
HERBERT AV. SCHNOPPER

specified, would provide a convenient starting point for
calculations.

Final-state configurations in transitions of type (1)
correspond to two diGerent types of 3f holes. The first
con6guration contains an electron hole in both the E
and the Mz shells, and the second contains a hole in
both the E and the Mzz or Mzzz shells. Transitions which
result in these two final-state configurations should
give rise to two resonance absorption structures appreci-
ably diGerent in energy position in the spectrum. The
energy difference is given roughly by the 3fzz, zzz to Mz
separation in a hydrogenic atom, with the 3fzz, zzz

structure appearing at the lower energy. Theoretical
evaluation of the energy separation I'I;~—I'z has not
been made but, if I'~~ refers to missing E and Mzz zzz

electrons, this energy separation should correspond
roughly with the energy of the M», z» state in singly
ionized potassium (which closely approximates an
argon atom with a missing Eelectron). A'first approxi-
mation to the relative intensity to be expected in the
EMzz, zzz and EMz resonance structures is given by the
ratio of the number of electrons in each shell, naznely
(6/2) =3.

Since only one new resonance structure was, in fact,

observed in the range 0 to 50 eV beyond the position
of I'~, it seems plausible to assign this new structure,
because of its energy position, to processes involving
Mzz, zzz electrons. With this assignment, the absence of
the EMz resonance structure is perhaps reasonable on
the basis of the intensity argument above —the EMz
structure would be barely above the experimental noise.

To recapitulate, a new structure has been observed in
the E absorption spectrum of argon. This new structure
is tentatively interpreted as arising from the simultane-
ous excitation of two electrons by an absorption of a
single photon. The observations are particularly interest-
ing since the physical system dealt with is a very simple
experimental and theoretical case, namely, a mon-
atomic, noninteracting atom.
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The inelastic scattering of protons by oxygen molecules is treated for the collision situation resulting
in the excitation of the upper state of the Schumann-Runge system. The incident proton energy ranges
from 1 to 50 keV. The total cross sections and the growth coe%cient phases for this scattering are computed
using the two-state impact-parameter treatment. The distortion of the molecular charge cloud by the
incident proton is taken into account in the phase calculation. A method for multistate impact parameter
treatment of the inelastic collision is developed, and the equations therefor are derived.

I. INTRODUCTION

ERE we consider the inelastic collision of protons
~ - ~ ~ with oxygen molecules resulting in the excitation
of the Schumann-Runge system of oxygen. The proton
energies range from 1 to 50 keV. The impact parameter
treatment will be applied. This treatment was effec-
tively introduced by Gurnee and Magee' in their study
of charge transfer scattering. It has been discussed in
connection with certain inelastic and charge transfer

*The research reported in this paper was sponsored by the
Geophysics Research Directorate of the Air Force Cambridge
Research Laboratories, Ofhce of Aerospace Research, under
Contract Number AF19(628)-476.

' E.F. Gurnee and J.L. Magee. J. Chem. Phys. 26, 1237 (1957).

hydrogen collisions by Bates' and somewhat improved
upon by McCarroll. ' 4 The very slight diGerences
between their treatment and ours seem to warrant a
brief derivation.

In Sec. II the two-state impact-parameter formu-
lation is discussed. In Sec. III the inelastic-scattering
cross section for protons on oxygen molecules with
the excitation of the Schumann-Runge system is
calculated. In Sec. IV the phase of the initial-state
growth coeKcient is computed. For this computation

s D. R. Bates. Proc. Roy. Soc. (London) A24S, 299 (1958).
3 R. McCarroll, Proc. Roy. Soc. (London) A246, 547 (1961).
4 Atomic and Molecular Processes, edited by D. R. Bates

(Academic Press Inc. , New York, 1962).
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the effects of molecular orbital polarization by the
proton are included. In Sec. V a general formulation of
the impact parameter treatment for the multistate case
is detailed.

II. THE TWO-STATE IMPACT PARAMETER
FORMULATION

At t= — the proton of initial momentum k is at
infinite separation from the target molecule which is
in its ground state. At time t =+ eo the molecular state
and the proton momentum have been changed by
collision. We represent the wave functions for the
initial- and final-system state by the exact solutions of
the Schrodinger equation for infinite separation:

1
lb, = q, (r )—exp[—ik r—iE,t7, (1a)

r

We now make the following assumptions as to the
state growth coeKcients:

f—p

and Eqs. (4) and (5) combine in an amplitude rela-
tionship. From the Schrodinger equation the following
equations may be obtained:

pe'"H '+ (1 p')'t—'+e'"'H, f' exp[i (k+k') .r7
= —oi pe' +ipe'", (6a)

pe'"H f' exp[—i(k+k') r7+i(1 p')'t'e—'"'Hff'
= —~ (1—p')"'e'"' —[i/(1 —p')'"7e'"' (6b)

From Eqs. (6) the relationship between co and &v' is
established. This in turn allows us to arrive at the
following expression for the initial amplitude.

1
lpf —(pf (r )—exp[ik' r—iE,'t7.

r
(1b)

dp

(1 p2)1/2

* 1
H;f' exp-[i(k+k') r7dx, (7)

2;+E3f=e '&, Q=
' 1

(H; +H;f')dx. —

The normality condition is

(+*,+)=a;*a,+bf*bf 1. ——

The yI, refer to the molecular wave functions while the
remainder of the product refers to the protons. The
proton coordinates are referred to the stationary
molecule. The proton portions of the system wave
function have no direct eGect on this calculation;
however, they do lead to the reduction of the result to
the Born approximation for high v or low H;f', as will

be shown. From Eqs. (1) we may obtain the following
approximation for the system equations:

4'(r, t) = (at)lt; exp( —iE,t)+bf (t)lbf exp( —iEft) . (2)

The a; and b~ are the state growth coeKcients. When
we substitute Eq. (2) into the Schrodinger equation,
it is apparent that, since Eqs. (1) are exact, solutions
to the infinite equation, all terms in the Schrodinger
equation will drop out save those involving the potential
of interaction and the rates of change of the state
growth coeKcients.

In order to facilitate future manipulations, we now
absorb the exponentials involving k r into the state
growth coefBcients. The Schrodinger equation is multi-
plied through on the left, first by

ip,*(r„)exp[iE;t7r exp[iE, t7,

and then by

(pf (r ) exp[iEft7r exp[iE, 't7.

After integration over the proper space coordinates,
the resulting equations may be added and the one
equation thus obtained dealt with in the manner of
Gurnee and Magee in order to obtain

From Eq. (8) we write

1
-H;f' exp[i(k+k') r7dx
V

by= sin

i
='sin — H;f'exp -(Ef—E;)x dx

'V

1
H, f' exp (Ef E;)x dx-—

3

H;f'exp (Ef E„)xdx +-—
For high velocities or weak interactions this ex-

pression reduces to the first term which Arthurs' has
shown is equivalent to the Born approximation.

We recall that the probability for transition and,
hence, for the inelastic scattering under consideration
here is the square of this state growth coeKcient after
infinite time. In order to obtain the cross section we

simply average over impact parameter with the fol-
lowing results:

I br(~) I'p~p

' A. M. Arthurs, Proc. Cambridge Phil. Soc. 57, 904 (1961).

where the impact parameter relationship between time
and distance along the rectilinear collision path has
been assumed. From this equation the following
expression for the final state growth coeKcient results:

Ibf(") I'=
I (1—p-'P'I'

+to i 2

= sin H;f' exp[i(—k+k') r7dx . (8)„e
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0

Equation (15) may be rewritten as

5 j./2
—orb iy1m g

=0.6619( — (r~e{ '" sin8 rbe sin8b}e—

ana ri, ='r&d ~ '='r ' with the result

|'1 1 q
I
-+—

I

&v v'i o

H;f' cosI (k—k')x$dx

1 1
H;r' sinI (k—k')xgdx.

&v "io
2418R 6

H '=C + + +-
(28)' (28)' (28)' (28)'R

e
—2bR

The right side of Eq. (8) now becomes

(R+d)' 6(R+d) 18

(»)'— (»)' (2h)4

24
+ e e

—~bee—sbz

(28)'(R+d)

24C 24C
(12)

(2S)bR (2S)b(R+d)

p

K. Kayama, and E. Ishiguro, J. Phys.'M. Kotani, Y. Mizuno, . ay
Soc. (Japan) 12, 707 (1957).

12 d is the internuclear separation,
'

n 2.282; 8 is
e e h e 2.275 and C is a constantthe effective nuclear charge,

of magnitude 82.0816.
at E . (12) we have ta en e pk the roton
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H;f' cosL(k —k')xjdx
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-)1 1q
Ib (~) I'=sin'

I +, I
H'f dx

&v v'i o

(17)

whichis w at wouh ld have resulted from an assumption
f ost and prior momentum equality in q.

is b aluated on a desk com-is ex ression as een eva
ber of impact parameters topu ter for a sufficient num er o i

H,f'sinI (k —k')x]dx . (16)SIIlll
k'v v o

E . 16 gains importance atThe second term in Eq. g
r ies below one thousand electron volts. t e

than the 6rst term for all values of the impac par
ter. We therefore drop the term.

For 1000 V and above,

cosl (k —k') x]=' 1.
Thus, Eq. (8) now has the form
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In this equation each term is an exact solution to the
Schrodinger eqvation for infinite separation of the
proton-molecule system. The subscript i runs over the
states of the molecule. When Eq. (23) is substituted
into the Schrodinger equation —whose Hamiltonian is
again given by Eq. (10)—all terms save the following
drop out:

P c,(t) exp[—iE,t]H'y, (r„)-exp[ik, ' r—iE„'t]

26-

500

=i P e, (t) exp[—iE;t]y;(r„)—

&&exp[ik r—iE„'t]. (24)

l

lO

P ( ATOMIC UNITS )

I

20

FIG. 3. The state growth coefBcient phase as a function of
impact parameter and proton energy.

(4'*,4') =P c,*c,= i. (25)

The k; is negative for i= 1 and positive of various
values for all other i. The normality condition for the
wave function is

Vs, l"= (19.165R'+9.184R+4.465+1/R)e '2"~ The general form for the state growth coefficient is
+1/R, (21b) taken as follows:

V2~")= (3.523R'+4.816R+3.292+1/R)e ""s
+1/R, (21c)

U "&= (15.322+2/R) e ""'s+ (38.330R'

+18.368R+8.930+2/R)e '""s
+ (14.092R'+ 19.264R

+13.168+4/R)e 4 2 /2. (21d)

In Eq. (21a), d is the internuclear separation in the
molecule. Although the wave functions of Kotani et Ol.

were used for the distortion coeKcient calculation, our
own atomic wave functions' were used for the evaluation
of the V;(0).

Equation (21a) has been evaluated numerically. A
reasonable fit to the resulting curve is provided by the
following much simplified function:

H, = —e~ ""~(3.14012/R' —0.46214/R
+0.030832), (22)

c;=p;e'"'. (26)

At minus in6nity of time the coefficient corresponding
to the molecular ground state is again unity. We are
next concerned with the value of same upper state
coefficient after an infinite time. Initially we let

C,=c, exp(ik r) . (27)

2 GH2' =&Cr,

Q C;H2

QCH2 =
iC2,

(28a)

(28b)

(28c)

We now multiply Eq. (24) through on the left, first
by

l2,*r exp[—(E,+E„)t],
then by

q 2*r exp[—(E2+E,2)t],

and so on. The result is

where
R—(@2+p2) 1/2

etc.
Equations (28) are added to obtain

Equation (18) may now be evaluated for the various
z as a function of p. A few examples are given in Fig. 3.

g g CH;,'=i+ C, . (29)

V. THE IMPACT PARAMETER TREATMENT FOR
THE MULTISTATE CASE

Now let us consider the molecule as possessing a
large number of bound states. First, we take the fol-
lowing expression as the wave function for the proton-
molecule system:

@=+c,(t) q, (r„)-exp[—ik; r—iE„t]. (23)
r

'R. G. Breene, Jr. , Phys. Rev. 111, 1111 (1958); 115, 809
(1959); 119,' 1615.(1960).

Equation (29) may be rewritten as follows:

P [C;P H; —iC;]=0. (3o)

There are two ways in which this equation could
hold. Either some linear combination of the terms in
the sum is zero or each term is zero. At some point a
great distance from the molecule both the matrix
elements and the time rate of change of the coefficient
in a given term will be zero. Hence, it follows that Eq.
(30) is zero because each term in Eq. (30) is zero.
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The impact parameter treatment is introduced, and written as
Eq. (30) may be written as

~iq = ~ii~gz =pipg ~

dpi i ~i-= (bb') i-= w - Z' p'' —2' p' Pp-I.C (31) iWn iAn

=wp. (Z' p"—Z' p'1=o,

(38)

C;=e 'o Q= —z
1
—$2; dx. (32)

Equation (31) has the familiar and immediate solution:

(d
zl

—a atb& =0.
I dr

(39)

which demonstrates the result.
We multiply Eq. (35) through on the right to obtain

the following:

Relationships among the pi and co; are required for
the completion of the calculation Ke begin by formin As an examPle we treat the two-state case. The c

the column matrix which we term the amplitude matrix eScient matrix and the product of this matrix with it
associate are

a=(p~ '"') (33)

Kith this de6nition the Schrodinger equation may be
written in matrix form as follows:

P~~ '"'
1

f' P~ Pzpz)
a= l, b=aat=

l

p2g I (p&P2 p2

We may form b& through Eqs. (37) as

(40)

Ha=i —a.
dt

(34)
p2' —pzp2)

b~=
I

E—pzp2 PP j (41)

Ke multiply this equation through on the right by the
associate matrix at to obtain

Haaz=i —a at.
dt

(35)

aa'= b. (36)

This matrix possesses no inverse, and its adjoint
matrix is a null matrix. However, we may form the
pluverse matrix which, when it multiplies the matrix
on the right, yields the null matrix.

In proving this the elements of the pluverse matrix
are erst defined as

&"'=2 b~& (37a)

The product of the matrix a and its associate may be
written as follows:

The matrix manipulation indicated by Eq. (39) next
leads to two equations in the amplitudes and phases.
Ke simply suppose there to be a constant difference
between the two phases. This leads to the following
expression:

g
—&(~1-+&z) g+ zg (1 $2)1/2+zg (42)

Equation (42) now allows us to write down one of the
two equations arising from Eq. (39) as

pu p 'L1- (1-b'P'-z&1
+z(j)p zp z$—1+(1—y)~lzyzgj =0 (43)

The solution is
(44)

The normality condition, of course, leads immediately
to the relationship among the amplitudes, and we have
obtained the same result which was obtained. in the
previous section in a somewhat more straightforward,
if less generally applicable, manner.
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