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ture of M1. From the measurement of conversion co-
efEcients Keister et a/. "has assigned M1 multipolarity
to the 569-keV gamma ray. Adopting this assignment,
the value of the combined K-conversion coe%cient for
the (563+569)-keV gamma ray measured in the present
experiment requires that the 563-keV gamma-ray transi-
tion be 80% E2 and 20% M1. Thus, the 1168-keV level
can be assigned 1+, 2+, or 3+ spins. The log ft value of
the beta-ray transition of energy 892 keV which feeds
this level is 11.4. This requires AJ= ~2, no change in
parity. "Thus, the spin assignment for this level is 2+.

There is no ground-state transition observed from the
level at 1402 keV, which implies a high spin value for
this level. The measured value of the conversion co-
e Tcient of 800-keV cascade gamma ray is in agreement
with the theoretical estimates of an E2 transition. This
favors 2+, 3+, and 4+ assignment to this level. The log
ft value of the 655-keV beta group feeding this level is
8.5, and appears a little high for an allowed transition.

But, from the shape of this beta group, it appears to be
an allowed transition. Thus, the 1402-keV level appears
to be 3+ or 4+. The angular correlation work" favors a
4+ assignment to this level.

The level at 1643 keV has two gamma rays leaving it.
The 1038-keV gamma ray is found to be an E2 transi-
tion from internal-conversion measurements (refer to
Table iV), and the 475-keV transition is known" to be
E2. Thus, this level can be assigned 0+, 1+, 2+, 3+, or 4+

spin values. It is fed by the beta group of energy of 410
keV which has a log Jt value of 10 and is probably a
second-forbidden transition with 6J= &2, and with no
change in parity"; the beta-ray data support a 2+

assignment to the 1643-keV level.
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The elastic scattering of He' by alpha particles in the energy range 0—20 MeV is considered using the
method of resonating-group structure in the one-channel approximation. A two-body, central potential
of Gaussian form which fits the low-energy nucleon-nucleon scattering data as well as possible is used.
Saturation is taken approximately into account by choosing the radii of the clusters according to the experi-
mental data. Phase shifts are computed up to 1=6. The presence of a t =3 resonance is predicted with an
excitation energy of about 6 MeV. Angular distributions at 1.7 and 16.6 MeV in the c.m, system are also
calculated. At 1.7 MeV, the theoretical result agrees very well with the experimental data. At 16.6 MeV,
the calculation predicts correctly the position of the diffraction minima and maxima, but the differential
cross sections are somewhat larger than the experimental values in the forward angular region. An optical-
model analysis is also performed at these two energies. It is found that at the higher energy, an imaginary
optical potential of about 2 MeV is necessary to obtain the best fit with experiment. This indicates that in
the resonating-group calculation, channels other than the He'-o. channel are also important in determining
the elastic scattering cross section at relatively high energies. Specifically, one can see from the existing reac-
tion data that the other important channels are the p-Lie channels with Li6 in the ground and the first
excited state. Calculations are also done with a second two-body potential which was extensively used in
resonating-group calculations by the London-group of Massey and Collaborators.

I. INTRODUCTION

HE method of the resonating-group structure' has
been used extensively in recent years to analyze

scattering problems where both the incident and the

*This work was supported by the U. S. Atomic Energy Com-
mission and the U. S. Oflice of Naval Research.

f Present address: Max Planck Institut fur Physik und
Astrophysik, Munich, Germany.' J. A. Wheeler, Phys. Rev. 52, 1083 (1937); see also K.
Wildermuth and T. Kanellopoulos, Nucl. Phys. 7, 150 (1958);
9, 449 (1958).

target nuclei are composed of only a few nucleons. The
main advantage of this method is that it employs a
two-body potential in the calculation and takes into
account the indistinguishability of the nucleons
correctly. Up to the present moment, the problems
treated with this method are the scattering of e-d, '

'R. A. Buckingham, S. J. Hubbard, and H. S. W. Massey,
Proc. Roy. Soc. (London) A211, 183 (1952); P. G. Burke and
H. H. Robertson, Proc. Phys. Soc. (London) A?0, 777 (1957).
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e-t, e-He3, 3 n-n, d-d, ' d-t, 6 He'-Hee, ~ and O.-a, With
a simple, central, two-body interaction, the calculated
scattering cross sections agree, in general, quite well
with the experimental values. The only notable ex-
ception seems to be the case of He'-He' scattering, '
where it was found that the calculated phase shifts
differ appreciably from those obtained by analyzing
experimental data. In this investigation, we consider
the scattering of He' by alpha particles. The purpose
is to see whether with a simple, central force which is
consistent with most of the low-energy two-nucleon
scattering data, the experimental results" in the low-

energy region can be explained to a fair degree of
accuracy.

To simplify the calculation, only the He'-n channel
will be considered in computing the elastic scattering
cross sections. The presence of p-Lis and other channels
will be ignored. This seems to be justified in the low-

energy region, since the a-He' cluster structure is a
rather stable structure and the two clusters are bound
together by only about 1.6 MeV in the ground state.
Resonant levels of other cluster structure are, therefore,
quite far away from the o.-He' threshold and are not
expected to participate too much in the compound
nucleus formation. At higher incident energies of about
20 MeV, we do, however, expect the other channels to
play a more important role.

For the two-body interaction, we choose a simple,
central potential of Gaussian form which describes the
low-energy two-nucleon scattering data as well as
possible. The saturation character which is not con-
tained in this interaction will be taken into account
approximately by choosing the radii of the clusters
according to their experimental values. " As for the
exchange nature, it is only possible to say from the
low-energy nucleon-nucleon scattering data that the

' B. H. Bransden, H. H. Robertson, and P. Swan, Proc. Phys.
Soc. (London) A69, 877 (1956).

4 S. Hochberg, H. S. W. Massey, and L. H. Underhill, Proc.
Phys. Soc. (London) A67, 957 (1954); S. Hochberg, H. S. W.
Massey, H. H. Robertson, and L. H. Underhill, ibid. A68, 746
(1955).' W. Laskar, C. Tate, and P. G. Burke, in Nuclear Forces and
the Few-Nucleon Problem, edited by T. C. GriKth and E. A. Power
(Pergamon Press, Inc. , New York, 1960), Vol. II, p. 559.

'W. Laskar, C. Tate, B.Pardoe, and P. G. Burke, Proc. Phys.
Soc., (London) 77, 1014 (1961).'B. H. Bransden and R, A. H. Hamilton, Proc, Phys. Soc.
(London) 76, 987 (1960).

s E. W. Schmid and K. Wildermuth, Nucl. Phys. 26, 463 (1961);
A. C. Butcher and J. M. McNamee, Proc. Phys. Soc. (London)
74, 529 (1959).

'T. A. Tombrello and A. D. Bacher (to be published); J. L.
Gammel, J. E. Brolley, L. Rosen and L. Stewart, in Proceedings
of the International Conference on Nuclear Structure, edited by
D. A. Bromley and E. W. Vogt (University of Toronto Press,
Toronto, 1960), p. 215."P.D. Miller and G. C. Phillips, Phys. Rev. 112, 2048 (1958);
T. A. Tombrello and P. D. Parker (to be published); D. J. Bredin,
J. B.A. England, D. Evans, J. S. C. McKee, P. V. March, E. M.
Mosinger, and W. T. Toner, Proc. Roy. Soc. (London) A258, 202
(1960); R. Chiba, H. E. Conzett, H. Morinaga, N. Mutsuro,
K. Shoda, and M. Kimura, J. Phys. Soc. Japan 16, 1077 (1961).

"For a more detailed discussion on this point, see K. Wilder-
muth and T. Kanellopoulos, CERN Report 59—23 (unpublished).

interaction must be close to a Serber type. In this
calculation, we shall adjust the exchange mixture such
that the binding energy of the ground state is repro-
duced correctly. If our procedure of handling the
saturation property is approximately correct, then this
adjustment should not lead too far away from a Serber
mixture.

In resonating-group calculations by the London-
group of Massey and collaborators, a two-body potential
which is different from ours was used. ' This potential
yields a good approximation to the binding energies of
the deuteron, He' and alpha particle, but does not
explain the two-nucleon scattering data very well. In
this investigation, we shall also calculate with this
potential for the sake of completeness. The two po-
tentials used will be called potential I and potential II,
respectively.

From theoretical consideration" and experimental
observation, " the state at 7.18 MeV has now been
ascertained to have a proton plus Li' cluster structure.
Hence, it cannot be predicted from our result, since the
p-Lis channel is not included in the calculation. On the
other hand, we should be able to find the 'P ground
state and the 'Il excited state. Both of these states are
known to consist mainly of He' plus alpha cluster
structure. '4

In addition to the calculation with the resonating-
group method, we shall also perform an optical-model
analysis. This analysis will not be an extensive one;
only a potential well of the Saxon type will be con-
sidered. The purpose of this analysis is to find the
relative importance of the imaginary optical potential
at 16.6 MeV which is about the highest energy in the
c.m. system to be considered in this investigation. If it
should happen that a comparatively large imaginary
potential is needed at this energy to fit the experi-
mental data, this would be an indication that in the
resonating-group calculation, the channels other than
the n-He' channel should also be included in the calcu-
lation in order to yield better agreement with
experiment.

II. FORMULATION

With only the He'-n channel in the resonating-group
formulation, the wave function of the scattering system
is written as

@=A(q plrF(R Rrr)&(o,r)), —

where the operator 2 signifies the complete antisym-
metrization of the wave function with respect to the
exchange of all pairs of particles and $(o,r) is a cha.rge-

'~ F. C. Khanna, Y. C. Tang, and K. Wildermuth, Phys. Rev.
124, 515 (1961)."J.A. McCray, Phys. Rev. 130, 2034 (1963).' T. A. Tombrello and G. C. Phillips, Phys. Rev. 122, 224
(1961); Y. C. Tang, K. Wildermuth, and L. D. Pearlstein, ibid.
123, 548 (1961); T. A. Tombrello and P. D. Parker (to be
published).
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as possible, while potential II yieMs better approxi-
mation to the binding energies of He' and alpha particle.
This latter potential is used in our investigation in order
to allow a comparison with resonating-group calcu-
lations carried out by the London-group.

For the internal energies E and E~, we use the
expectation values of the Hamiltonian of the clusters.
g/ith wave functions (2) and (3), we get

spin function. The functions q and y~ describe the
spatial behavior of the alpha cluster and the He'
cluster, respectively; they will be assumed to have the
form

(2)(p =exp[——,'n P (r;—R )'],
i=1

and
7

yIr ——exp[——,'n Q (r;—Rrr)'], (3) A2 9 3/2 2n 1/2

E =——n —6(w+m)Vpi +e' —,(9)
2522 En+ 2K rr

A2 n '~' 2n 'i2

EIr 3n —3——(w+m) Vp +e' — . (10)
2fS n+2K 7r

For the calculation with potential I, we choose the
width parameter of the clusters according to the
experimental data; that is, we take n such that the
rms radius of the alpha cluster agrees with the experi-
mental value of 1.44F determined by the electron
scattering experiment" and n such that the Coulomb
energy of the He' cluster is 0.76 MeV. In this way, we
obtain

b % *(H E')%dr =—0.

In this equation, E' represents the total energy of the
system composed of the internal energies of the clusters
and the relative energy in the c.m. system.

The two-body interaction is assumed to be purely
central and of the form

n=0.543 F ',
n=0.438 F '.

in which R and Rlr are the coordinates of the center of
mass of the two clusters. Gaussian form for these and
functions is especially preferred, since this particular
form leads to integrals which can be easily done
analytically.

The function F(R —R~) describing the relative
motion of the two clusters will be determined from the
variation principle

w+m+b+h = 1,
w+m b h= x, —— (6)

with x being the ratio of the singlet to the triplet
interaction.

Two types of central potential with diGerent range
will be used in the calculation. They will be called
potential I and potential II, respectively. The parame-
ters for potential I are

Vp= 72.98 MeV,

~=0.46 F ',
x= 0.63,

(7)

U;;= —Vp exp( —//;r. ') (w+mP "+bP" —h"P ')
+ (e"'/&' ), (3)

where P;;", P;, , P; are the usual exchange operators
and e;; is equal to one if i and j are protons and zero
otherwise. The constants m, m, b, h determine the
exchange dependence and satisfy

Using these values in Eqs. (9) and (10), the values for
E and EII are —29.2 and —4.7 MeV, respectively.
For the calculation with potential II, we adopt the
procedure used by the London-group; that is, we
minimize E and Err of Eqs. (9) and (10). The result
1s

n=0.662 F '
n=0.445 F '.

with these values, the internal energies for the alpha
cluster and the He' duster are —29.8 and —6.0 MeV,
respectively.

The procedure to derive from Eq. (4) the equaticn
which the function F(r) satisfies is very similar to that
used in our previo U,s calculations with variational
method"; hence, it will not be discussed in detail here.
It sufFices to say that due to the procedure of anti-
symmetrization and the exchange nature of the two-
body potential, the interaction between the clusters is
nonlocal in nature, and the integrodifferential equation
for F(r) is of the form

while those for potential II are

Vp ——46.8 MeV,

~=0.2669 F '
@=0.60.

752
7'+E VD(r) —V, (r) F(r—)

24ns

E'(r, r')F (r') dr', (13)

"' R. Hofptadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
As mentioned in the Introduction, potential I is chosen 16 L. D. pear)stein, y. C. gang, an/ /. gri]dermuth, Quc). phys.
to 6t the two-body low-energy scattering data as well 18, 23 (1960); Phys. Rev. 120, 224 (1960}.
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12nn+x (8n+9n)

+exp r' . (14)
12nn+ a (8n+ 9n)

For the Coulomb potential V„we have, for simplicity,
only used the unantisymmetrized part of the wave
function O'. This is not a particularly bad approxi-
mation, since the Coulomb interaction is long-ranged.
Kith this simplification, the form of V, is

where E is the relative energy of the two clusters in
the c.m. system. The potential VD denotes the direct
interaction between the clusters and is represented by
the equation

Vn(r) = —3Vo(4w —m+2b —2k)

—3/2

where
o(0) = If(|l) I', (19)

f(0) = — expL —irt 1n(sin'-,'0)]
2k sin' —'0

00 ]
+P —(2l+1) exp(2swi+ibi) sinb&Pi(cos8), (20)

with m ~
——0.

~
—0.0.

From the expressions of Vn(r) and kt(r, r'), one notes
that the constants zv, m, b, h occur only in the
combinations

A = 4w m+2—b 2h, —
B= w+4m —2b+ 2k—, (21)

represent the Coulomb and nuclear phase shif ts,
respectively. The differential cross section is given by

which are themselves related by the equation

2+73= ,' (1+x) . -- (22)
where C (x) is the error function, defined a,s

~ g

C(x) = exp (—t') dt .

The kernel E(r,r') represents the nonlocal interaction
between the two clusters; its expansion in terms of
spherical harmonics,

k (r,r')=2 rr' E (r,r')I'i(p)dtr, (16)

with ti= r r'/rr' will be given in the Appendix.
To solve Eq. (13), the expansion

f, (r)
P(r) = P Ei(coso), (17)

is used. Together with Eq. (16), one can then easily
reduce Eq. (13) to the ra.dial form

Thus, the only parameter which can be adjusted in
order to get better agreement with experiment is A.
In this calculation, we shall 6x A by using the binding
energy data of the 'I' states. ' The experimental value
for the binding of He' to the alpha particle is 1.44
MeV. rs By solving Eq. (18) for /= 1 and with a bound-
state boundary condition, we can adjust A until this
value is reached. "In this way, the value of A obtained
for potential I is 1.149 which corresponds to 94/~ Serber
plus 6% symmetric force. This result is quite satisfying,
since from our remark made in the Introduction, we
should expect an exchange mixture which is close to
the Serber type. In addition, this same mixture was also
found to give the best agreement with experiment in
the o. -o. scattering. ' For potential II, the value of A is
0.864, corresponding to 72% Serber plus 28'Po symmetric
force. This exchange mixture is similar to that required
in the calculation of Biel" on Be' and the calculation
on o.-n scattering of Butcher and McNamee. '

7h' d' t (3+1)

24m dr' r'
+&—VD(&) —V. (&) fi(&)

ki(r, r') fi(r')dr'. (18)

III. NUMERICAL CALCULATION

To solve the integrodifferential equation (18), we
divide the region of integration into two parts, sepa-
rated by a distance Rsr at which the kernel ki(r, r') has
a vanishingly small value. In the region r&R~, the

To obtain the scattering phase shifts, it is only necessary
to solve the above equation with the boundary con-
ditions

and
f, (0) =0,

f,(r)- is(nrk——,'hr —
rt ln2kr+cri+bi),

where rt=4e'/kv, with v being the relative velocity of
the two nuclei at infinity. The quantities 0-~ and B~

"F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11,
(1959).' With the absence of noncentral part in our two-body force,
the experimental splitting of the ~I' states cannot be accounted
for; hence, we use the average value for the I'3/2 and I'1g2 states,
weighted according to the values of 1 s.

' We like to mention that with Eq. (18}, there is no bound-
state solution for l other than one. Thus, yre do not have the
diKculty caused by spurious states encountered, for instance, in
the work of P. H. Wackman and N. Austern, Nucl. Phys. 30, 529
(1962)."S.J. Biel, Proc. Phys. Soc. (London) A?0, 866 (1957}.



SCATTERI NG OF He' B Y o. PARTI CLES

kernel is tabulated in the form of a 40&40 matrix at
intervals t. in r and ~ . The integrodifferential equation
is then converted into a set of 40 simultaneous algebraic
equations and solved using a method which is described
in detail by Robertson. "In the region r &E~, the kernel
is set as zero and the function fi(r) is obtained by
solving the differential equation with a method given
by Fox and Goodwin. " The function fi(r) will be
matched to Coulomb functions at a distance which is
large enough to fulfill the requirement of a simple
method of calculation for Coulomb functions given by
Frob erg."

To choose an appropriate value for e, one must take
into consideration the fact that the kernel is fairly
long ranged and has a rapid variation at small values
of r and r'. '4 For the former property, a larger value
for c is preferable, while for the latter, a smaller value
would be more appropriate. In this calculation, we
make the choice by computing the phase shifts at c.m.
energies of 1.7 and 16.6 MeV using both potentials and
many different values of e. For values of e between
0.2 and 0.35F, the phase shifts do not differ from each
other by more than 0.2 deg. In the subsequent calcu-
lation, we shall take c as 0.22F, at which value E~ is
equal to S.SF.

The phase shifts at 1.7 and 16.6 MeV have further
been computed using potential I with a 46&&46 matrix
for the kernel and c=0.191F. At this value of e, E~~
is again equal to S.SF. The results so obtained agree
very closely with those obtained with a 40&(40 matrix
and &=0.22F. This shows that &=0.22F is, indeed,
sufFiciently small for the rapidly varying nature of the
kernel near the origin.

The whole problem is solved on th e IBM-7090
computer. Phase shifts up to 1=6 are computed. For

0.3
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FIG. 1. Demonstration of existence of redundant
solution for l =.0.

s' H. H. Robertson, Proc. Cambridge Phil. Soc. 52, 538 (1956).
22L. Fox and K, T. Goodwin, Proc. Cambridge Phil. Soc. 45,

373 (i949).
23 C. E. Froberg, Rev. Mod, Phys. 27, 399 (1955).
'4 For the discussion on this point in n-d scattering, see Ref. 2

and also J. W. Humberston, Proc. Phys. Soc. (London) 78, 1157
(1961).
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FIG. 2. Demonstration of nonexistence of redundant
solution for l =3.

one value of incident energy, the computing time is
about 2.5 min, with the major portion taken up by
the tabulation of the seven partial-wave kernels in the
form of 40)&40 matrices.

Since the derivation of the kernel ki(r, r ) is rather
tedious, it seems desirable to devise a test procedure
to make certain that no mistake has been made in the
derivation. In the present case of He'-cx scattering, there
does exist such a test which follows from the existence
of redundant solutions. " If the Coulomb term in Eq.
(18) is left out" and rr is set equal to n, then there will

appear redundant solutions for 1&2 which is a con-
sequence of the choice of Gaussian form for the internal
wave functions of the two clusters. " To exhibit ex-
plicitly these solutions, one merely needs to solve for
fi(r) with different values of c. If the kernel is correct,
then one expects that for l(2, the functions fi(r)
resulting from different choice of c will be different for
small values of r, but remain the same in the asymptotic
region. " For l)3, on the other hand, no redundar. t
solution should exist, which means that the functions
fi(r) should be identical throughout the whole region.
To investigate whether the kernel of Eq. (A1) satisfies
this test or not, we compute fi(r) with e=0.24F and
0.28F for / =0 and 1=3 at 1.7 MeV using
0.=&x=0.500F ' and potential I with a Serber mixture.
The results are shown in Figs. 1 and 2. In these figures,
the full curves are drawn for fr(r) with e=0.24F and
the solid circles represent the values of fi(r) with
~ =0.28F. One clearly sees from these figures the
existence of a redundant solution for 1=0, but no such
solution for /=3. We emphasize here that this test
certainly does not give us any information when o. is

"For the discussion on redundant solutions, see S. Hochberg,
H. S. W. Massey, and L. H. Underhill, Proc. Phys. Soc. (London)
A67, 957 (1954).

"The Coulomb term needs to be left out, since it is derived
with an unantisymmetrized wave function.

"The existence of redundant solutions for l(2 but not for /&3
is evident from the discussion in Ref. 11.

'8 This is so, since the redundant solution has an exponentially
decaying part.
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TABLE I. Phase shifts obtained with potential I.'

0.5
1.0
1.7
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0

10.0
12.0
14.0
16.6
20.0

—1.50—9.20—22.40—35.64—42.67—48.89—54.43—59.41—63.95—68.11—71.96—75.56—/8. 95—85.21—96,24—105.83—114.3/—124.21—135.40

—0.68—5.05—14.12—24.43—30.30—35.71—40.71—45.36—49.69—53.75—5'/. 57—61.18—64.61—70.97—82.15—91.75—100.20—109.89—120.94

—0.01—0.15—0.83—2.30—3.44—4.67—5.90—/. 10—8.23—9.27—10.22—11.07—11.84—13.14—15.09—16.69—18.25—20.42—23.50

0
0.02
0.25
1.37
3.08
6.45

13.40
29.94
71.77

117.75
137.02
145.19
149.41
153.50
156.41
157.38
157.69
157.60
156.84

0
0—0.01—0.03—0.08—0.14—0.24—0.36—0.52—0.69—0.89—1.11—1.33—1.78—2.47—2.64—2.13—0.35
3.84

0
0
0
0
0
0

0.05
0.09
0.14
0.22
0.33
0.46
0.64
1.09
2.52
4.66
7.56

12.42
20.54

0
0
0
0
0
0
0—0.01—0.01—0.02—0.03—0.05—0.07—0.12—0.31—0.58—0.89
1.23—1.39

' Phase shifts are given in degrees.

not equal to n. But, at least, we are now certain that
the kernel is correct in the limiting case of o.=n.
Together with the result that the calculated cross
sections agree quite well with the experimental data,
it seems most likely that there is indeed no mistake
made in the derivation of the kernel k~(r, r').

IV. RESULTS OF RESONATING-GROUP
CALCULATION

Using u and u as given by Eqs. (11) and (12), the
phase shifts calculated with potentials I and II are
listed in Tables I and II. From these tables, it is seen
that only 83 exhibits a resonant behavior, which is in
agreement with the experimental observation that there
is only a 'Il resonant level2' with a large alpha particle

and He'-reduced width in the range of excitation energ&:.

from 0 to about 10 MeV. For this level, the excitation
energy predicted from our calculation is 6.6 and 6.2
MeV for potentials I and II, respectively. Experi-
mentally, the 'Ii7/2 and 'Ii5~2 levels occur at excitation
energies of 4.54 and 6.51 MeV," from which we can
deduce a mean excitation energy of about 5.3 MeV
for the l=3 resonant level. Comparing to this latter
value, both of the predicted excitation energies are
somewhat too high, which is not entirely unexpected,
however, since in our calculation, we have neglected
the influence of other channels.

In Table III, we compare the phase shifts from
experimental analysis with those obtained from the
present calculation. Aside from the fact that our

TABLE II. Phase shifts obtained with potential II.'

Z (MeV)

0.5
1.0
1.7
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0

10.0
12.0
14.0
16.6
20.0

Bp

—0.75—5.22—14.20—24.52—30.53—36.18—41.51—46.53—51.30—55.83—60.16—64.30—68.26
-75.75—89.19—101.01—111.54—123.68—137.54

-0.88—6.40—17.49—29.85—36.82—43.19—49.03—54.41—59.37—63.97—68.27—72.30—76.08—83.06—95.14—105.45—114.48—124.84—136.58

0—0.01—0.05—0.14—0.23—0.32—0.44—0.59—0.77—0.98—1.24—1.55—1.91—2.78—5.14—8.14—11.45—16.22—22.34

0
0.03
0.32
1.87
4.50

10.24
24.07
60.24

108.29
130.19
138.97
143.18
145.45
147.62
149.01
149.51
149.75
149.67
148.79

0
0
0
0
0
0

0.01
0.02
0.04
0.07
0.11
0.16
0.24
0.45
1.17
2.36
3.99
6.71

11.00

0
0
0
0
0
0

0.05
0.08
0,14
0.22
0.34
0.49
0.68
1.22
3.06
6.14

10.58
18.27
30.33

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.02
0.07
0.18
0.47
1.16

a Phase shifts are given in degrees.

~9 Since there is no noncentral force in our two-body interaction, the splitting of the ~F level cannot be accounted for.' T. A. Tombrello and P. D. Parker I'to be published).
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450 —o

400—

OPTICAL MODEL FIT

independent, while the parameters V and W will be
varied with energy to achieve a best fit.

By searching in the four-parameter space, the fol-
lowing best set is obtained:

1.7 MeV: V=83.70 MeV, W=0.03 MeV,
350—

eV
R= 234 F, a=0.40 F,

16.6 MeV V= 61.13 MeV, 8'= 2.05 MeV,
500—

2.34 F, a=0.40 F.
250—

Xl
6

200—
b

I50—

I 00—

0
40

I

60
I I

80 IOO

W

I I

l20 l40
I

I60 I80

FIG. 5. Op tical-model 6t to the experimental result at c.m.
energy of 1.7 MeV. Experimental points observed by counting
scattered He3 nuclei and by counting recoil alpha particles are
both shown.

point is confirmed by the optical-model analysis to be
presented in the next section, where it is found that an
imaginary optical potential of small magnitude is
necessary to achieve a best fit to the experimental data
at this energy.

The fit with these values of the parameters is shown in
Figs. 5 and 6. At 1.7 MeV, it is found that 8' needs to
be very close to zero. Even for 8" as small as 0.2 MeV,
the fit becomes noticeably worse. The search program
yields H/'=0. 03 MeV, but with S'=0 giving almost as
good a fit. At 16.6 MeV, reasonable fits can be obtained
with S" within the range of about 1.5 to 3.5 MeV, but
not with 8' equal to zero. The best fit is at W=2.05
MeV, at which value the total reaction cross section
is 121 mb, which is in rough agreement with the
experimental result of Bredin et al. and Chiba et al.
that the combined differential cross sections of the
protons from the reaction n(He', p)Li' 1eading to the
ground state and the first excited state of Li' is about
10 mb/sr in the forward region at 16.6 MeV."

The fit to the experimental data at both energies is
fairly good. The only deficiency is that at 16.6 MeV,
the peak around 120' is somewhat displaced and about
50% too high.

200

I80—
OPT I CA L

'

M 0 DE L FIT

V. OPTICAL-MODEL ANALYSIS

As mentioned in the Introduction, the purpose of this
analysis is to see whether an imaginary potential is
necessary to obtain a good fit to the experimental data
at 16.6 MeV. At this energy, the diGerential cross
section predicted by the resonating-group method is
consistently larger than that determined experi-
mentally, which may be the consequence of the one-
channel approximation made in our calculation. From
the optical-model analysis, we can determine the
importance of the other channels by noting the relative
magnitude of the imaginary potential required to get,
good fit with experiment.

The analysis will be done at 1.7 and 16.6 MeV with
an optical potential of the form

V+iW
U,p

———— +1 Coul ~

1+exp L (r—R)/a)

I60—

wo I'

I20—

L

IOO-
f

E 80—

60—

20—

I

20 40

He +He-

E=I6.6 MeY

60 80 I 00 I20 I40 I60

where Vg,„i is the Coulomb potential calculated from
a uniformly charged sphere of radius R. As is usual,
the parameters R and a will be assumed to be energy-

ec.e.

FIG. 6. Optical-model 6t to the experimental result at
c.m. energy of 16.6 MeV.
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At 1.7 MeV, the very small magnitude of 5" seems
to justify the use of the one-channel approximation
in the resonating-group calculation. At 16.6 MeV, 8'
is nonzero, but its magnitude is far smaller than that
needed in the analyses of the scattering of alpha
particles on relatively heavy nuclei. In the latter case,
8' around 10 MeV is normally required. " Therefore,
with the one-channel approximation, we would expect
that at 16.6 MeV, the results of the resonating-group
calculation can reproduce most of the features of the
elastic scattering cross section, but not in a detailed
way. As is shown by the curves in Fig. 4, this expec-
tation turns out to be indeed true.

which are important at energies around 10—20 MeV
are the p-Lis channels, with Li' in the ground and the
first excited state.

The quality of the fit to the experimental data at
16.6 MeV with the resonating-group method shows

why this method in the one-channel approximation
fails to work in the problem of the He'-He' scattering. '
In this latter case, the experimental data of Bredin
et al."indicates that the cross section for the reactions
He'(He', p)Li' and He'(He', 2p)n is comparable to the
elastic cross section. Hence, the omission of the p-Li'
channels in the calculation would be expected to have
rather serious consequences.

VI. CONCLUSION

The results of this investigation indicate that the
method of the resonating-group structure, even in the
one-channel approximation, can be used to explain
most of the features of the scattering of He' by alpha
particles. With this method, the presence of a t=3
resonance with nearly the correct excitation energy is
predicted. Also, the calculated angular distribution at
1.7 MeV agrees very well with that determined experi-
mentally. At a higher incident energy of 16.6 MeV, the
fit to the experimental data is slightly worse, but this
is more or less expected since the reaction cross section
of the process n(He', p)Li' leading to the ground state
and the first excited state of Li' is not too small com-
paring with the elastic scattering cross section, and
hence, the one-channel assumption Inade in the calcu-
lation is only an approximately valid one.

Two types of central, two-body interaction are
considered. Potential I yields correctly the deuteron
binding energy and explains quite well the two-nucleon
s-wave scattering data. It also has a near-Serber nature
which meets the requirement that for low-energy p-p
scattering, the p-wave phase shifts are small. ' The
saturation character which is not contained in this
potential is approximately taken into account by fixing
the size of the clusters according to the experimental
data. Potential II is used to allow a comparison with
other resonating-group calculations performed by the
London-group. This potential gives a good approxi-
mation to the binding energies of the deuteron, He'
and alpha particle, but does not explain the two-

nucleon scattering data very well.
From the optical-model analysis, it is found that at

16.6 MeV, the best fit to the experimental data requires
a small but nonzero value for the imaginary optical
potential. This implies that in the resonating-group
calculation, much better agreement with experiment
can be obtained if channels other than the IIe'-o.
channel are included. Specifically, one can easily see
from the existing reaction data" that the other channels

"R. M. Eisberg and C. E. Porter, Rev. Mod. Phys. 33, 190
(1961)."L. Hulthdn and M. Sugawara, in Encyclopedic of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 4.
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APPENDIX: THE KERNEL k~(r, r')

The kernel k~(r, r') has the form

—I'0 2 re~, '(rr') (A1)

where

P, (r r') = —(A'/2m) [d,—f,(r'+r")]+E'

y&, , (r,r') = (e,/2) (exp[—(6/7) (a,r'+b, r")]
+exp[—(6/7) (b,r'+a r")]}

X5((—(6/7) c,), (A3)

w~, ; (r,r') = (e,/2) (exp[—(6/7) (a,r'+b, r")]
+exp[—(6/7) (b,r'+a r")]'f

X &~(—(6/7)c;), (A4)

with E'=E+E +E~, E being the relative energy in
the c.m. system. In Eqs. (A1)—(A4), the functions 5&

and T~ are defined as

(A5)
and

T)(X)= (4s./X) g)+) (Xrr') — g,+;()rr'), (A6)
3rr'

where the function g (x) denotes the hyperbolic spherical
Bessel function with

g„,(x)= sinhx,

g».,(x)= (1/x) sinhx —coshx,

2l+1
J'~+. (x) =8~-;(x)+ A~+)(x).
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The constants d, , f, and g, in Eqs. (A1)—(A4) have the
following de6nitions:

360n'+ 921nu+ 297a'
a5=- b5=

unuse+2K (n+ a) (9n'+46nn+ 12n')

6 4608n'+14976n'n+ 24156n' u'+1 4472 un'+486 0u"

7 2

102n'+ 729n'u+ 792nn'+ 81n

2t~(n+n)

6 60n4+204n'n+ 2301n'u'+ 162na~+ 81n'

7 t22

6 120n4+408n'a —3630n'n~+ 324nu'+ 162u4
g2=

7

96n'+ 180nn

7 (n+u)

6 1376n2

7 49

6 2736n2
g3=

49

Finally, the definitions of a;, b;, c;, e;, and y, are

6 9216n4+29952n'u+31848n'n~+ 28944na~+ 9720n4
gi= ——

7 $ 2

nav ~+ 2K (u+u) (18u' —6nn+ 24u')

y5
——(28 —4A)1',

uu, +K (18n'+ 278nn+ 126n')

nu, + K (18n'+ 110nn+ 126n')

av ~+ K (36n'+ 192nn+ 252m~)

y6
———4(A+8) I',

e —(7ns/uu )Sly

nui+ K (120n'+ 278nn+24n')

P7

uug+ K (120n'+ 110nu+ 24u')

P7

nv, +K (240n'+ 192na+ 48n')
C7=

(A11)

(A12)

e~=3r-
n (8n+9n)

—3/2 Qj
ay= bj= —

)
ty

C]=
y7 ———6(A+8)I',
"=CI4-'/(-+=)"j"',

2 (n+a) uq+K (57(P+ 131nn+ 24n~)

(A13)

&2= —3m-
(+

uu)'(2n+

3u)

-3/2
N2

a2 ——b2= —,
t

'

'V2

C2= —
)t2'

jtk8

2 (n+ n) u~+ K (141n'+ 215nn+ 24u')

2 n+a "' 1 n
»= —(A+&) — +- ——

I
(A8)

3 n+n+4K 3 n+2KI

4' o. 25Q 48o.
83——r — —,a3——b3 ———,c3 ————,

3 n+a 7 7

n+ u 8/'2

yg
—— 2(A+8)—

n+u+4K

7Q Ng 24e4=, &g= 54= + K, C4=—+—K, ——
nag ti 7 ], 7

y4= 38r,

2 (n+a) v~ —K(96n'+144na —48u')

y8
——4 (A+8)I',

e9 = L28'n(/u+ )'pu9]'

4uug+K (156n'+ 162nn+ 6u')
89—b9—

4nvg —K (276n'+ 264nn —12n')

7,=- (A -28)I,

(A14)

(A15)
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els= LI 12n'/3 (n+n)stsgs]"s,

264i

(n+a) us+K (18ng+92na+24ng)
a1P= b1O=

@10

(n+a) vs+K (36n' —12nn+48n')
C1P =

P1P

ygo= (2A —48)I',

e»= t 28n'/(n+n)ts„]'~',

4n (n+ n)us+ K (42ns+424n'n+ 288nng+ 6ns)

75n (n+ a)+K (228n+ 128n)

75n (n+ n)+ K (172n+ 72n)

(A16) ess =

ygs= —2(A+8)I',

—144n (a+n) —K (384n+ 192a)

(A19)

b11=
4n (n+n) ug+K (42n'+ 256n'a+ 120nng+ 6ns)

yg& = 8 (A+8)I',

e,g
——L112 n4 /3 (n+n)sts, s js/s

u12 ——b12 ——
75n (n+n) +K (208n+ 8a)

—144n (n+ n) —K (368n —16n)

gag= (8—2A)1',

4n (n+ n) os+K (84n' —300n'n —180nng+ 12ns)

(A17)

(A18)

ui ——36n'+ 97nn+ 36n"-,

py = 72ng+ 96na+ 72ng

tg ——56n+63n,
us= 3ns+31nn+3as,

ns =6n' —36na+6n',
to= 14n+21n,
I'= (12/7)'(12n'/gn)' '

ass= natal+14K(n+n) (2a+3n),
tss= n4+ 14K(2n+9n),

ts7 =ntg+ 14K(8n+3n),

tss= 2 (n+n) to+ 7K(13n+15n),

tsg= 4nts+42K(n+n),

ts&o= (n+n+2K)tg,

tsss =4n (n+ n) ts+ 14K (10n'-+ 15nn+3ng),

ass g ——21(n+n) +56K,

ssis= 21(n+n)+28K.


