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DAVID B. BEARD AND ALDEN MCLKLLAN

University of Californza, Davis, California

(Received 22 March 1963)

The energy level densities of nucleons in a disuse nuclear well are calculated using an Eckart-Bethe
(Woods-Saxon) potential and shown to be a more sensitive function of energy than the calculated densities
of nucleons in a square well having the same volume. The particle spectra of 16-MeV (p,e) reactions and
14-MeV inelastically scattered neutrons are computed including multiple neutron emission. Using realistic
values for the effective nucleon mass, the nuclear radius, and the diffuseness parameters we find that the
theoretical spectra 6t the experimentally observed spectra well within the experimental error. Th'. s fit
is obtained without the usual experimental parameter fitting of theoretically undetermined constants.
Methods of obtaining single-particle emission spectra from experimentally determined particle spectra
when multiple-particle emission occurs are discussed. Our work suggests that a careful analysis of precisely
measured evaporation spectra will give some information about the dependence of the diffuseness of the
nuclear potential on excitation energy.

I. INTRODUCTION

' 'N the years since Bethe' derived a statistically based
~ - expression for the energy-level densities in excited
nuclei, the theory has undergone extensive development
well reviewed by Ericson, ' LeCouteur, ' and Bodansky. 4

The simple approximation to the single-particle energy
level spacing in a square well has been improved at low
excitation energy to take account of nuclear shell
structure particularly by Bloch, ' Rosenzweig, ' and
Ross' and a good fit to experimental data obtained.
Although the particle spectra from nuclei excited to
energies in excess of 10 Mev or so should be inter-
pretable i' terms of the simple approximation of par-
ticle levels in a square well of known dimensions, ex-
perimentally observed particle spectra from highly
excited nuclei have frequently not been successfully
interpreted in this way. Experimental spectra are not
observed to have the energy dependence deduced from
a square well whose dimensions are given by elastic
scattering measurements.

Part of the di ficulty has been that multiple particle
emission has sometimes been neglected so that in the
semiempirical expression for the expected energy de-
pendence exp 2(nA)'" the parameter n which is deduced
from experimentally determined spectra usually differs
from the theoretical value of the same parameter by an
order of magnitude. When multiple particle emission is
included so that the excitation energy of the parent
nucleus is not treated a,s constant, we find the theoretical
fit to experiment is excellent. However, since the ex-
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citation energy of the parent nucleus varies widely for
the multiply emitted particles appearing in the spec-
trum, the experimentally determined "constant" Fermi
gas temperature, (E, /cr)'", is unfortunately not a
useful concept in describing the total particle evapora-
tion from nuclei which can successively emit more than
one particle. Another di fculty met in comparing ex-
perimentally determined particle spectra to a theoretical
prediction based on a nuclear square well is that a
nuclear square well is not an adequate potential model
for energetic nucleons whose wavelengths are less than
or comparable to the width of the diffuseness of the
actual nuclear potentials. A diffuse nuclear potential
will result in greater level densities at high energies of
excitation than a square potential well' in agreement
with the numbers of low-energy particles observed in
excess of that predicted by the square potential model. '

In Sec. II below we derive an expression for the energy
level densities in excited nuclei using an Eckart"-
Hetheu (frequently also referred to as a Woods-Saxon)
potential shape, and show the change in predicted level
density caused by the diffuseness of nuclear wells. This
diffuseness is determined by elastic scattering from
nuclei in their ground state. Integral equations are then
developed in Sec. III by means of which the many-
particle evaporation spectra from high)y excited nuclei
were numerically computed and compared to the in-
elastic neutron scattering results at 14 MeV observed by
Graves and Rosen, " Rosen and Stewart, " Ahn and
Roberts, "and the (p, rs) sca, ttering results of Gugelot. "
Differential equations by which many-particle experi-
mental spectra may be reduced to single-particle spectra
a,nd the application of this analysis to determine the

8 D. B. Beard, Phys. Rev. Letters 3, 432 {1959).
' W. J. Knox, A. R. Quinton, and C. E. Anderson, Phys. Rev.

120, 2120 (1960).
"Carl Eckart, Phys. Rev. 35, 1303 (1930)."H. A. Bethe, Phys. Rev. 47, 747 (1935).
'2 E.R. Graves and L. Rosen, Phys. Rev. 89, 343 (1953).
"L.Rosen and L. Stewart, Phys. Rev. 107, 824 (1957).
'4 S. H, Ahn and J. H. Roberts, Phys. Rev. 108, 110 (1957).
"P.C. Gugelot, Phys. Rev. 81, 51 (1951).
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II. ENERGY LEVEL DENSITIES IN AN
ECKART-BETHE POTENTIAL

energy dependence of nuclear shape (compressibility of the nuclear potential over the range of the potential and
nuclear matter) are described in Sec. IV. is less than the potential for the l s of interest, it may be

conveniently approximated thereby yielding simpler
expressions by setting

A. The Individual-ParticIe Level Density

Letting the radial part of the nucleon wave function
equal I/r we write the radial wave equation for a
nucleon in an Eckart-Bethe (Woods-Saxon) potential
with orbital momentum quantum number l as

1 y6
)r' 1+expg/ (r—R)

where b= 1/pR 2 for the potentia, l range and shape
adopted in this work.

Let
l (l+1)

ug ——0, (1)
d I

+v &+
dr2 1+expg/ (r—R)

Uo
Vp —5l(l+ 1)

k=
1+exp 2/ (r—R)

1/2

where y=22/2/52=0 049 F ' MeV ' and 2= —W& the
binding energy of the nucleon. Since the orbital mo- Then the WEB approximation leads to elementary
mentum term is a slowly varying function compared to integrals whose solutions are given by

r1 2 (~W)1/2
kdr = —— tan

[Vp —8l(l+1)] "' {p[Vp—8l(l+ I)—W]}'"—1
W[1+exp (—2IR)]

{[Vp—Bl(l+1)]/[1+exp(—1IR)]—W}'"+{V,—g(l+1)—2/W}1/2

X log, (3)
, {[V,—H(l+1)]/[1+exp( —gR)]—W}"'—{V11 M(l+1) —W— }'/'

op+log.
4)

~1/2

a~„~3/2Z3
p~ —E- ~pR~6

BW Be 22/ (Vp —e)"'Sr 7r (yW) "/r/ {/[V3
—B—l (l+ 1)—W]}"'

Xg/
—'(1IR+ log,4) . (4)

7r 1/2-

op+log. 4(V,—)The second term reduces to the square-well result,

22,= —{P[Vp—8l(l+ 1)—W]}"'R,
when g = ~, from which

W = Vp 81(l+1)—2,2„'/yR2-.

The number of states with the same energy is given by

Note that p —+ 00 as 8'= Uo—e ~ 0 when g is finite.
This is a real and expected result for any potential well
which joins smoothly and monotonically to U= 0 as
r —+ ~ . This result is strictly valid only for l =0 because
of the centrifugal barrier approximation given in Eq. (2).
It is convenient to approximate [e/(Vp —e)]'" by a
quadratic series for 1&5'& 8:N=g(2l+1)= P [1+4(l3 23 ')]'"r—~ P (2l+1)~k'

where 23„ is an integer the radial eigenvalue and r, is density may be obtained from Eq. (4) to be
defined by k(r, ) =0. Since W«Vp for the energy levels
of interest,

n,,=O

where k2= (Vp—W)yR'.
The usual level density formula for a square well is

thus obtained:

~ 1
(V W)1/2 (~R2) 3/2 —1 el/2 (~R2) 3/2

where e is the particle energy measured from the
bottom of the well ~

Similarly for the disuse well the single-particle level

[e/(42 —e)]"' 2.10+0.088(e—ef)',

where ef is the Fermi level, the energy of the highest
filled ground state assumed here to be 34 MeV. We thus
obtain a simple approximation for the individual-
particle-level density in a dif'fuse well in terms of the
individual-particle-level density in a square well (written
S.W.):

0.0882r/ (2IR+ log, 4)
p= S.W. 1+ (e—ef)'

1+2.102r/(2IR+ log, 4)

—:S.W.{1+Ii(g/R) ( er)e}, e) ey.
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states:

I 0

p 1+exp (e/k T—P/k T)
(9)

where ( is a slowly varying function of temperature
chosen to make the integral equal to X.The total energy
of all nucleons of one kind in the potential is given by a
related integral,

ep (e)de
U=

. s 1+exp(e/kT $/kT—)

The square-well result is""

(10)
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FIG. 1. Different individual-particle level densities for a nucleon
in a potential well including a square-well result p&., a diffuse-well
result PEq. (5)] ps, and an approximation to the diffuse-well
result [Eq. (6a)j p&. All level density formulas are made equal at
the Fermi energy taken to be 34 MeV. p is expressed in relative
units.

The quantity in braces is the correction factor we have
sought to account for the diffuseness of the nuclear
potential. If 8=1.3&(100'" F, q=1.45 F—', X(gR) be-
comes 0.017, and Eq. (6) becomes

p =S.W.(1+0.017 (e—er)') . (6a)

where $ ha, s been determined from Eq. (9) and substi-
tuted into the result for Eq. (10).To this result must be
added the extra diffuse well contribution in Eq. (7):

Un ——cX (qE) (k T)"'
"x"'(x—b)'

dx,
1+em

—a.

and similarly for Ãn, where x=X/kT, a= )/kT, a.nd
b = eI/k T and u b 34. By integrating this integral and
the one for A ~ by parts, we obtain

The various formulas including (5) and (6a) for the I
individual-particle level densities are illustrated in

Fig. 1.

oo xm(x b)2
dx=

1+ex—a
fnzx'" '(x—b)'+2x""(x—b)j

X log,,(1+e )dx,

2 sV

p(e) = ede= ce de.
3 eg'~2

=ce"'{1+X(qR)(e—er)'}de, e& eI (7)

B. The Total Nuclear Level Density

Using the Sommerfeld electron theory of metals', ""
we may easily derive the excitation energy as a function
of gas temperature for a free nucleon gas in an Eckart-
Hethe potential. %e assume an individual-particle level
density which is the same as the squarewell level
density for energies below the Fermi energy and is the
level density given in Eq. (6) for energies above the
Fermi level. That is,

where nz = -, for .VD, —,
' for UD. This integral is readily

integrated if we expand the logarithm in a series,

(—1)" ' 2 6m
s ' "b ' —+— '*"+ "*)

0=-t( S nb (nb)'

1 80b'"+5 68b"' '

Ke thus obtain

1 7r 2

$~ er 1—— — (k T/eI)' 1.80K (gR) er'—(k T/er) '
3 2

—2.84K(gE) er'(kT/er)'

where S is the number of nucleons in the potential well,

k2 er 5 4V is the volume of the nucleus and tke Fermi energy
is given by

k' (3N)"'
8m 4V

(8)
X—(kT)&+8.5X(qR)—(kT)'.

Cy

'8 R. H. Fowler and E. A. Guggenheim, Statistical Thermo-
The total number of nucleons of one kind in the dynamics (Cambridge University Press, Cambridge, 1952), Chap.

Potentia is equal to t e integral over t e Particle energy iv I. N. Snedden and B.F. Toushek, proc. Cambridge phil. Soc.
~

h
- 11, PP. 452—458.

of Eq. (7) times the probability of occupation of the 44, 39l {l948).
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The 6rst three terms result from the square-well po-
tential. The third term is insignificant and was justi-
fiably neglected in previous derivations of the level
density; we shall neglect it in the following. The last
term results from the diffuse edge of the well; if 8= 1.3
&(100'ls, rl= 1.45 F ', it becomes 0.1/1(jV/er) (kT) with
all energies measured in MeU.

I.et

n= (-,'s)'(jV/er), / = 8.5X(AIR) (iV/er), r = kT;

then the total nuclear excitation energy becomes

3

15

Q= U —Us nr'——+Ps' (13)

The Helmholz free energy of the gas F(r) may then be
readily evaluated by use of Eq. (13):

10 30 30 40 50 60 70 80 90 100

Q (MeV)

T d7. '
F(r) = ~Q—(~') = «' —'sP~',—

12
~ 0 T'

(14)
FIG. 2. The total nuclear level density as a function of excitation

energy for a square well and a diffuse well with ground-state
dimensions. The dashed line is for a square well with adjusted o,
to match the diIIuse-well density at Q = 100 MeV. The adjusted n
is -', times larger than the calculated n.

~
—E(7) /7. (o(Q)e +'dQ, (15)

0

where o&(Q) is the tots, l nuclear level density we seek.
The right-hand side of F.q. (15) is merely the Laplace
transform of a&(Q). Hence, co(Q) is given by the inverse
I ap]ace transform&& of t,

—&&')/':

exp QZ+ —+ dZ, y)0
Z 3Z3

Q 3/2
q

exp 2( Qn)'"+ ,',P—-
2~ 3/4

The method of steepest descent has been used to
evaluate this integral and the square root occurring in
the evaluation of Z has been expanded in powers of
PQ/n. Snedden and Touschek" have shown that the un-
certainty introduced by the Inethod of steepest descent
is completely negligible.

Equation (16) is the standard nuclear level density
formula derived by many authors for a square well with
the addition of afactor exp (-,'P) (Q/n)'". Even for nuclear
excitation energies as low as 14 MeV this is a signi6cant
factor in determining the emitted particle spectra. It
increases rapidly with energy and may become as large
as two orders of magnitude for light or medium weight
nuclei at excitation energies of 50 MeU.

Figure 2 illustrates the difference in energy depend-
ence of the total nuclear level density for 2 =100 be-
tween a square well and a diffuse well as well as the
effect of changing n for a square well to simulate a
diAuse well. Note that changing n so as to simulate the
diffuse well density does not reproduce the slope which
is the important quantity.

The parameter P depends on the shape of the nuclear
potential. It has been estimated here from elastic
scattering data from unexcited nuclei. It would be

interesting to learn if it changed with excitation energy
as might be expected and thus yield information on the
compressibility of the nucleus and the properties of
nuclear matter. Experimental interpretation of particle
spectra from highly excited nuclei thus may furnish a
rare opportunity to determine, however crudely, nuclear
properties when the nucleus is not in its ground state.
It must first be shown, however, that the level density
at lower excitation is well understood and not dependent
on additional parameters which must be evaluated by
the same experiments.

III. THEORETICAL QUANTITATIVE PREDICTION
OF PARTICLE EMISSION SPECTRA

The emitted particle spectrum jV~(E)dE from a
nucleus at original excitation energy E is readily
obtained from the reciprocity theorem, "

jV& (E)dE =constEo. (E)a&(Q)dE,

where E is the energy of the emitted particle, o.,(E) is
the capture cross section of a nucleus at excitation
energy Q=E E for a particle of—energy L~', and a&(Q)

is the level density in the residual nucleus given by
Eq. (16).

If E ~ Bg+Bs+E where B& and Bs are the binding
energies of the first and possibly second emitted particle,
respectively, then a second particle may be emitted
which is experimentally indistinguishable from the first
particle emitted. (See Feld et al." and Tomasini" in
particular. ) In this case the emission spectra of the

"J.Blatt and V. F. Weisskopf, Theoreticu/ Nuclear Physics
{John Wiley Bz Sons, Inc. , New York, 1952)."B.T. Feld, H. Feshbach, M. L. Goldberger, H. Goldstein, and
V. F. Weisskopf, Final Report of the Fast Neutron Data Project
NYO-636, A.E.C. Document, 1951 (unpublished}.

'0 A. Tomasini, Nuovo Cimento 12, 134 (1954}.
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second particle is obtained. by integrating over the
emission spectra of the first emitted particle:

probability of unity (every particle penetrating the
barrier is absorbed), we have

Em-B1—B2—& o.(E)=~9 Q t (2t+ 1)T t (E) . (22)
Ng(E) = Ng(E')N2(F', E)dE', (18)

where N&(E', E) is the emission spectrum of a particle
with energy 8 from a nucleus with excitation energy
(L',„B~ E—'). S—imilarly

Ng(E) =
Em—B1—Bg—B3—E

Em—B1—B2—B3—E—E

Ng(E")

XN2(E, ",E'),
V g (E",E',E)dE", (19)

where N~( E",F.') is the emission spectrum of a particle
with energy E' from a nucleus with excitation energy
(E —B,—E") and N,,(E",E',E) is the emission spec-
trum of a particle with energy E from a nucleus with
excitation energy (E~ B~ B2 F.—"—E')—. —

Equation (17) is normalized for neutron emission from
lowly excited nuclei by requiring that j'ox" ~' V&(E)dE
=1 since the probability of emitting one neutron is
100%. However, only a fra, ction f of the initial excited
nuclei are left with enough excitation to emit a second
neutron; therefore, Eq. (18) is normalized by requiring
that

Em—B]—B2

Ãg(E)dE, = f,=

Em—B1—B2

N g (E')dE'
Em-B1

Ni(E')dE'. (20)

Similarly Eq. (19) is normalized by requiring that

Em—B1—B2—B3

N3(E)dE= f3=
Em—B1—B2—B3

N2(E)dE,
'

in which N2(E) is assumed already normalized by
Eq. (20).

The neutron emission spectrum is peaked so strongly
at low excitation energies ( 1 MeV) that, in the 14-
MeV neutron inelastic scattering analyzed below, f2 1——
in every case. The normalization procedure is identical
at excitation energies high enough to permit appreciable
proton emi. ssion, but the expressions are more compli-
cated since competition betv;een two diAerent kinds of
particles must be taken into account.

The simplest emission spectrum to consider is neutron
evaporation because o, (E) in Fq. (17) involves only the
penetrability through the centrifugal barrier Tt(E) and
not the Coulomb barrier as wel). Assuming a sticking

By using the values of T~(E) given by Feld et at. ,"the
cross section may be approximated by a power series in
x=0.218RE"', where E is expressed in MeV and R
in F:
A-60, 0.4&x&4 5.

o, (E)/xR~ 1.35+0.24x ~+0 03x '-'+0.02x ';
3-115, 0.4&x&6.0:

o. (E)/nR' 1.27+0.105x—'—0.007x—'
A-200, 0.4&x&7 5.

o;(E)/~R'-1 10+0.008x—0.014x—'+0.14x—'.
The cross section asymptotically approaches the geo-
metrical result ~R' as E and therefore x increases with-
out limit and the geometrical result was used for large x.

The level density parameter n in Eq. (16) is given by

2»3 ~R
Q'= (N't'+Z'i') = 0.0512r ~A (23)

4 (97r)'t' A'

where V is the number of neutrons and Z is the number
of protons. Snedden and Touschek" have shown that an
insignificant error is introduced into the calculation if
one lets E=Z=-,'3, where' i.s the atomic mass of the
nucleus. The parameters ro, and m, the effective mass of
a nucleon while in the nuclear potential, completely
determine o.. Low-energy sca, ttering experiments es-
tablish a value of 1 35f for r. o. (A value of 1.5 gives
theoretical spectra indistinguishable experimentally
from those using a value of 1.35; therefore, we did not
bother to recompute spectra where 1.5 had been used
inadvertently. ) Although the effective nucleon mass has
been taken to be one half the free nucleon mass in order
to treat nucleon correlations, ' we used 100% of the free
nucleon ma, ss in keeping with our present understanding
of nuclear matter.

The essence of the individual-particle model is the as-
sumption that the numerous short-range nucleon-
nucleon interactions may be replaced by an effective
static potential held,

U(x„)=P,(i~ V„,~i),

where V represents the nucleon-nucleon potential and
the summation is carried out over all the particles in the
nucleus. The Pauli exclusion principle causes the po-
tential to be energy-dependent since the interaction
between one nucleon and another depends on there
being enough shared energy for both particles to be
scattered to unfilled states. (The contribution of virtual
states being less if energy is not conserved. ) Since U may
depend quadratically on particle wave number 0, as does
the kinetic energy, the net result a,t low energy is for the
particle to have an effective mass about half the free
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I 1 I energies of only a few MeV; and therefore, we cannot
anticipate a good prediction of the experimental data
above emitted particle energies of 4 MeV or so at this
excitation energy, particularly for gold which is only
three protons removed from a closed shell.

In most applications the labor of numerical integra-
tion may be avoided by simple approximations which
match the numerically obtained results well within the
present theoretical and experimental uncertainties. Let
all nucleon energy distributions in the integrand be ap-
proximated by neglecting the slowly varying factor
a, (E)Q s" and expanding the radical in the exponent.
The emission spectrum of the kth emitted particle in the
integrand will then be

0 I I t I I 't ! t I

0 I 2 3 4 5 6 0 1 ? 3 4 5 6

2Vs(Es)dEs~const Es 1—
4T/, I:„—Q 8,

E (Mc Vj E (Mv V)

FIG. 3. Neutron spectra resulting from 16-MeV incident protons.
Curve on left, theoretical prediction for one emitted neutron from
Al2' target with nuclear radius =1.5A "3F. Curve on right, for total
of two emitted neutrons from Fe" target with nuclear radius

1.5A'Is F. Experimental points taken from Gugelot (Ref. 15).

nucleon mass. ' "At high energy the nucleus becomes
black (the exclusion principle is less effective) and the
nucleon-nucleon potential becomes more nearly that for
free particles. Thus, the effective mass of the nucleon
approaches the free nucleon mass. Bethe, Brandon, and
Petschek" have concluded that the e6ective nucleon
mass for particles with momentum greater than the
Fermi momentum is more nearly 9/10 of the free nucleon
mass. As can be seen in Fig. 7 an improbable choice of
mass lower by a factor of 2 than the free-particle mass is
incompatible with the experimental data.

Equa, tion (16) and (22) were substituted into Eqs.
(17)—(19) and the integrals were numerically integrated
at the Western Data Processing Center for initial ex-
citation energies of E = 14 MeV+Br in order to obtain
a comparison wit'h Graves and Rosen's, " Rosen and
Stewart's, " and Ahn and Roberts'" neutron inelastic
scattering experiments, and Gugelot's" observations of
(p, ts) scattering at 16 MeV. Neutron binding energies
were computed from Baker and Baker' s" nuclear mass
formula. Representative results are plotted in Figs. 3—5,
7 for M equal to the free nucleon mass and E=roA'13 for
~0——1.35 F and 4.5 F. As can be seen from the figures a
satisfactory fit to experiment is obtained at moderate
nuclear excitation. Bloch, ' Rosenzweig, ' Critchfield and
Oleksa, '4 and others have emphasized the level density
dependence on nuclear shell configuration at excitation

"H. A. Bethe, Phys. Rev. 103, 1353 (1956)."H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963)."G. A. Baker, Sr., and G. A. Baker, Jr., Can. J. Phys. 34, 423
(1956)."C. Critchfield and S. Oleksa, Phys. Rev. 82, 243 (1951).

y exp( —P E~/T, jdEs, (17a)

where 8;is the binding energy of the ith emitted particle

and Tss= (E g8;)Icr.—For E„, p8;) 20 Me—V the

10,

5, 0

1.0
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«05

I I 1 I t

0 $ 2 3 4 5 6

E (MeV)

Fzo. 4. Neutron spectra resulting from 14-MeV incident neu-
trons. Curve on left theoretical prediction for total of two emitted
neutrons from an isotopic target mixture of Cd"' 13%, Cd"' 13%,
Cd"' 24%, Cd'" 13%,Cd" 29%, and Cd" 8%with nuclear radius
=1.5A'" F. Curve on right same for isotopic target mixture of
Pb'0' 27%, Pb' 21%, and Pb' 52% with same radius. Experi-
mental points taken from Graves and Rosen t'Ref. 12).
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10.

5, 0

In general, when proton competition may be neglected,
the total emitted neutron spectrum may be approxi-
mated as

cV(E)dE=E Q 2 expL2(nQ. )'I']

where the sum is taken over all j for which

1.0 Q =E„QB—E—
N/E

RELATIVE
INTENSITY
PER UNIT
ENERGY

O. I

is positive and

A;= exp( —2Lrr(Q, +E)]"').
Q+E

~ 05

.01

quadratic energy-dependent factor may be neglected.
For the last particle out it is better to leave the energy
as part of the temperature which in no way complicates
the calculation of the spectrum since this energy is not
an integrated variable. Hence, for the contribution of the
l'th emitted particle to the total spectrum the ap-
proximation becomes

E~(Et) const E~ 1—
Q

)&expL —Q E;/Tt] exp[2(nQ~)' '], (17b)

where

TP =Q~/n and Q~= E PB, E~. — —

Thus, for the second emitted particle we have considered,
an elementary integration (neglecting quadratic terms)
yields

1Vs(E)dE .const EE' expL —E'(T +tTs ')]

Xexp/(2rrQs)'~']dE'

constE exp(2 (aQs)"']. (18a)

E (MeVj

FIG. 5. Neutron spectra resulting from 14-MeV incident neu-
trons. Solid line is theoretical prediction for total of three emitted
neutrons from Bi' ' target with nuclear radius =1.35A" F. Experi-
mental points taken from Rosen and Stewart (Ref. 13).

The normalization factor f; is one except for the last
emitted neutron.

Each single emission spectrum has the expected
concave downward curvature when plotted against E
rather than Q"'.The total emission spectra is surprisingly
linear except near 8=0 when normally energy-independ-
ent factors such as o,(E), E ', and expL( rs9)(Q/o)si']
cause the curve to become concave upward. The line-
arity of the plot has led to a customary interpretation of
the slope of these curves as a reciprocal "temperature"
of the nuclear gas. This is not useful since, as Tomasini-''
in particular, has shown, the slope of this curve does not
depend in a simple way on the excitation conditions of
the initial target nucleus when more than one neutron
is emitted. Hence, it is a relatively useless kind of aver-
age excitation parameter for the initial and all subse-
quent emissions. Indeed, this "temperature" might well
decrease with excitation energy as more and more
particles are emitted. It should also be noted that if the
slope of the total emission curve is used to experi-
mentally evaluate a (in an attempt to use the experi-
mental data in this way to fit an expected level density
dependence of expL2 (uQ)'~'], a very different value of o.

from the one we have calculated is obtained.
The theoretical value of n which results in the

markedly difierent slope of the first emitted neutron
spectrum is larger by about an order of magnitude than
the n erroneously interpreted in the past by one of the
authors (DBB) and others from the slope of the ob-
served multiple emission spectra. Some attempts have
been made to explain the diA'erence between theoretical
and erroneous "experimental" values of o. by an addi-
tional contribution from considerations of angular mo-
mentum. To be appreciable the moment of inertia must
be much smaller by a factor of one or two orders of
magnitude than the rigid-body moment of inertia to be
expected at these excitation energies on theoretical
grounds. As indicated by the figures, angular mo-
mentum considerations are not required to account for
the experimental spectra.

Fortunately, direct interaction processes were not
enough at these energies to complicate the interpreta-
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tion. When direct interaction is signidcant as may be
ascertained by angular measurements, the direct inter-
action (anisotropic scattering) must not only be sub-
tracted out but account must also be taken of the
evaporation subsequent to direct interaction from nuclei
initially excited to energies much less than the maximum
energy resulting from absorption of the incident nucleon,
(The isotropic low-energy nucleons resulting from direct
interaction have long wavelengths and a short mean free
path in the nucleus so that relatively few of them may be
expected to contribute to the emission spectrum. There-
fore, they are not expected to contribute signiFicantly
compared with the results of compound nucleus
formation. )

Angular-momentum considerations are not significant
for single-nucleon excited nuclei at these energies. The
effect of angular momentum on the level density was
First considered by Bethe, ' then later by others including
Snedden and Touschek. "In rederiving the level density
formula to include those states within an energy band Q
and Q+dQ with the quantmrrt rtlmber J, Snedden and
Touschek arrive at approximately the same formula as
given in Eq. (16) with Q replaced by Q—(J}'h'/2I,
where I=~5AMR' is the moment of inertia of a solid
sphere of mass 235, A =atomic weight, M =mass of
nucleon, and (J} is the average value of the angular
momentum quantum number in the compound nucleus
formed by absorption of the bombarding nucleon. Since
each J state has a degeneracy of 2J+1,

J'=~m ax ~max

(J)= Q (2J+1)J/ P 2J+1,
J=1 J 1

where J,„is Rp/ft, R is the radius of the target nucleus,
and p the linear momentum of the bombarding nucleon.
For large values of J,„, (J) —',J, . For 14-MeV
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neutrons on Ag"', J .„=6 and (J)=4. The effect of
angular momentum at this excitation energy is shown in
Fig. 6. The angular momentum of the excited and
residual nucleus was included in the calculation and as
can be seen from Fig. 6 it has negligible effect.

The relative insensitivity to a choice of ro can be seen
in Fig. 7 which compares the effect of using ro ——1.5 F
and ro ——1.35 F in the calculation of n as well as the effect
of using a nucleon mass half that of the free nucleon
mass.

The effect even at these low excitation energies of a
diffuse nuclear potential as compared to a square well
is illustrated in Fig. 8. This effect is enhanced at higher
excitation energies since it depends exponentially on the
three-halves power of the excitation energy. The effect
is additive so that the total emission spectrum will
depart from the square-well spectrum more than the
single-particle spectrum illustrated in Fig. 8.

E I%i V)

FIG. 7. The eGect of varying nucleon mass from 1 to q the free
nucleon mass and nuclear radius from 1.5A" to 1.35A "I F in the
calculated spectrum from a target of Ta' ' bombarded by 14-MeV
neutrons. Experimental points taken from Rosen and Stewart
(Ref. 13).
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FIG. 6. The efIect of including angular momentum in the
calculated spectrum from a target of Ag"' bombarded by 14-MeV
neutrons.

IV. ANALYSIS OF PARTICLE SPECTRA FROM
EXCITED NUCLEI

The experimental conlrmation at modest excitation
energies of the theory presented in the previous section
gives one conddence in its formulation. At higher
excitation energies, however, further complications may
arise since the parameter P may change due to a kind of
"thermal expansion" of the potential well. Possible
change in nuclear shape with. excitation energy has been
a source of some controversy in the literature. Proper
analysis of the particle spectra (especially charged-
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particle spectra) from nuclei at high excitation energy of
more than 20 MeV might enable one to determine the
change in P with excitation energy. This has the exciting
consequence of enabling one to determine the properties
of nuclear matter (e.g. , compressibility) under otherwise
impossibly obtainable conditions.

Nuclear evaporation following absorption of nucleons
having an energy of the order of 10—50 MeV will result
in an isotropic angular distribution" unless energetic
heavy incident ions are used for excitation. The con-
tribution of direct-interaction processes may be de-
termined from the angular dependence of the emitted
particles. The subsequent emission of particles from
nuclei partially excited by direct-interaction processes
can then be calculated by the methods of the previous
section. This emission which follows direct-interaction
processes plus the direct-interaction spectra itself can
then be subtracted from the total observed diRerential
cross section in order to obtain the spectrum of multiple
emission of protons and neutrons following excitation of
the target nuclei to the maximum excitation energy. In
evaluating the contribution of direct-interaction proc-
esses from nuclei excited by-energetic heavy incident
ions, the angular dependence introduced by the large
angular momentum carried by the incident ion further
complicates the interpretation'"" in that the com-
pound nucleus decay results in a predictable angular
dependence of the emitted particles. The interpretation
remains straightforward, however, since the angular
dependence of the compound nucleus decay may be
included by using the results of Ericson and Strutinski"
and others and sorted out from the direct-interaction
angular dependence. To simplify the discussion in the
following we will neglect the necessary but straight-
forward modification of the theory introduced by con-
siderations of angular momentum. We note, however,

that the rigid-body moment of inertia of the nucleus
should be used in these calculations since the excitation
energy is high. The suggestion that the moment of
inertia at excitation energies of 20 MeV or more is less
than the rigid-body value is unreasonable since pairing
forces should be insignificant at these conditions. The
initial motivation for the suggestion, namely to obtain
the observed low "temperature" when multiple emission
has occurred, has been shown to be unnecessary by
calculations given in the second section.

We could proceed to determine each single emission
spectrum, ¹~,¹2,¹3,etc., from the observed total
emission spectra ¹ obtained from measurements by the
method of the preceding paragraph. For example, con-
sider the observed spectrum for emitted neutrons with
energy E~&8 —B&—B2. This part of the energy spec-
trum is for a nucleus which emits only one neutron and
leaves the residual nucleus in too low an excitation to
emit any more neutrons. The energy spectrum where
8 —By—B2~~E~~E —By—Bp—B3 consists of both
first emitted neutrons birr (where the superscript de-
notes the energy region of observed spectra) and second
emitted neutrons ¹

'~. However, if shell-eRect differ-
encesmaybe neglected, X2"(E',E) maybe inferred from
¹

I

iV2ii(F' E)=
E'+E+B~

X Xir (E'+E+B2),
~.(E'+E+B2)

where ¹&'is the observed energy spectrum in region I
where only one neutron could be emitted. We then
differentiate the total neutron spectrum in region II
with respect to E and obtain

drVzz dX,zz E 0.,(E)
X»(E —B ——B —F) —— .V,'P.'.—Bi)

dF. dE F —Bi ~.(E —E)
&m—&l—&l—& d — E 0,(E)

V a(E~) Q i(F'+F+B )
dE E"+E+B20,(E'+E+B2)

Em—By—B2—E 0,(E).k
Vp (E') Ãir (E'+8+B2—) dE', (25)

dF F.'+E+B2 a, (E'+F+.B2)

where .'Vi" (E,') is the first. neutron energy spectrum in
the energy range

7b—1

2' W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
"A. M. Lane and K. Parker, Nucl. Phys. 16, 690 (1960)."T.Erickson and V. Strutinski, Nucl. Phys. S, 284 (1958).

n being the total number of neutrons which can be
emitted. Proceeding in this way it would. be possible to
obtain a system of simultaneous differential equations
which would determine ¹~in all the energy regions from
the slope of the total neutron distribution curve dS/dE.
The experimental uncertainties as well as the theoretical
uncertainty due to shell eRects are too great to make
this method pro6table. However, an adaptation of it
using Eq. (16) for &o(Q) may prove profitable.
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A further complication arises at high excitation in
that two kinds of particles may be emitted with roughly
equal probability when the excitation energy is high

enough to emit protons over the Coulomb barrier with

high probability. The transmission of the protons
through a diffuse Coulomb barrier"" must be included
in the estimate of o,(E) for protons and the normaliza-

tion of the neutron emission revised. The fraction of first
emitted particles which are neutrons is no longer unity
but is given by

,05

, 01 l l I I l I f I I l

0 1 Z 3 4 5 6 7 8 9 10 11 1Z 1$

E (Me V)

1'zo. 8. The effect of using an observed diffuse nuclear potential
in place of a square well in the calculated spectrum of the 6rst
emitted neutron from a target of Ag' excited to 20 MeV and 60
MeV. N/E=exp(2(nQ)'"+(P/3)(Q/n)s'sj, where =n10 MeV '
and P=0.7 MeV 3.

The results of Sec. III may give us sufficient confi-
dence in the theory that except for the effects of
"thermal expansion" we may assume that we already
know what the energy spectrum of first emitted neu-
trons is, namely Eqs. (16), (17), (22), and (23). We
anticipate that the primary departure from theory of
the experimental data at high excitation energies v ill

occur because of the change in nuclear potential shape
as states of high quantum number are occupied. If we

represent the "thermal" expansion as an energy de-
pendence of P and expand P in a power series in Q, that
is, let

P =Pp+3AQ+3BQ',

the diffuseness effect factor becomes

expL(sPp) (Q/n)'"j exp[~ (Qln)'"+B(Q/n)'"j. (2&)

By substituting this expression into Eq. (16) to obtain
a better approximation to the nuclear level density and
repeating the work of Sec. III, we may determine the
values of A and 8 which best 6t the experimental data
(including especially charged-particle emission when
required since the penetrability is sensitively dependent
on the nuclear potential shape""). The values of 2 and
8 may then be interpreted in terms of the energy-
dependent change in nuclear potential shape, that is,
the energy dependence of r) in Eq. (1).

"Ken Kikuchi, Progr. Theoret. Phys. (Kyoto) 17, 643 (1957)."J.M. C. Scott, Phil. Mag. 45, 441 (1954).

where co& is the density of neutron energy levels in the
nucleus at zero excitation energy,

Nt (E„)=Eo,(E„)( (E„—Bg„—E„),
and the subscript p refers to similar quantities for
protons. f», fs„,fp „, ~ are found from similar integrals.

o,(E„) through a diffuse Coulomb barrier with an
unexcited nuclear potential shape is presently being
computed and the results of analyzing proton spectra
will be reported on later. While neutron spectra at
moderate energies may be analyzed neglecting proton
emission in those cases for which the reaction energetics
do not cause proton emission to be significant, the
converse is never true at any excitation energy. The in-

crease in analytical effort required by protons and

higher excitation energy is well worthwhile since most
proton spectra are obtained with higher resolution than
is possible with neutron measurements and the effect of
the change in nuclear shape is much more pronounced
for protons and higher energies.

V. CONCLUSIONS

The effect of a diffuse nuclear potential on the energy
level density and particle evaporation has been found

significant at excitation energies of several tens of MeV.
The effect of the shape of the nuclear potential on
particle-emission spectra increases rapidly with ex-
citation energy and thus particle-emission spectra fur-
nish a tool to determine the shape of the nuclear po-
tential under the unusual and hard to obtain conditions
of high nuclear excitation. Even if the nuclear potential
shape is independent of excitation energy the diffuseness
of the well (determined by elastic neutron scattering)
causes the level density to increase as much as two
orders of magnitude at 50 MeV excitation energy over
that predicted by a square nuclear well shape with

noticeable effect on the particle-emission spectra. The
expected increase in diffuseness of the nuclear potential
at high excitation energy may be observable in the
emission spectra and the energy dependence of the shape
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of the nuclear potential thereby inferred. By choosing
values of ro and M consistent with low-energy sca, ttering
experiments and our present understanding of nuclear
matter a value of 0. has been derived which yields
theoretical nuclear evaporation spectra which fit the
present low excitation energy experimental data very
well. However, when more precise experimental data at
excitation energy 20 MeV become available n may be
determined more precisely than is possible at the present
time. The dependence of n as well as P on excitation
energy Inay then be interpreted in terms of the proper-
ties of nuclear matter (3II*(E) and rt(E)) as higher
excitation data become available.

At modest excitation energies of only 14 MeV maxi-
mum the effect of the shape of the nuclear potential is
relatively unimportant and the theory may be tested by
neglecting the expected change in nuclear potential with
excitation energy. Neutron emission spectra at modest
excitation energy have been computed without reference

to any particle er-nission experAnents (that is, nuclear
dimensions used in the theory are determined from
elastic neutron scattering experiments and the nuclear
level densities in a potential of these dimensions are
determined entirely theoretically) and the result has
been compared successfully to 14-MeV inelastic neutron
scattering and (p,n) measurements. Experimental tem-

perature and parameter Q.tting are not useful concepts
when Tnultiple particle emission is at all possible. ""
Their experimental determination will result in a pos-
sible decrease of "temperature" with excitation energy
and a level density parameter an order of magnitude
lower than the theoretical value.
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The Landau surface for the triangle diagram touches the physical region at three points. The consequences
of this singlar-matrix element for several processes are studied. It is found that there should be peaks in
cross sections at the edge of phase space. These peaks depend sensitively on the incident energy and are
distinguished in this way from genuine resonances.

I. INTRODUCTION

~ 'HE existence of anomalous thresholds in certain
I'"eynman amplitudes was first noticed by

Karplus, Sommerfield, and Wichmann. ' There has been
much subsequent work, particularly by Landau' who
gave the general conditions for the occurrence of many
particle singularities and by Cutkosky' who showed how
to calculate the discontinuities across their cuts.

In all of the current theoretical approaches to ele-
mentary particle physics one abandons many concepts
of Lagrangian field theory, but, none the less, assumes
that the singularities of the perturbation amplitude are
preserved in the correct amplitude. 4' Thus, one can-
not ignore anomalous thresholds and maintain any
semblance of logic. It does not seem a particularly de-
sirable situation, then, that there is no physical evidence

' R. Karplus, C. M. Sommer6eld, and K. H. Wickmann, Phys.
Rev. 111, 1187 (1958).

e L. Landau, Nucl. Phys. 13, 181 (1959).' R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
4 H. Stapp, Phys. Rev. 125, 2139 (1962).
'G. Kallen and A. S. Wightman, Kgl. Danske Videnskab.

Selskab, Mat. Fys. Medd. 1. 6 (1958).

that these are anything more than mathematical
apparitions.

Landshoff and Trieman' and, more recently, Aaron'
have suggested reactions in which effects of the anomal-
ous threshold occurring in the triangle diagram might
be seen. They were limited, however, either by com-
peting diagrams for the same reaction, or by the large
distance of the singularity from the physical region. We
have found that these limitations can to some extent be
removed by allowing two external particles at each ver-
tex of a closed loop graph. Also, we 6nd that under cer-
tain conditions, to be described later, the strength of
the singularity may be enhanced.

We find that it is necessary to include at least one un-
stable particle among the internal particles. The
imaginary part of the mass of this particle keeps the
singularity from actually touching the boundary of the
physical region. For a narrow resonance this might not
be too serious. In fact, if the effect turns out to be ob-
servable, it might provide some information on the
widths of such resonances.

~ P. LandshoG and S. B. Treiman, Phys. Rev. 127, 649 (1962).' R. Aaron, Phys. Rev. Letters 10, 32 (1963).


