at every stage,
including {(Ar(3?))}". The result is the same, as can
be seen by using the cancelations discussed for the
case =1.

APPENDIX D
The Limit M — «

In this appendix we justify the heuristic discussion
in Sec. VI A, [following Eq. (6.4)] of the terms in the
solution Eq. (5.20) which depend on the regulator mass
M. We shall carry this out explicitly for ¢2>0. For this
purpose, we study first the following terms:

I=(M,g)= / " eai

q
o MPK(MR)
1+ (\2/R?)[mRK1(mR)— MRK,(MR)]’
(D1)
®  Jy(gR
TE(M,g)= / RAR (j )
0
M*K4(MR)

X 14 (\2/R2)[mRK,(mR)— MRK,(MR)]
(D2)
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We want to calculate the physical limit for I, J, that is,
we wish to find the quantities (q), J(g), defined by

I(g)= Jim I(M 95 (D3)
J(9)= lim J(M,q). (D4)

Clearly, any observable may depend only on these
limit functions, since the regulator mass M is an
auxiliary quantity introduced only to give the manipula-
tions a precise meaning. On the other hand, it should
be stressed that when I(M,q) or J(M,q) occur in an
integral over virtual momenta ¢, the prescription we
have used involves carrying out the integral before
taking the limit M — «, in order that the integrals
converge.

For the calculation of 7(M,q), we divide the region
of integration into 3 parts.

(a) 0<R<Z3M,
(b) 3/M<RZN2,
() MN2<R< .

(Ds)

We label the contributions of these regions by corre-
sponding subscripts. Thus, I,%(M,q) denotes the inte-
gral of Eq. (D1) but taken over the interval O<R
<3/M, etc. We now use the fact that we need I,J
for values such that ¢&M, m<M. This allows us in
region a to approximate J1,3(¢R), K1,3(mR) by their
value for small argument. Hence,

M R4RMPK,(MR)
Iai’(M,q)=/ , (D6)
o RAEN[1-MRK.(MR)]
¢ ¥ RS{RM®K3;(MR)
JEM,q)=— . (D7
48J)y RAN[1—MRK((MR)]
We can now make use of the inequalities
RK
MRK,(MR)<1, D8)
(MR)*K3;(MR)<8,
so that
3/ M M2R3dR
I.=(M,q) < /
o RAEN[1-MRK,(MR)]
8 2%dz
-/ . (DY)
0 Z2:|:M2)\2[1 —2K, (Z)]
3/ M R3dR
Jai(M,q)<q2/
o RAEN[1-MRK:(MR)]
q2 3 ngZ
(D10)

M)y 2 MD[1—2K,(2)]

As 1—2K1(3) =42 Inz+0(2?) and is always positive, we
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see that the presence of the MZ\? factor makes the
second term in the denominator always large compared
to the first, providing that MA>>1. Hence,

23dz

,/o 2 MN[1—2K,(2)]

4+ P Bdz
~ / — 0,
M2/ o 1—2K,(3) M=

and hence, limyo.l,*(M,g)=lmJ,*(M,q)=0. There-
fore, the region a contributes nothing to 7(q), J(g).

We turn next to region b, in which we cannot expand
the J1(gR), J3(¢R) functions. Again introducing the
variable z= MR, we have

(D11)

Ib:t (M;Q)
AM /2 2*dzK1(2) J1(gz/M)
Y / , (D12)
s 2ENM1-:2K,(2)] ¢
]bi (M’q)
NM /2 FdzK 5(2) Js(qz/ M)
_ / ] . (D13)
Js  2ENM 1—2K.(z)] ¢

We now make use of the fact that in this region of
integration zK;(2)~z!/%7% so that the denominator is
approximately z?-=X2M2. Since 3<z<AM/2, the de-
nominator is O(\?M?) in the whole region and again
lim7y, (M ,q)=1imJ, (M ,q)=0.

Finally, consider region c¢. Here MR>\M/2>>1, and
we can use the asymptotic representation

Ki(MR)=K;(MR)= (r/2MR)\?¢~ME, (D14)
Hence,
T 1/2
Ic:h <e—)\ﬂ/1/2<_> / R3dR
M n
Jl (qR) 11’13
, (D1S)
qg [R*E=NmRK,(mR)]
T 1/2 a0
]c:i: <e——)u’ll/2<_> / RSdR
M I
J3(gR) M3
X (D16)

¢ [RPENmRK.(mR)] .

It may be seen that there is nothing in the integral to
compensate the factor exp(—3AM). This is true even
though the integral must be evaluated over the indented
contour discussed in Sec. V. Hence, we conclude that
also lim/ (M ,9)=limJ=(M,q)=0. As the right-hand
side of Eqs. (D3) and (D4) are the sums over the (a,b,c)
regions, it follows that 7 (¢) = J (¢) =0. This concludes the
proof that the M -dependent terms introduced in the

AND A. PAIS

numerator by our regularization method do not give

any contribution to the physical scattering amplitude.
It remains to show that we can go to the limit M —

in the denominators D*(R), for those terms in which

the numerator is independent of M. To show this, we

divide the integral into two regions

0<R<e,
e<R< w0,

Region 1.
cglon (D17)
Region 2.

where € is a small number, which we intend to let
approach zero after M —o and which we choose to
satisfy

1/ MLeNK /m;  eL1/g. (D138)
In region 1, the relevant integrals take on the form
‘ J(R)
/ . (D19)
o 1FO/R)[1—MRK (MR)]

The function f(R) is bounded and independent of M.
The bound is obtained by using the expansion near the
origin for Ji3(gR), K13(mR). The function NR™?
X[1—MRK,(MR)]is amonotonic decreasing function
of R. Hence, in region 1,

. 1 l
|D*(R) | = | |
i1—NR[1—MRK(MR)]
1 [l
<|- — B
1=Ne2[1—MeK(Me) ]I M1 —7\22
(D20)
while
1 1
D (R)| <

- )
14N [1—MeK1(Me)] M=o 140262

and so these denominator functions are also strongly
bounded.

Therefore, the integral over region 1 contributes zero
when we let e — 0, which we can now do, since we have
already let M — 0.

In region 2, the integral is of the form

g(R)

/ i . (D21)
. 1FNR[mRK,(mR)—MRK,(MR)]

Now we can use the asymptotic expression for K;(MR),
since M e>1. But lim oM RK (M R)=0 for R> ¢, and,
hence, region 2 contributes

/ ) £®) . (D22)
« 1FAR2mRK,(mR)

Now we can let e — 0 here as well, and we obtain the
completely M -independent result that we want.

The interested reader may next show that for ¢2<0
the limit M — is taken by dropping all bars in Eq.
(5.22).
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APPENDIX E
Asymptotics

In this Appendix we give the derivation of Eq. (6.15)
which refers to ¢*>0. For this purpose we study the
integrals 4, of Eq. (6.6), but for the interval 0<y<<2\
only. We recall that in these integrals we may replace

K.(my) by its leading term for small y. Thus, we
consider
22 n=1)1 ™ Talgy)y ™ (1,
Au= | o= x{
0 y4_k4 x2y—2’

for n=1, 3. We further recall [see Eq. (5.31)] that in
the integration the point y=N\ is passed via a small
semicircle below it. Put

(E1)

mﬂ

Ja(qy)=3[Ha® (gn)+H.®(gy) ], (E2)
and, in obvious notation,
A, =34, 0+4,®). (E3)

In order to avoid complications due to singularities of
the Hankel integrands near y=0 we replace the lower
integration limit in Eq. (E1) by y=¢ and let e tend
to zero afterward. [ This must be all right, as the Bessel
integral Eq. (E1) is well behaved near y=0.]

We first discuss the 4,® integral. We first replace
the path e<y<2\ by the contour shown in Fig. 12(a).
It should be noted that the denominator of Eq. (E1)
also produces a pole at y=14\. It is easily seen that a
possible residue at that point is proportional to K,(gy)
which is exponentially small for gA\>>1. Thus, we have
not bothered about indentations at 4.

The entire contour integral gives a contribution, due
to the pole at y=N\, which contains H,® (¢g\). When
one evaluates this contribution, and inserts it into Eq.
(6.6), one immediately obtains Eq. (6.15). The implica-
tion is, therefore, that all other contributions, not yet
considered, are of higher order.

These contributions are the following. The quarter
circle 34 gives terms ~H,"V (ghe*?), 0<¢p<3w. In this

Imy
Iny

y

1
N,
o

A
A4

Rey

(a) (b)

Fic. 12. (a) Contour for the Hankel integral of the first kind;
(b) for the Hankel integral of the second kind. Both contours
refer to the case ¢2>0.
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region the Hankel function is exponentially damped and
the contributions are therefore negligible. Next we must
add the (compensatory) integral over the stretch from
“1” to “4” of the imaginary axis. This gives a term

2 (n—1)1 D H,O(igy)y (1
o [ dy———— X (E4)
mn P y4_ }\4 _ )\2y—2 ,

where we may use

H,® (igy)=2m (—1)""'K.(qy). (ES)
We leave this term as is, and next consider the (com-
pensating) quarter circle integral from “2” to “1.” One
verifies that, over this path, one may replace H,®
by 2¥V,®, and that for <1 we get a vanishing con-
tribution, for either the allowed or the forbidden case.
For n=3, it is sufficient to replace ¥Y;® by

VW (gy)~—8/¢%*—1/qy.

Inserting Eq. (E6) into the quarter circle integrand one
obtains an e-independent contribution for the allowed
process. For the forbidden case there is a singular term
~¢?and an e-independent term.

Before we discuss these terms, it is best to consider
first the 4,® contribution to Eq. (E3). Here we use
the contour of Fig. 12(b). The pole at y=X\ now lies
outside, so the contour integral vanishes. Next consider
the compensating integrals. The quarter circle “67”
gives again exponentially small terms. The integral
from “8” to “7” gives

(E6)

272 (n—1)! N H,®(—i
(n—1) (—iyor f oy ( %qy)x E)

y4__>\4 { _>\2y~—-2 .
Use H,®(—igy)=—e»"H,D(gy). Then it follows from
Egs. (E4), (ES), (E7) that the two imaginary axis in-
tegrals ““14”” and ‘87" exactly cancel each other.
Finally, there is the quarter circle integral taken in
the sense from “5” to “8.” Here we may put H,®
= —1Y,. Use again Eq. (E6). The following result is

mn

‘obtained. The two quarter circle integrals “21” and

“58” each have an €2 singularity; these cancel each
other. There remain finite terms which are readily
shown to give the contribution to B, which was written
down in Eq. (6.17).

Next we turn to the case ¢?<0. This leads us back
to the Bessel integrals given by Eqgs. (5.22-5.25), taken,
of course, in the limit M —w. (As was stated in Ap-
pendix D, this amounts to taking off all the bars in
these equations.) Consider again the inner region 0<y
< 2. This leads to integrals which differ from Eq. (E1)
in two respects. First, the Bessel functions J, now
have ¢y as their argument. Second, the denominator
is now y*—N\{1—mw(my)?/2] instead of y*—A4

As in Eq. (E2) we may split the Bessel functions in
Hankel functions. This leads again to the contour
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integrals over the paths given in Figs. 12(a) and (b).
However, the real axis is not indented in this case.
Rather do we have a pole given by Eq. (5.32). Hence,
the H® contour gives zero, the H® contour gives a
contribution containing H,®{g\(1—1ig?/8r)} which is
exponentially damped.

The remaining discussion of the compensating integrals
follows closely the one given above for ¢2>0. The analogs
of Eqgs. (E4) and (E7) are obtained by replacing in these
expressions ¢ by ¢ and y*—\* by y*— N[ 1+4ir (my)2/2].
The two imaginary axis integrals thus obtained again
cancel each other. The remaining quarter circle inte-
grals are discussed by replacing the denominators by
—M\4, exactly as for ¢2>0. As was stated in Sec. VI C,
the result is again of the order given by Eq. (6.17).
Finally, as for ¢>>0, one notes that outer region inte-
grals can be neglected.

APPENDIX F
Discussion of the First Iteration

The purpose of this Appendix is to give the proof of
Eq. (6.32). To this end we have to study the integral
equation (4.23) for n=1. The inhomogeneity of this
equation is proportional to the integral /" K1M 4 0)d*p:”.
The meaning of this integral has been stated in Eq.
(4.21) (with M4 replaced by M (o). M (o) is of course
the solution of the approximate integral equation (4.24).

G. FEINBERG AND A. PAIS

This solution is explicitly given by Egs. (4.25), (4.30),
and (4.31). It should be stressed that it is necessary to
revert to this form of our leading approximation, which
still contains the regulator masses. For there are still
momentum integrations to be performed, and it is only
after all such integrations are out of the way that the
limit M —c should be taken.

We call M4 () the inhomogeneous term which appears
in the integral equation for M, ). Thus,

ig?
Mi(2)= =+ /KlMi(o)d4p1’/. (FI)
(2m)
We make the following Ansatz for M+®:
ME® (P1’>P2/7P17?2)
= 'Y:l(l)'Yv(Z) (1+75(1)) (1+75(2))Gﬂvi (Q:P11P2) ) (FZ)
q=p'—p1=ps—p2 . (F3)

Note that we may write Gy, as a function of three inde-
pendent momentum variables in accordance with the
over-all conservation laws. The appropriateness of the
particular choice made here will be explained after
Eq. (F6) below.

We insert Eq. (F2) and also Eq. (4.25) into Eq.
(F1). The v dependence of K; is fully specified by Eq.
(4.21). With the help of the ¢ symbols introduced in
Appendix A, one finds after some algebra,

+ dag? 4y 11
Gy (q,Pl,P2)=:':(21r)4fd Y2
v/' 144 1 p’ ‘7’/ 7 0-,, p/ 0"/ a’ 17
x{gpmfpw__fﬁ_pi_Jr_[_ T LA ot AN “WM]}
(o2 (pe")> m? (pr")? (p")? (B2 (pe")?

Here p1/, po’ are to be expressed in terms of ps, p2, ¢ by
means of Eq. (F3), while py"”=pi+ps—p1" [see the

remark after Eq. (4.15)7]. The factor M n* in Eq. (F4)

is given by Egs. (4.30) and (4.31).

We can now apply to Eq. (4.23),n=1, the same
reasoning which led us from Eq. (4.24) to Eq. (4.27).
Put

My ay=M a1y (g,p1,02) 7 Vv, ®

X (A4+v:®D)(A+v:®).  (FS)
Then
M 4y (q,01,92)
N 4ig? o
=Gwr(g,p1,p2) = Zry / M (g, p1,02)

x<m>d@'. (F6)

1
><<——>M, Ep—pi). (F4)
(Plu_pll)z_*_m? A ([71 ?1 ) (

Observe that the variables pi, po play a parametric
role in this integral equation. It is this circumstance
which dictated the choice of independent variables
made for G,, in Eq. (F2).

Define
Gt = [ FamGulspupd. (D)
Then the solution of Eq. (F6) is given by
Glﬂ‘i (3’:?1;?2)
M 4y (q,p1,02)= / diyeltr———,  (F8)
’ D(y)

where D+(y) has been defined in Eq. (4.35). Equation
(F8) is the rigorous solution of the first iterated integral
equation. We observe that it is now no longer true that
we get contributions to the amplitudes which depend
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on momentum transfer only—nor was this to be
expected.

Next we introduce one simplification which can be
shown not to affect the leading order of M, y. The
first term in { } of Eq. (F4) is due to the §,, term which
appears in Eq. (4.21). Continuing in the spirit of look-
ing for the most singular terms (i.e., the highest powers
of $,"’), we see from Eq. (4.21) that the dependence of
this 8,, term on p,” is less strong than that of some of
the terms proportional to m~2 We, therefore, drop the
0y, term. With the help of the methods to be developed
below, it can be checked explicitly that this neglect is
justified for our purposes.

Our main interest lies in the order of the corrections
for the low-energy regime. We therefore specialize to
the case p1=po=0. (By power-counting arguments one
shows that terms proportional to p;+p, are of higher
order in g anyway.) According to Eq. (F3) we therefore
must putin Eq. (F4) /= —py’=gand also p,"" = —p,"".
We denote the left-hand side of Eq. (F7) simply by
Gu*(y) and bring this quantity in another form by the
following steps. Equation (F4) contains M »*(p,"’) for
which we substitute Eq. (4.31). The quantity (p./%)1
which occurs in Eq. (F4) is written as

1/p/2= / diz ¢ 200(3). (F9)

A%(2) is the space-time Feynman propagator for a zero-

mass particle,
7

bl
4722

1
A(z)= 4—5 )+ (F10)

A% (2)=—6%(z). (F11)
Substitute Egs. (4.31) and (F9) into Eq. (F4). Replace
quantities like p1,’, 1,/ by differentiations with respect
to appropriate space-time variables. Making repeated
use of Egs. (A6) and (A7) and of Eq. (F11) and per-
forming some partial differentiations, it is straightfor-
ward to show that G,,*(y) can be reduced to the follow-
ing form [see also Eq. (4.30)]:

Guw*()=Guw* @ () +Gu*®(y),  (F12)

4492
Guvi (@ (y) = :F—g—;<AF (y»MWi (y) ) (F13)

GuE® (y)

4ig? 0% Ar(y)) o
=== poTUS afAY /d“zd‘*w
m? 0Y,0Ya 9y,0ys

XA () A (w) M nE(y+2+w).

(F14)

Next consider separately the two terms of Eq. (F12).
We begin with the (a) term. Substituting this term
into Eq. (F8), we obtain a quantity which we call
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M1y ®. It is evident that this quantity can be
handled by the same transformations which were used
in Egs. (4.32)-(4.37). It is furthermore, possible to make
the split into a contour and a Bessel integral and to
show by the methods of Sec. V that the contour integral
vanishes. The Bessel integral can then be reduced by
the methods which led to Eq. (5.20) and we obtain a
Bessel integral B(,,® which is in fact of the exact
form Eq. (5.20), provided we define the symbol ®(3?)
in that equation to mean

2

8 1Ny Ky (my) T

o(y)=— :
™M
Ny=H{(myK1(my))}?, (F15)
) 1
-2—y;[1+>\“y‘4{<msv1<1(my)>}"]
X{(myK(my)). (F16)

Equations (F15) and (F16) refer to the allowed and for-
bidden amplitudes, respectively. [That is, we used
Eq. (4.17).] As before, the bar notation means single
regularization.

Next we discuss the limit M — . By means of the
heuristic method of Sec. VI [see Egs. (6.1)-(6.3)], one
again locates the term in the numerator ~M? as the
main one to be considered for this limit process. Fur-
thermore, one finds that this term leads [as in the case
of Eq. (5.20)] to an integral which behaves at worst as
S (Iny)75(y*)dy?* (namely for the forbidden process);
even so we get a vanishing contribution for ¥ —«. In
more detail, by means of the method given in Appendix
D, one shows: The limit # — 0 amounts to the use of
Egs. (5.20) and (F15) and (F16) with “all bars taken
off.” That is, we must just drop all M terms in the
numerator and denominator.

Thereupon one continues to follow the division of the
integration domain which was used in Sec. VI. It is
easy to see that the inner region 0<y<2\ contributes
O(g"). It is then shown that also the outer region 2\ <y
< oo gives O(g* for the allowed process. However, for
the forbidden process one again picks up an O(g*Ing)
contribution which is due to the leading term in the
development of the denominator [the first square
bracket in Eq. (F16)] and to the “1” term in the second
square bracket in Eq. (F16). The integral in question
is essentially ¢'g?2\2/ax*J1(qy)K2(my)dy, which is the
same integral encountered just prior to Eq. (6.14).

Let us now use Eq. (4.17) to go back to the ampli-
tudes M.y, Eq. (F5). We then see that the (a) term
of Eq. (F12) gives contributions which satisfy Eq.
(6.32).

It remains to discuss the (b) term of Eq. (F12),
given by Eq. (F14). We call the corresponding con-
tribution to Eq. (F8) M (1), =®. The computation of
this quantity is simplified with the help of the trace
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technique previously used in Sec. VI D. It yields

. Gut® (3’)
M 1yt ® (g=0)=15,, lim Tr/d“y el
a0 D*(y)

Il

10ub. (F17)

We now substitute in Eq. (F14) the expression Eq.
(4.30) for M a*(y+z+w). With reference to the nu-
merator of Eq. (4.30), the (b) term consists of two
parts. In evident nomenclature, we call the first part
the 8, part, the second the second-derivative part.

Consider the 8, part. With the help of Eq. (A6) and
Eq. (F11), the contribution to b, Eq. (F17) can be
reduced to

g* O{Ar(AXAr(y+2))
d4 d4 0() .
7r?m2/ yd's 4%(a) D*(y)D=(y+2) (F18)

Consistent with our zero-energy calculation, we have
replaced exp(igy) by 1 in writing down Eq. (F18). We
may imagine that we approach ¢=0 from the side ¢*>0
which allows us to use Egs. (5.11) and (5.12) for the ¥
integrals. Similar limit considerations also apply to the
z integration. Had we not put p;=p.=0 from the out-
set, there would have appeared factors like exp(ip12).
Such factors dictate which choice has to be made with
regard to Egs. (5.19) and (5.20) or (5.21) and (5.22).
At any rate, either choice leads to the same leading
powers of g.

T

OO [ (ArGta)

G. FEINBERG AND A.

PAIS

It is readily seen that the §(2?) term of Eq. (F10)
does not contribute to Eq. (F18). [It leads to /"5%d2* (%)
times a finite y integral. ] Next one substitutes the regu-
lated expression for (Ar) (also in the D functions). One
performs the contour+ Bessel-split in the y integral (the
integration over z yields a y integrand which depends
on * only), and convinces oneself that the contour
integral vanishes upon sufficient (double) regulariza-
tion. The M — o limit is taken in the usual way. There
remain finite double integrals whose order of magnitude
is essentially determined by simultaneous power count-
ing with respect to both y and z. One divides both the
y and the z integrals into an inner and outer region in
the usual way. It is elementary but tedious to estimate
step by step the orders of g in which the various regions
contribute. We shall only state the result that the entire
8- term contributes at most to O(g?) for both M4 ().

Finally we must consider the ‘“second-derivative
term” in Eq. (F14). Use

(0%/3y:99)(Ar (y+2+w))
=20 A r (y+2tw)+4 (v t+24w,)
X (mFatw)Ar- (y+z+w)), (F19)

where a prime denotes differentiation with respect to
the square of the argument. Also apply Eq. (4.33) to
the factor 0%Ar)/dy,0y. in Eq. (F14). After some
algebra in which Eqs. (A6, 7) and (F10) are used re-
peatedly, one gets the following contribution to b given
by Eq. (F17):

yZ

32¢
+ [ / dYy 4z A(z)
w2m? D*(y)

D=(y+32) D

} / 2d'z0" (3) / d4on<w)M@

(Ap (y+2))
(2Apr 20A ) dis A0 ()~ *
g arbsary [

DE(y+3+w)

O{Ar(y) d (Ap (y+z+w))
—_ d4 —_— d4 2 o207 4. 0 -
4/ ) D*(y) Z{(2+Z 622)ZA (Z)}/d wA(w) DE(y+2z+4w)
O{Ar() A (y+z+w))
—4 | g+ 402 AO/ TH N )
4/ -y D50) d*2z2 A (z)fd 20w A (w)—~———Di P j| (F20)

One must now follow, line by line, the peratization pro-
cedure as it has been outlined above in the discussion
of Eq. (F18). With the help of Eq. (F10), it can be
shown that contributions from 6(z?) or &§(w?) always
vanish so that A°(z) may constantly be replaced by the
22 term. The final counting of powers in y, 2, w leads
uniformly to the result that the highest powers of ¢
which appear are O(g* Ing). It may be mentioned that
in the second term of Eq. (F20), there occurs a vital
cancellation between the first and the second terms in
{ }. Each of these two terms separately yield a g?
contribution of the same magnitude but with opposite
sign. [This can be traced back to the fact that K(z)

—2zK3(z)/4 is O(2®) for small z, while the individual
terms are O(z72). ]

As has consistently been the case in the foregoing,
the g* Ing terms stem, here too, from those integration
regions where it is allowed to expand the D* functions,
ie., they arise from the leading approximation Dt=1.
Observe that Eq. (F20) has an over-all & sign in front.
The result is that we get, also for the (b) term of Eq.
(F12), contributions for M1y which satisfy Eq. (6.32).

We conclude with some comments on the general
term M ()% in the expansion Eq. (6.30). Making an
Ansatz of the form Eq. (FS), it follows directly from
Eq. (4.23) that we get a formal solution of the type
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Eq. (F8), namely,

G,w(n—ni(y:Pl,P?)
M(n)i(Q)P1)P2)=/d4y e ’
Dx(y)

(F21)

where Gu,(n—1)* is related to the inhomogeneous term
~ S KiM 4 (n1y in Eq. (4.23) by a relation of the type
(F2). The question is whether the peratization pro-
cedures make the right-hand side of Eq. (F21) finite
for any #n. As D*(y)~y~2 for small y [see Eq. (4.35)],
a sufficient condition for convergence is that for small y,
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Guin-nE~y", > —6. Correspondingly, the quantity
Guv(n—1yt(q,p1,p2), defined by the analog of Eq. (F7),
should be ~g¢f for large ¢, £<2. In turn, Gu@-n*
X (g,p1,p2) is of the form Eq. (F4) with M »* replaced
by M o —n*. {All other factors in that equation come
from the perturbation kernel K; [see Eq. (4.21)] and
are, therefore, independent of #.} Clearly, then, we can
follow an inductive procedure for finding out about the
convergence of M (,)*. It appears to us upon examina-
tion of the equation for G, (n—1)%(g,p1,p2) in terms of
M (n_1* that the condition £<2 mentioned above is
satisfied for general #.



