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The elastic scattering amplitude for neutral pseudoscalar particles is calculated in the limit of high energies
and small momentum transfer. Ke have kept all inelastic channels in the intermediate state and exchanging
only two particles. This resulting expression gives the upper and lower bounds on the total cross section
b/s&&r(s) (o/s', where e)0 and a, b are real constants. A special case of this elastic scattering amplitude
is shown to be of the form suggested on the basis of the Regge theory of complex angular momentum. If
the slope of the Regge trajectory is taken to be a~/50 we obtain a total cross section which decreases very
slowly 0 (s) = (k/16z-)s~'", where k is some real constant.

I. INTRODUCTION

W NE of the most important features of strongly
interacting particles at high energies is that the

elastic scattering is almost completely concentrated in
a forward cone. The total cross section appears to be-
come smooth. ' Although pion-pion interactions have
not been observed at high energies, it is expected that
they might also have similar characteristics.

A theoretical analysis, based on these considerations,
has been performed for the pion-pion elastic scattering
amplitude, using the Mandelstam representation of the
scattering amplitude and taking into account all in-
elastic channels in the intermediate states. By keeping
only the minimum number of particles exchanged, we
obtain the asymptotic behavior of the amplitudes for
small momentum transfer as the energy approaches
in6nity. This approach is based on the strip-approxima-
tion proposal of Pomokos, ' whereby one keeps only the
asymptotic terms and then solves a Riemann-Hilbert
boundary-value problem for the Mellin transform of the
amplitude. The calculation will be carried out with the
neglect of isospin. At high energies this model and the
neglect of isospin appear to be experimentally sug-
gested, ' so that the present assumption may be quite
realistic for pion-pion scattering.

The model de~eloped here will allow us to obtain a
general form of the scattering amp1itude at. large
energies. From this one can obtain an upper and lower
bound on the total cross section. Ke shall also show
that a special case of the scattering amplitude has the
same form as the one suggested by many authors on
the basis of the Regge theory of complex angular
momentum. 4

In Sec. II, the integral equation for the scattering
amplitude is derived keeping only the minimum number
of particles exchanged. The asymptotic form of the
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integral equation will be given in Sec. III. We shall
show that if no subtractions are needed in the dispersion
relations the asymptotic integral equation has no solu-
tion. Using one subtraction and relating the subtraction
constant to the total cross section, we obtain a general
form of the elastic scattering amplitude. A special case
of this amplitude is the one suggested on the basis of
the Regge theory of complex angular momentum. Using
the generalized form of the scattering amplitude it is
shown that the total cross section must decrease as a
power of the energy. Also, upper and lower bounds are
given on the total cross section. Finally, using a special
case of the amplitudes we obtain a cross section that is
very nearly constant.

II. APPROXIMATE INTEGRAL EQUATION

Consider the following reactions illustrated by Fig. 1
and given by

I w(P, )+m(Ps) —+ z.(Ps)+z.(P4),
II 7r(Pt)+z. ( P4) —+ w(Ps)—+z-(—Ps),

III z.(Pt)+z.(—Ps) ~ 7r( Ps)+rr(P4), —
and let

(h=c=m. = I),
s= —(Pr+Ps)',
t= —(Pr —P4)',
I= —(Pt —Ps)'
4= s+t+rr,

where I'; is the four-momentum of the ith particle.

Fro. 1. Diagram de-
scribing the pion-pion elas-
tic scattering amplitude.
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and let Consider the case of t=0. Then

B(fs,t) =
M,o(A, (s,t)) The inverse transformation of Eq. (16) does not exist.

Since the total cross section is proportional to A, (s,0)
this implies that the total cross section does not exist.
This demonstrates that at least one subtraction is
needed.

Now consider the case of one subtraction,

Then from Eq. (9) for real p and fs(1, we obtain

4)—'f2 2»—'I'(—') I'(] —fs)
ImB(f, f)=—

~ ~

. (13)
(f—4)o~l'(a —~)

(12) M,&(A, (s,0))= —sr sin(oral), where 0(Rep(1. (16)

Thus B(p,,t) has the same analytic properties as
M,&(A,(s,t)) except that the poles of M,&(A,(s,t)) will
be the zeros of B(fs,f) and vice versa. The zeros of
M,&(A,(s,t)) are similar to the C.D.D. ambiguity7 and
will be assumed not to exist. Therefore, we have that

I ( )1(1 fs)
B(fs,f) —2» '

1(l—.)

"ImB(p, t')dt'
B(w f)— — +j(fs)

7r e t'(f' —f)
(17)

The subtraction term f(fs) is dependent on where the
subtraction is made. If this is taken at t=0, we have a
very simple interpretation of f(fs). In our notation
A (s,t) is normalized in such a way that

A, (s,0)= ImA (s,0) =so (s)/16or,1j2

(f'—4)&(t'—f)
(14) and, therefore,

and for t&0 and 0&Rep&1

M,o(A, (s,t))
s&o.(s)ds. (19)=M,o(A, (s,0))=

f(f ) B(~0)
sr sin(sos)

(15) Hence, f(ls) is simply related to the cross section.
2'" '(—f+4)* "2Fi(x, -'-u;2; ef) From Eqs. (12), (13), and (17) we obtain

2'" 'I'(-')I'(1 —fs)(f—4)' "
M,o(A, (s,t)) cotsr(1+p)—

orI'(-,'—p) ort'~'

I (fs) I'( fs)
+e f(f)—

t2' 'I'(—') I'(1—p) I'(1+fs) (4—t) '*,F,(', -' —fs,
. —', -'])—ff-

or'I'(-,')4ei'
t&0 (20)

where p is real and —f &Rep, &1 for t/0.
We now have an expression for the Mellin transform of the absorptive part of the elastic amplitude for real p

and can analytically continue for all p.
First let us consider Eq. (20) for the case f(0,

M,&(A, (s,t))~
-4o-'qf(4 —f):-o

3sr' sin(or p)
~Pi(2 $—fs 2'et) f(fs) (21)

s+t 4—S
X +Eo(t), (22)

s' —s s'+s+t 4—
~ L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,

455 (1956).
e E. C. Titchmarsh, Theory of Fossreer Irsfegrafs (Oxford Vni-

versity Press, ~:New York, 1937), Chap. II.

From Eq. (21) and with the aid of the convolution
theorem for Mellin transformations' we can find the
Mellin transform of A(s, t).

From the fixed t dispersion relation and crossing
symmetry we have that

"ds'
A (s,t) =— A, (s', f)

4 S

where Po(f) is the subtraction constant. For large s and
fixed f, Eq. (22) may be expressed asymptotically as

s ds
A(s, f) A ,(s', t)

s -s s s+s
(23)

S dpc()= c (.)~. ——.
Q p p

(24)

~()=~ ()~.(),

The convolution theorem states that if for given
functions C'i(s) and C'~(s) the Mellin transform, @i(s)
and $2(s), exists and
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where g(s) is the Mellin transform of C(z). Application
of this theorem to Eq. (23) gives

The last term in Eq. (25) can easily be evaluated to
give

(A (s,t) y
~M„eo

(

s

(A, (s,t)i — ( 1 1

[ cV.,, (
-m„, , (25)

s 3 i1—s 1+s

3f„,~ —3f„0~

I(—1)+(—1)"3, (27)
simp

for 0&Retc&1. With this result Eq. (25) becomes

(A (s,t) q
M

s

A (s,t)
dss" '

where we have used the following notation (A(s, t) ) (A, (s,t) ) -(—1)+(—1)o-

s 4 ( s sing'p

(26)
and by means of Eq. (21) we obtain

—t.i+(-I) j
M, ,o(A (s,t))=

L4" 'tet(4 —t)1-"/3n-'j sFr(s, —,
' —tc, -'„-',t) —f(tc) sinsrts

(29)

Since the problem had no solution for zero subtractions
we have the restriction on tc: —1&Rets&0 Lcf. Eq.
(16)). From this restriction, we can obtain an upper
and lower bound on the amplitude. We have

b& iA(s, t) i
&as, (30)

a's —'&a(s) &b', (31)

where u and b are some real constants and 3&0 and s is

very large. This condition gives us the following bounds
on the total cross section:

To carry this out we will use the following theorem'":
Theorem If F(ln. t) is a J function" with the asymp-

totic property

F(t)~A(lnt) L(lnt) for

where A is any arbitrary constant, Rem& —1, and for
t)tp) 0 the continuous, positive function L(t) satisfies
the condition

L(a lnt) —+ 1 for t —+00 and a&0,

a(s)~ks e '(lns) L(lns), (32) A I'(a+1) tr I)f(s)= L~ —
~

for Res —+ 0.
s.+& ks)where 0& —p(1 and k is a real constant. L(lns) is

called a "langsam wachsende I'unktion" and has the
following properties'. This theorem is only valid for values of n& —1; how-

ever, since we will not need an explicit expression for
the case of a& —1 we will exclude it here.

Using this theorem and Eqs. (19) and (32) gives the
subtraction constant

(i) lim (lns)'L(lns) =0 for any e) 0,

(33)(ii) lim (lns) 'L(lns)=0 for any e)0,
L(a lns) = 1 for any u& 0.
L(lns)

k I'(n+ 1) 1
f(t) '=

16 (e g) +' e yI——(34)(iii) lim

where a' and b' are some real constants.
The most general form of the asymptotic behavior of then there exists M~, o'( F(t ))=f(s) for Res) 0. The

the total cross section which satisfied the inequality function f(s) is singular at s=0 and can be asymPtoti-

of Eq. (31) is cally represented as

To obtain the most general form of the subtraction for n& —1.
constant we must take the Mellin transform of Eq. (32). Equation (29) now becomes

-L1+(-1) j
M„,o(A (s,t)) (35)

L4 -'tet(4 —t)'* /3ns) sF, (—', —' —tc; —'; —t) —L16n(P—tc) +' sin(srtc)/kI'(a+1)L(1/P —tc))
for Ot& -1.

See, for example, J. Karamata, Mathematica (Cluj, Rumanien) 4, 45 (1930), or G. Doetsch, Theoree and Anwendnng der Laplace
Traesformafioe (Julius Springer Verlag, Berlin, 1937)."G. Doetsch, Pandbnch der Laplace Transforrnateon (V-erlag Berkhauser, Basel, 1950), Band I, Theorem 7, p. 460.
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Re p.

Fje. 2. Contours in the p, plane for the inverse
Mellin transformation.

We will now show that the total cross section will

asymptotically go to zero at least as fast as a power
of the energy, i.e.,

o(s) =O(s—'), where E&0. (36)

Therefore, a logrithmic decrease or anything slower is
forbidden.

To show this we will use Eqs. (20a), (21), and (34).
First consider the special case A, (s,0) (ks/16) Li.e.,
o(s), „~kj. For this example we have a= 0, p= —1,
~(1/(I —t')) = 1

Equation (21) becomes

02(~) =
8 81 en—1

yt(s )ds„'dst, (40)

ol

d"~.( )/d "=~ ( ) (41)

For u& —1 and e sufTiciently large (i.e., e&
~
n

~

—1),
we have that the eth derivative of the subtraction
constant is of the form

(42)

exist and satisfy these conditions is for the contour pp
to be homotopic to y& relative to the p, plane for t&0.
In order to see if this is true we must look at Eqs. (37)
and (38) to see how the singularities behave as t becomes
finite.

Equation (37) shows that we have a simple pole at
p, = —1 for t= 0.

Equation (38) shows that for t&0 the pole about
p = —1 splits into two poles, one moving on the left
and the other to the right as shown in Fig. 3.

Therefore, yp cannot be homotopic to y~ relative to
p for t &0 and hence, the conditions are not satisfied.
The same argument still holds for n = 1, 2 m. For
n& —1 and a noninteger we have a branch point which
does not move with t, so pp is still not homotopic to y&.

Also if L( 1/(p+1)—)W1 it will introduce an additional
singularity at p= —1 which will again hinder this con-
dition Lcf. Eq. (34)$. To study the type of singularities
for n& —1 in Eq. (21) we make use of the following
identity.

Let C(s) be a function whose Mellin transform is

Qt(s); then the Mellin transform &2(s) of (lns) "C(s) is

M, (FA(s, )0)=
16m (—1—t)

where p, & —1, and —sin(n. p) (k/16~)
M,F(A, (s,t))=

(kt t/96m')+ (1+t ) sinvrt

(37)

(38)

where X& —1. From Eq. (42) we see that for the case
n& —1 we again have the same type of singularities as

pc PLANK

where

1
A, (s,t) =

27ri
M, F(A, (s,t))s Fdp, -(39)

y= yp for t= 0
=yg for t&0.

for t suKciently small and —1 &p&O.
The conditions on p in Eqs. (37) and (38) mean that

the path of integration for the inverse transformation
must cross the real axis where the inequalities are
satisfied, i.e., the path of integration must cross real p
axis somewhere between —1 &p &0 for t &0 and p & —1

for t=0 (see Fig. 2), where E and E' are greater than zero.
The absorptive part of the amplitude is

f

$7y

I

I

I

I

I

~f
f

SIMPLE POL E AT

I+/ hl tl
96 ~3

FOR t SUFFICIENTLY SMALL

SIMPLE POLE AT y. =-l-g Ssv' 3
/ FOR t SUFFICIENTLY SMAIL

The only way that the absorptive amplitude can FIG. 3. Position of singularities in the p, plane for t/0.
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for n& —1 in Eq. (21) and the same arguments as given
above prevent yo from being homotopic to y& relative to
the p, plane for t&0 and n& —1.

We have now shown that

b/s&o(s)&as ', (43)

where e&0 and a, b are some real constants.
Keeping in mind the above inequalities we are ready

to take the inverse transformation of 3I.,oo(A(s, t)). If
we take Eq. (35) and keep only the lowest order terms
for t sufFiciently small we have

A (s,t)
[1+(—1)oj

s—o(lns) L(lns)
sin(orP) 16s.

tPr(n+1)k(lns) "+'
X 1+

96s' sin(orP)
L'(lns)+O(t') (44)

where

and

A(s, t) — [1+(—1)sj,
16s. sins-P

C=
sin(s-P) 96s'

0&P&+1.

(45)

(46)

(4t)

We see from Eq. (46) that the slope of the Regge
trajectory a for small t is strongly dependent on the
asymptotic power of the total cross section. Hence, if
we know the slope of the trajectory we know the
asymptotic cross section or vice versa. If we take the
case of a 1/50, this implies that P —0.995 giving

where 0& —P & 1 and n& —1.
Notice that the Regge behavior is a special case of

Eq. (35). If we assume, as in the Regge case, that the
partial-wave amplitude is meromorphic in the / plane
with only simple poles, this is equivalent to our case of
having only simple poles in the p plane. In this special
case we get the amplitude

S P+a~

totic power P seems to give surprisingly excellent agree-
ment with experiment. "

A, (s,t) s t'&, (50)

where n(t) is a complex function of t. This form of the
spectral function is just the one suggested by many
authors on the basis of the Regge theory of complex
angular momentum.

The general form of the amplitude in Eq. (35) easily
lends itself to a study of the general properties of the
amplitude. From this amplitude we have obtained in
Eq. (43) an upper and lower bound on the total cross
section,

b/s&o(s) &a/s',

where e&0 and u, b are some real constants.
With the additional assumption that f(p) has only

simple poles, Eqs. (48) and (49) give remarkable agree-
ment with experiments. This amplitude will give a total
cross section which is very nearly constant and the
elastic cross section will be almost completely concen-
trated in a forward cone.

In this same elastic approximation to the unitarity
condition, the amplitude for the pion-nucleon scattering
is given in terms of the pion-pion amplitude and can
now likewise be solved in terms of it. Finally the
nucleon-nucleon scattering amplitude is given in terms
of the pion-nucleon amplitude.
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