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A method of solving the band problem is developed and applied which makes use of a composite represen-
tation of the wave function and of a variational expression for the energy applicable to trial functions with
discontinuities in their values and derivatives on a surface within the cell. The composite representation con-
sists of spherical waves belonging to the given potential within the inscribed sphere, and symmetrized combi-
nations of plane waves for the given k outside the inscribed sphere. The potential is assumed spherical
within the inscribed sphere but not outside. The calculated energy is variational even when the spherical
waves are computed with trial energies differing from the true energy; hence, the process of iterating on the
trial energies is strongly convergent. Results are obtained with the flattened Seitz potential for Li and the
flattened Prokofiev potential for Na at many points, including points of general k. The Li energies check
with high-precision values obtained independently, give a Fermi level at —0.429 eV and a Fermi surface
that bulges toward, but does not touch, the zone face in the L110j direction. Comparisons are made with a
number of other recent methods of solving the band problem.

I. INTRODUCTION recent years by SaRren, ' Burdick, ' Wood, "and other
members of the MIT group. The common feature of
these methods and the method of this paper is the
power to solve the band problem with high precision,
even for general values of k, the vector wave number
characterizing the solutions (see Sec. II.1), hence, not
aided by special symmetry. Unlike many of the older
methods, they are, in principle, capable of an indefinite
amount of refinement merely by adding more terms to
the representation.

The method of this paper may conveniently be
classified as one of a group of methods arising from the
original APK. ~ The group is characterized by the use
of a composite or dual representation of the wave
function consisting, on the one hand, of a plane-wave
expansion in the outer part of the atomic cell, which
includes the boundary, and on the other hand, of an
expansion in spherical waves in the inner part of the
cell near the nucleus, more suited to represent the
rapid oscillations of the wave function there. The
various members of the group differ in the choice of
the spherical wave functions, in the procedure for
fixing the coef6cients of the expansions, and in the
exact form of the matrix elements of the secular equa-
tion. This group of methods then includes the original
APW, ' " the APW method in the 1953 papers of
Slater and SaRren, "and its application by Howarth, "
the new APW procedure suggested by Saffren in his
thesis ' " the method of Leigh, " and the method of

HE work reported here is a contribution to the
solution of the band problem, namely to the

determination of the one-electron energies and wave
functions in a prescribed one-electron periodic potential.
The importance of. the band problem and its com-
plexities are suKciently great to have made it the
subject of a long and continuing series of investigations
by many workers, ' quite apart from the complications
of many-body eGects and electron-phonon interactions.
However, only recently have methods been developed
and applied which, with the aid of high-speed digital
computers, give accurate solutions to a reasonably
general, although not completely general, ' form of the
band problem. Noteworthy examples of these recent
methods are given in the calculations by Ham and
Segall, ' by Ham, 4 and by Segall' using the Green's-
function method as developed by Kohn and Rostoker, '
and the calculations with the augmented plane-wave
method (APW) suggested by Slaterr and applied in

*Based on a thesis submitted by H. S. in partial fulfillment of
the requirements for the Ph.D. degree in Physics at the Carnegie
Institute of Technology.

t IBM Fellow (1958—59).
$ Present address: Polytechnic Institute of Brooklyn, Brooklyn,

New York.
' For recent reviews, see L. Pincherle in Reports on Progress in

Physics (The Physical Society, London, 1960), Vol. 23, p. 355;
J. Callaway in Solid State P!physics, . edited by. F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 100;
J. C. Slater in Handbach der Physih, edited by S. Fliigge (Springer-
Verlag, Berlin, 1956), Vol. 19, p. 1.' The high-precision calculations assume the potential is spheri
cally symmetric inside the inscribed sphere, and constant in th
cell outside the inscribed sphere.
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4 F. S. Ham, Phys. Rev. 128, 82 (1962); ibid 128, 2524 (19.62)
~ B. Segall, Phys. Rev. 124, 1797 (1961).
6 W. Kohn and N. Rostoker, Phys. . Rev. 94, 1111 (1954).' J. C. Slater, Phys. Rev. 51, 846 (1937).
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Brown and Krumhansl, "as well as the method of this
paper. It does not include the various cellular methods, '
the Green's-function method, "and the orthogonalized
plane wave (OPW) method, ' which does not use a com-
posite representation, but expands in a single set of func-
tions obtained by orthogonalizing to prescribed core-
state functions.

To introduce the new features of the method of this
paper, we brieQy compare it first with the original
APW method and then with Leigh's method which
anticipates a number of the new features; a more
extended. comparison appears in Sec. II.5. We first
observe that the formulation of our method eliminates
the intermediate stage in which augmented plane waves
in a composite form are first constructed, and then the
total wave function is expanded in these functions;
rather we proceed directly to represent the total wave
function in composite form. We then pay close attention
to preserving the strict variational character of the
expression for the energy with the actual trial wave
function. Hence, we allow for discontinuities in the
function, as well as its gradient, on the surface of separa-
tion between regions, and we take account of the use
of approximate trial energies in the evaluation of radial
functions in the inner expansion. These considerations
lead to a secular equation with matrix elements which
di8er in three ways from those of the original APW;
namely, (1) terms arising from the use of a general
potential rather than one Qattened in the outer region,
(2) terms arising from the discontinuity in the trial
wave function (a consequence of the finiteness of the
spherical wave expansion), and (3) terms arising from
the use of trial energies in the radial functions, which
terms are linear in the difference of the trial energy
from the variational energy (the root of the secular
equation). Leigh also proceeds from a variational ex-
pression which allows for discontinuous trial wave
functions, but is somewhat different from ours, and
uses a general, nonQattened potential; his final matrix
elements contain the terms of type (1) above, but only
part of the terms of type (2), and none of the terms of
type (3).

In Sec. II.1, the band problem is defined and stated as
a cellular problem. In II.2 the idea of the composite
expansion as a way of dealing with the difFiculties of
the band problem is developed, the strict variational
point of view is introduced, and the idea of using dis-
continuous trial functions is discussed and defended.
For the derivation of variational expressions, reference

he considers a composite basis of plane waves and spherical waves.
However, his spherical waves are solutions of the Schrodinger
equation which vanish on the surface of separation (the inscribed
sphere), hence, each has a different, axed energy, and the radial
functions form a doubly indexed discrete inanity of functions
$„~(r,e„~},whereas our radial functions all have the same energy,
as determined by the solution of the secular equation, and thus are
singly indexed functions $~(r,e) Lsee Sec. II.5j.

'4 R. S. Leigh, Proc. Phys. Soc. (London) 69, 388 (1956)."E.Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958),
E. Brown, ibid 126, 421 (196.2).

is made to Appendix 1, where suitable variational ex-
pressions are obtained which have the desirable property
of always giving real values of the energy. It is shown
there that the energy expression of the APW is in fact
variational when the trial function is continuous across
the separation surface (but not necessarily its gradient).
In Sec. II.3 the derivation of the secular equation is
discussed, and the form of the matrix elements is de-
scribed. Their simplicity is remarked on, and the fact
that the eigenvalues depend only on logarithmic deriva-
tives of the radial functions. Reference is made to
Appendix 2 for the mathematical details and explicit
formulas. The solution of the secular equation is de-
scribed in II.4, with particular emphasis on the rapidly
convergent procedure for finding the root, based on a
variational expression for the energy even when calcu-
lated with estimated values of the energies of the
spherical waves. The coovergence is illustrated for a
point in Li. Detailed comparison with other methods is
given in II.5, particularly with the APW.

Section III describes the application of the method
to Li and Na using the well-known potentials for these
materials. Energies are found at many points in the
Brillouin zone, including general points of k. The
potentials used are described in III.1, and a tabulation
of their Fourier coefficients is in Table I. The energy
bands obtained for Li are given in III.2, where quanti-
tative comparison with the results of other workers is
made; agreement to four figures is obtained with the
values of Kohn and Rostoker. ' From the calculated Li
energies near the Fermi energy, the shape of the
energy surfaces and the position of the Fermi surface
are estimated by a svstematic procedure using up to
six kubic harmonic angular functions to represent a
constant energy surface; for the potential used, the
Fermi surface does not contact the zone face. The
results for Na given in III.3 are similar and compare
closely with results of other workers, although high-
precision comparison is not available.

II. A COMPOSITE WAVE VARIATIONAL METHOD

1. The Energy-Band Problem

For a given one-electron potential energy function,
V(r), periodic in a given space lattice, i.e., U(r+Ri)
=V(r), where Rt is a lattice translation vector (an
integral linear combination of the primitive translations,
a;, i= 1, 2, 3), we seek those solutions of the Schrodinger
equation, "

&lb(r) = P—V'+ V(r) 7$(r) = ef(r), (1)

which are satisfactory for describing bulk properties of
the solid. With the use of periodic boundary conditions
on the crystal, "the problem may be reduced to finding
the solutions of (1) in a single primitive cell of the

' The usual units of energy band calculations are used, energies
in rydbergs, and lengths in atomic units (a.u.},i.e., Bohr radii.' See, for example, J. C. Slater, Ref. 1, p. 13.
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lattice which satisfy the cellular boundary conditions
given in (2). The cellular boundary conditions linearly
relate values of P and its normal derivative at conjugate
points of the boundary of the primitive cell; i.e.,
boundary points r, and r,+a; separated by a primitive
translation vector of the lattice a; (see Fig. 1).

f(r,+a;, k) =e'a'*p(r„k), (2a)

8„,$(r,+a,, k) = —e'""'8„,$(r„k) . (2b)

In Eq. (2), I, refers to the outward normal on the cell
boundary, and the solutions are classified by the wave
vector, k, which gives the change in phase of the wave
function and its gradient on crossing the cell; namely,
k a;. This is the same change of phase shown by any
of the plane waves e'~~', where k, =k+K„and K, is a
reciprocal lattice vector. "Since addition of any K to
k leaves the boundary conditions unchanged, all the
values of k giving distinct solutions are in a single
primitive cell of the reciprocal lattice, usually chosen
as the first Brillouin zone."

Thus, the basic problem is the solution of the second-
order, linear, homogeneous differential equation (1) in a
polyhedral region, subject to the homogeneous boundary
conditions (2); hence, for each k, the solutions form a
discrete set of eigenfunctions l(„(r,k), and the corre-
sponding eigenvalues give the energies e„(k). For each
value of the band index, v, the energy as a function of
k is referred to as the i th energy band. The difhculties
in 6nding the energies and wave functions arise partly
from the complicated shape of the boundary and partly
from the singular nature of the potential near each
nucleus; there is also the added labor of dealing with
complex functions.

2. The Comyosite Wave Representation and
Variationa1 Procedures

Most methods of solving the band problem are de-
signed to deal easily with one of the two diKculties
noted above, and then must struggle with the other.
On the one hand, the dificult boundary conditions are
immediately satisfied by an expansion in the plane
waves e'"e', each of which satisfies (2), and which
form a complete set of basis functions for functions
satisfying (2). Unfortunately, such an expansion does
not converge well enough near the nucleus, where the
wave function is changing rapidly, to give an accurate
representation in a practicable number of terms. ' On

' Reference 17, p. 9; actually K~ is 2m times the reciprocal
lattice of crystallography.

'9 Reference 17, p. 10; usually the first Brillouin zone is simply
referred to as the Brillouin zone. Sections of the first Brillouin
zone for the bcc lattice are shown in Figs. 5 and 6.

~ This difBculty has been recognized since such expansions were
first tried. The authors made some recent studies of the limitations
on plane wave expansions which were reported brieQy in Bull. Am.
Phys. Soc. 4, 226 (1959), and are described at greater length in
Ref. 26. A typical result is that by taking advantage of high-
speed computers and modern methods of computing eigenvalues,
the equivalent of 1055 plane waves can be used at the F~ point.

FIG. 1. Cross sec-
tion of unit lattice
cell with outer sur-
face S„showing sepa-
ration into inner and
outer regions 0; and
0, by the inner sur-
face S; n and n,
are the unit outward
normals to the inner
and outer surfaces, re-
spectively; r, and
r,+u; are a pair of
opposite points on
the cell boundary
separated by a lattice
translation vector a;.

t'f +01
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This gave an energy within S% of the correct value for Li, but
was much worse for Na. The results at points of non-S character
were better.

~'Considering now the simple case of a monatomic Bravais
lattice in which each nucleus is at the center of the primitive cell.

~~Pointed out by F. Harn in The Fermi Surface, edited by
Harrison and &ebb (John &iley @Sons, Inc. , New York, 1960),
p. 14,

the other hand, expansions in spherical wave solutions
of (1), (for a spherically symmetric potential and a
definite energy), have trouble systematically satisfying
(2), since the boundaries are not adapted to spherical
coordinates. In addition, a more fundamental difFiculty
arises from the nonspherical nature of the potential in
the outer part of the cell. Although V(r) is nearly
spherical near the nucleus it may differ substantially
from spherical in the outer part of the cell near the cell
boundary; indeed, the potential cannot be defined as
spherical beyond the inscribed sphere. "Thus, a sphere
larger than the inscribed sphere is partly in other cells
and on the parts in other cells the potential will not
be constant. Where the potential fails to be spherical,
the original expansion fails to represent the wave
function. "

A natural way of meeting both difhculties at once
is to use both representations, each in the region in
which it is most suitable, a representation conveniently
termed a composite representation. However, it is then
necessary to consider the new problem of determining
the true energy from trial wave functions which have
discontinuities in both the function and its gradient on
the surface of separation between the regions. Now, the
most eScient way to 6nd a sequence of approximations
to the energy using trial functions given in the com-
posite representation, or, in fact, given in any representa-
tion, is to use a variational expression for the energy.
This yields energies whose deviations from the true
value are second order when the deviations of the wave
function from the true function are 6rst order; hence,
when a sequence of variational energies is used in a
systematic iterative procedure, one is quickly led to the
correct solution.

In Appendix I, we consider at length the form of a
variational expression for the energy suitable for trial
functions discontinuous on a surface. Such variational
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expressions are found with the useful property of
always yielding real values for the variational energy,
e„. All these expressions require surface integrals over
the discontinuity surface. Hov ever, if the class of trial
functions is restricted to functions which have discon-
tinuities on a surface only in the gradient, but the func-
tion is continuous there, then the form (A1.9) contains
only a volume integral (of

~
VP ~ ') and is similar to that

used in the development of the APW method. "
Objections are sometimes raised against the use of

discontinuous functions as approximations to the wave
function. For example, it is remarked that such func-
tions are not admissible solutions of the Schrodinger
equation, or that the Laplacian operator is singular at
the discontinuity, so that variational expressions con-
taining the Laplacian seem to be not well-defined. In
reply, we note first that the discontinuous functions are
being used merely as a computational device to approxi-
mate and approach the correct wave function which is,
of course, continuous. Second, we note that the La-
placian is never applied at the discontinuity, but that
in (A1.10), for example, the Laplacian is applied sepa-
rately in 0; and 0„in each of which the trial function is
continuous. Finally, we note that the idea of using dis-
continuous trial functions has been successfully applied
before, particularly by Kohn. Kohn" gives and tests a
variational expression for band energies, adapted to
the use of trial wave functions which do not satisfy the
cellular boundary conditions (2); hence, these functions
are discontinuous at the cell boundary. The variational
expressions applied here generalize Kohn's expressions
to hold for discontinuities on an arbitrary surface within
the cell, and in fact (A1.10) goes over to the Kohn
variational expression when 0,—+ 0, and 5 approaches
the cell boundary. "Subsequently, Kohn and Rostoker'
gave a quite different variational expression for the
energy, also adapted for functions which do not satisfy
(2), involvin. g the lattice Green s function, and applied
it in the Green's-function method of calculation of
en.ergy bands. Leigh" also generalizes Kohn's expres-
sions to apply to functions discontinuous on a surface
in the cell and discusses application to the calculation
of eigenvalues.

3. Derivation and Structure of the
Secular Equation

The determinantal secular equation for the energies
is determined by a Rayleigh-Ritz procedure in which a
trial wave function made up of a finite linear sum of
suitable functions with undetermined coeKcients is
substituted in a variational expression for the energy,
and equations for the coefficients are obtained from the

~3 J. C. Slater, Ref. /, who does not discuss the variational
character of the expression.

~' W. Kohn, Phys. Rev. 87, 472 (1952).
~' Another way of stating this is that we allow trial wave func-

tions which do not satisfy the irIternil boundary conditions of
continuity of the function and its normal derivative on an internal
boundary surface.

condition that the energy be stationary as a function
of the finite set of coeS.cients. The wave function is
taken in the composite form, i.e., a linear combination
of S plane waves belonging to the given lattice and to
the given k forms the outer trial function, while a linear
combination of spherical waves out to order. L, each
belonging to a spherically symmetric potential within
the sphere forming the inner region and each belooging-
to a trial energy eo, constitutes the inner trial function;
the variational expression used is either (A1.10) or
(A1.11), each of which contains volume integrals over
the two regions, surface integrals over the spherical
separation surface, 5, and an operation of taking a real
part. The somewhat lengthy details are given in Appen-
dix 2, and we shall only comment here on the assump-
tions, on some special features of the derivation, and
on the form of the results, giving references to the
equations in Appendix 2.

A simplification is produced by an additional assump-
tion which expresses the spherical-wave expansion
coefFicients linearly in terms of the E-plane-wave ex-
pansion coeflicients A . It is assumed that the spherical
waves out to order L of the inner trial function are
equal on 5, term by term, to the first L spherical wave
components of the plane-wave expansion of the outer
wave function (which, as given in (A2.3), depend only
on ordinary Legendre functions, not associated func-
tions, and on the spherical Bessel functions), i.e., that
the inner and outer wave functions are matched to
Lth order in spherical-harmonic expansion on S. This
is not the only way the coefFicients could be related.
Normal derivatives, for example, could be similarly
matched, or a homogeneous combination of function and
derivative could be matched. However, matching in
value on the sphere seemed simplest and the other possi-
bilities mentioned above have not been examined in
detail. As a result of this assumption, there are only
Ã-independent expansion coeKcients, and the secular
equation will be of Eth order.

Since all terms of the variational expression arq
quadratic in the wave function, substitution of the
composite expansion yields a linear equation, (A2.25),
for e„ the variational approximation to the energy, all
terms of which are quadratic in the A „(actually bilinear
in A *and A ).The explicit forms of the coefficients of
the quadratic terms, referred to as matrix elements,
are given in (A2.26) to (A2.29); the forms depend on
the assumption that V(r) is spherically symmetric in

5, but not outside 5; this assumption couM be removed,
in which case additional volume integrals appear in the
matrix elements. "Before the final step using the varia-
tional character of e„ the operation of taking the real
part must be carried out; in general, this requires
making the matrix elements symmetric in the indexes
n, n' (although not if I —& ~); the final index-symmetric

~ A discussion of the nonspherical case is given in the un-
published Ph.D. thesis by H. Schlosser, Carnegie Institute of
Technology, 1960 p. 28.
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matrix elements are given in two forms in (A2.31),
(A2.32).

Finally, holding e„stationary as the A and A, * are
varied, yields homogeneous linear equations for the
A„(A2.33); the condition for existence of a nonzero
solution, the vanishing of the determinant of coeK-
cients, then gives the secular equation

The matrix elements in (3) depend on three types of
quantities: (1) the logarithmic derivatives of the radial
functions at r=r;, 2~„,——(R~'(r;, ep)/(R~('f, , ep), and their
energy derivatives, BZt„;/c)ep, Lrelated to the integrals
I~„, by (A2.34)g, which depend on the potential and
the trial energy ep, (2) the outer Faurier coeKcients of
the potential (A2. 17) which depend on the potential and
the lattice structure, but not on eo, they are particularly
simple for the flattened potential used in the applica-
tions, (3) the spherical Bessel functions and their deriva-
tives j q(k„r,), j~'(k„r,), and Legendre polynomials,
P~(k, k, /k k, ), (but not the associated functions),
which depend an the lattice structure, and on k, but not
on the potential or co, i.e., they are structure constants.

The dependence on the radial functions only through
their logarithmic derivatives at r = r; is a property
possessed also by the Green's function and AP%
methods. Thus, the quantum defect procedure which
Ham' combines with the Green's-function method,
could be employed here.

We note that if V(r) has inversion symmetry about
the origin, then V „"=V( ~' is clearly real from
(A2.19), the matrix elements are all real, and the A„'s
are real. This is the case for the applications to mon-
atomic Bravais lattices described here.

4. Solution of the Secular Equation

Of the two forms of matrix elements in (A2.31) and
(A2.32), (A2.31) is, in principle, more convenient to use
because (A2.32) has an infinite sum over /= I+1 to ~;
however, if all the l series are carried electively to
convergence, this sum drops out, and then (A2.32) has
the advantage of not requiring the j&'(k„r;).'"

The two energies ep and e, are kept distinct in (3),
even though they become equal when the secular equa-
tion is fully solved at any finite E, because we want the
equation for e, to be variational for any estimated trial
cp at which the-radial functions are evaluated (which
occurs before solving for e„).This variational property
of the equation then makes possible a convenient
rapidly convergent iterative procedure to fully solve the
secular equation of finite E, from which the true energy
is found in the limit Ã —+ ~. Thus, the e, found with an
initial trial co is a variational approximation to the true
energy, i.e., has second-order errors compared to the

» Equation (A2.32) was used in the simple. applications in this
paper, since it was determined that by choosing L=11, the
remainder of the l series had a negligible effect on the energies
calculated.

errors in the wave function. But the final e, found when
the secular equation is fully solved (i.e., when ep

——e„)
is also variational, hence, we expect the initial ~, to be
close to the final value. This expectaticn is borne out
when we iterate on eo, using the previous c„ for the new
~0, the e„ from the second stage usually agrees closely
with the e. from the initial stage (see the end of this
subsection and Table I).

If the terms (ep e—,) Pqb~» Iq«, in (EI,;—e„D„)
were cancelled out by immediately taking co=a, in
these terms, the resulting equation yields an c, with a
first-order error, namely, the linear term in (ep —e„)
just discarded. This point is noted again in the next
section in comparing the present method with the
original APK procedure where this linear term is not
included. Of course, the final value of e, does not
depend on this term, but the convergence cf the process
for obtaining the final e, is faster when this term is in-
cluded than when it is not included. '

It seems also worth noting another point about the
trial eo's: namely, that from the point of view of the
composite representation, the final energy in the
spherical waves, i.e., the final value of eo when eo and ~„
coincide and in the limit of E—+Oo, should be the
single true energy of the one-electron state we are
evaluating, since the expansion represents the true
wave function. " Thus, all the trial energies of the
spherical waves should be chosen as dose to the single
final energy as can be estimated in advance from
knowledge of the energy levels. They need not be
exactly equal at any stage in the iterative process, but
since they must approach equality as the iteration
goes on, it is most convenient to choose them all equal
in all stages.

The actual process of solving (3) for a given k con-
sists of estimating eo, evaluating the matrix elements,
and solving the equation for e,. Since the secular
equation is not in standard form (e„appears in every
term of the matrix), the most convenient procedure
we have found is to evaluate the determinant for sets
of trial values of c„, expanding the range until they
bracket the root, i.e., until the determinants change
sign; the root is then obtained by interpolation. The
root is found this way for matrices of increasing order,
until it converges as a function of order; call this root

&'&. The process is then repeated, using as the ~0 of the
second stage, e, "', and leading to a new e, &'&. Usually
6„&" agrees with c,&" to four or five decimal places, and

(" with ~, &" to five or six decimal places. The conver-
gence for a typical case, at the point ka/2~= (0.1, 0.1, 0)
in Li, is shown in Tables I and II. Table I exhibits the

~8 The Qnal e„ thus depends only on the logarithmic derivatives
2&„; and not on their energy derivatives, BZ&„;/8~, which, as
noted in Appendix 2 Ljust after (A2.34)g are equivalent to the
integrals I~,„;.

29 If the final ~0 had any other value than the true energy, the
individual terms of the expansion of lent; would not satisfy the
Schrodinger equation (with the correct energy); hence, the ex-
pansion would not represent the true wave function.
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TABLE I. Convergence of the procedure for solving the secular
equation (matrix order 16X16) at the point m the Li Brillouin
zone, La/2z. (0.1, 0.1, 0).

First stage

Second stage

cp =0.665
6y —0.685'—0.665'

—0.645'
—0.66956079"—0.669527810

ep =—0.66952781d

—0.68952781'—0.66952781'—0.64952781'—0.66952584b

Determinant values
9.0172X10~

—2.4632X10 '
—1.2450X10 '

1.8257X10 4

3.5165X10-7

Determinant values
1.1811X10 '
1.0656X10 5

—1.0288X10 '
—6.4914X10-8

a The three trial values of eo.
b Interpolation based on the three trial values and their determinants.
e A second interpolation based on the three nearest values to the root,

including the result of (b).
d Using the result of the first stage to recalculate radial functions.

interpolation process on the determinants and the
results of stage 1 and stage 2, which show five-place
agreement. Table I refers to 37= 16, hence uses a 16X16
secular determinant at which convergence in the order
is effectively achieved; this is demonstrated in Table II
where we see that the root of the 4&4 determinant
agrees to three places, the 8X8 to four places, and the
12X12 to 6ve places, with the root of the 16X16
determinant.

If successive eigenvalues at a given k happen to be
closely spaced, as sometimes occurs near band edges,
difhculties in locating the root can occur, but can usually
be met by using a 6ner mesh of trial energies.

The APS" Method

We compare first the nature of the representations in
the original APW and the present method. The former,

TABLE II. Convergence of the root of the secular equation as
a function of matrix order for the point in the Li Brillouin zone,
)ra/2z = (0.1, 0.1,0).

Matrix order

4
8

12
16

—0.66935954—0.66951509—0.66952626—0.66952781

S. Comparison with Other Methods

Having shown in II.4 that the method of this paper is
capable of calculating eigenvalues with high precision
even at general points of k, it becomes of interest to
compare it with other methods of comparable power,
and to exhibit similarities and differences. We compare,
first, with the most closely related methods, the original
APW method of Slater and Leigh's method; then some
remarks are made about the relation to the Green's-
function method and to the OPW.

as described in the recent paper of Wood, "which refers
back to the original paper of Slater' in 1937, introduces
as a basis for representing the total wave function, a set
of augmented plane waves. These functions match on
the surface, S, a single plane wave in 0, to a spherical
wave expansion in 0;. Since this matching is possible
for any choice of the energies of the spherical waves,
these energies may be fixed in various ways. In the
original APW method, these energies are taken to be
the single 6nal energy of the electronic state, whereas
in a number of other papers the energy was fixed by
matching the values and the gradients of the plane wave
and its spherical wave tail on S."

In the present method, the composite form described
in II.2 and II.3 is adopted directly for the total wave
function, rather than for the construction of an inter-
mediate set of basis functions, as in the original APW.
The main advantage of eliminating this intermediate
stage is conceptual simplicity. Thus, the natural choice
of the energy of each spherical wave is clearly the final
energy of the total wave function, as noted in II.4,
since the total wave function must satisfy the Schro-
dinger equation with that energy. "The ambiguity as
to the best choice of energy introduced by construction
of the APW's, which led to the other choice mentioned
above, "is thus avoided. We also note that the matching
between plane waves and spherical waves on the surface
of separation between regions is made for the total wave
function, which is the quantity required to be con-
tinuous, together with its gradient, rather than for
individual plane waves. Finally, we note that it is some-
what simpler algebraically to deal with a single spherical-
wave expansion, rather than with a separate expansion
for each plane wave employed in 0,. However, it should
be stated that since the basic elements of both methods
are the same, i.e., spherical waves in 0,, plane waves in
0„one could, if properly motivated, carry out any
procedure with an augmented plane-wave expansion
that can be carried out with the composite-wave
expansion. "

A second area of difference between the methods
arises from the strict attention given to variational
formulation of the present method. The original APW
formulationv does not explicitly introduce variational
considerations in obtaining the secular equation for the
energy, but obtains the secular equation essentially by
the method of perturbation theory when the APW ex-
pansion is substituted into the Schrodinger equation.
However, by suitable choice of the procedure used for
evaluation of the matrix elements of kinetic energy,
guided by plausible physical arguments, the result is, in
fact, a variational secular equation provided that the
trial functions are continuous and that the energies of
the spherical waves are the final energy of the state;
this is shown in Appendix 1. Direct proof of the varia-
tional character of the APW secular equation is also con-
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tained in the work of Leigh" and Saffren. "Now, in the
present formulation, close attention to preserving the
variational character is made even when the trial func-
tion is discontinuous on S and when the trial energies
of the spherical waves diGer from the 6nal energy of the
state. In addition, a general nonflattened potential in
Q. is used from the start, without interfering with the
variational properties of the secular equation. In the
APW formulations the potential has been generally
assumed flattened in Q„which is suggested by the
desire to make the plane waves an exact solution in 0,.
In fact, this is not necessary, and a general potential in
Q, can be handled without loss of accuracy in the
calculation procedure. "

The matrix elements of the secular equation obtained
in Appendix 2 from this strict variational formulation,
and discussed in II.3 contain three types of terms which
do not appear in the usual APT matrix elements. These
are specifically: (1) the terms

s&i p (knj lni/j lni+knj'in'i/j ln'i)blnn' in (A2 32)
l-L+C

which arise from the discontinuity on S, and disappear
as L-+ no, (2) the terms (es e„)&—P P& n~Ii, «binn /put-
ting (A2.27) and (A2.31) or (A2.32) in (A2.33)] which
arise from preservation of variational character when
the trial energy eo differs from c, and are discussed in
II.4, (3) the term 0V„' in (A2.31) and (A2.32) arising
from carrying along a general nonflattened potential in
Q„and discussed above.

I.ei gh's Method

The work of Leigh"" anticipates several features of
the present work; we should like to mention these ex-
plicitly, as well as various points of diGerence. Leigh
introduces the same composite basis for the trial wave
function, and also combines this with a variational ex-
pression adapted to functions with discontinuities on
the surface of separation. Leigh's variational expression

'0 See Ref. 14; the proof from R. S. Leigh's work is not com-
pletely general, however, since his variational principle is re-
stricted to potentials with inversion symmetry and his trial wave
functions have a special form.

3' See Ref. 8, p. 24; M. M. Saffren's proof is complicated by use
of special properties of the APW expansion, whereas the proof in
Appendix 1 applies for general trial functions, provided they are
continuous on S."J.C. Slater (see Ref. 11),p. 607, has suggested taking account
of the nonconstant nature of the potential by including the devia-
tions from a constant in the matrix elements between APW's.
This is equivalent to the term obtained here, Vn ~' from the non-
constant potential, but is still based in the perturbation theory
point of view used in deriving the APW secular equation. Our
derivation shows that the secular equation is still variational with
this term. This fact is not widely known; for example, Callaway
(Ref. 42) states that the APW requires a constant potential in
Q„Wood (Ref. 10) describes the APW as if the flattened potential
were essential, and Pincherle (Ref. 1), p. 378, lists the APW
under methods using a constant potential outside atomic spheres.
However, Leigh has pointed out that the assumption is not
necessary P'roc. Phys. Soc. (London) 71, 33 (1958))and, in fact,
estimates the error due to this assumption.

is given in Appendix 1, (A1.16), where it is noted that
(A1.16) is more restricted than (A1.9) or (A1.10); thus,
(A1.16) requires that the potential, hence, also the sur-
faces, have inversion symmetry, and that the trial wave
functions satisfy P(—r) =f (r), a condition which may
always be satis6ed by the true wave functions for this
kind of potential. For the applications to bcc lattices
made here, however, the greater generality of (A1.9) or
(A1.10) is not needed. In addition, Leigh discusses a
class of variational expressions dependent on a param-
eter LEq. (3) in Ref. 14$ and attempts to select a best
value of the parameter. The corresponding generalized
formula is given in (A1.15). However, these variational
expressions diAer only by second-order terms from each
other, and there seems to be no advantage in them over
the simpler forms (A1.9) or (A1.10).

Some significant differences emerge when we com-
pare matrix elements of the secular equation, in his
Sec. 4, p. 393, with (A2.31) and (A2.32). His matrix ele-
ments contain all but two of the terms of t (1+cr)H„, &"&

—rrH„&"'j. These two are (1) esr;s Pi e Ii„;bi„
which plays a first-order role in determining e, with
trial radial wave functions based on eo, as explained
above in Sec.II 4, and (2) ci(ris/2) —P i i~i" (=k,j in /j ini

+k, ji, ; /j &, ,)b&„„whi hcis clearly required in (A2.32)
when (A2.31) is transformed by means of the simple
and easily verified identity (A2.30). We have not, in
fact, been able to verify the particular variational ex-
pression used in his Sec. 4, leading to his matrix ele-
ments. Finally, we note that we replace the sum

i' Fi *(C...) Vi (C. ..) which appears in his ma-
trix elements, by the computationally much more con-
venient expression (2l+1)Pi„; (notation defined in
Appendix 2).

The Greerl, 's-FNncti orI, Method

The Green's-function method and the present method
are similar in the sense that they are both based upon
the use of discontinuous trial wave functions and varia-
tional principles for discontinuous trial wave functions.
The Green's-function method trial wave function is
discontinuous on the cell boundary, and the variational
principle LEq. (2.16) in Ref. 6j involves integrals over
the cell of lattice Green's functions; on the other hand,
in the present method, trial wave functions are dis-
continuous on an arbitrary surface within the cell, but
are continuous at the cell boundaries, and the varia-
tional principle involves surface integrals over the sur-
face of discontinuity.

The Green's-function method is made tractable by
flattening the potential in the outer part of the cell,
beyond the inscribed sphere. Then the variational ex-
pression reduces to integrals over the sphere when the
flat part of the potential is taken as the zero reference
level. The integrals over the sphere can then be easily
evaluated for expansions in spherical waves. This sim-

pli6cation is not necessary in the present procedure.
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TanLE III. The first 25 Fourier coeKcients, V, Lace (A2.19)j, corresponding to reciprocal lattice vectors Ke =Zm/o,
for flattened potentials of Li and Na; a(Li) =6.5183 a.u. , u(Na) =8.0427 a.u.

0
2
4
6
8

10
12
14
16
18
20
22
24

0.0000
1.3632
1.9279
2.3611
2.7264
3.0482
3.3392
3.6067
3.8557
4.0896
4.3108
4.5212
4.7223

1.00221
0.16889
0.09435
0.06388
0.05166
0.04576
0.04141
0.03720
0.03305
0.02926
0.02607
0.02358
0.02173

E„(Li) —U„(Li)

0.0000
1.1048
1.5625
1.9136
2.2096
2.4705
2.7063
2.9231
3.1249
3.3145
3.4938
3.6643
3.8272

0.94063
0.24782
0.16619
0.12976
0.11158
0.09980
0.08997
0.08935
0.07269
0.06547
0.05941
0.05447
0.05048

Z (Na) —V (Na)

26
30
32
34
36
38
40
42
44
46
48
50

4.9151
5.2797
5.4528
5.6206
5.7836
5.9421
6.0964
6.2470
6.3940
6.5377
6.6783
6.8160

0.02039
0.01857
0.01783
0.01708
0.01630
0.01548
0.01466
0.01385
0.01309
0.01240
0.01179
0.01127

E„(Li) —V (Li) E„(Na)

3.9835
4.2790
4.4193
4.5553
4.6874
4.8158
4.9409
5.0629
5.1821
5.2986
5.4125
5.5241

—V (Na)

0.04721
0.04200
0.03974
0.03762
0.03559
0.03366
0.03186
0.03020
0.02871
0.02739
0.02625
0.02528

One advantage of the present method over the Green's-
function method is the greater simplicity of our matrix
elements. The matrix elements for the Green's-furiction
method involve structure constants which arise from
the expansion of the lattice Green's function. These
structure constants are diKcult to evaluate since they
are complicated sums over functions of many variables
and are singular for certain values of the variables. The
independent variables include the energy, the wave
number, the orders l, L' of the two spherical waves, and
their degrees of associations, m'. In contrast, the matrix
elements of the present method are nonsingular and
just involve simply-computed standard functions such
as the spherical Bessel functions, their derivatives and
the ordinary I.egendre polynomials.

The OI'O' M ethod

The OP% method has been used extensively in
energy-band calculations, and has given many useful
results. However, it divers from the methods discussed
above in that it cannot give solutions of arbitrarily
great accuracy. The difficulty with this method arises
from inaccuracies in the core wave functions; the core
functions to which the trial wave function is orthog-
onalized are not precise eigenfunctions of the given
Hamiltonian; hence, the calculated energy eigenvalues
will not stabilize at the upper energy levels desired
but will continually descend toward the core values if
the number of OPW's keeps increasing. Thus, there is
always an uncertainty about the accuracy of OPW
results which cannot be refined out by more extended
calculations.

III. APPLICATION TO ENERGY BANDS OF Li AND Na

The method described above has been applied to
calculate energies in the conduction bands of Li and
Na using a FORTRAN II program and the IBM-704
digital computer. The calculations have been made with
well-known potentials for these materials in order to
test the method against results of other workers. These
comparisons are along lines of high symmetry in the

Brillouin zone. Energies at many additional points of
general k have also been found, and for Li used to
estimate the position of the Fermi surface.

1. Potentials

The well-known empirical potentials of Seitz" for Li
and Prokofiev" for Na, which reproduce the observed
spectral term values of the free atom, were used in the
calculations. However, the approximation of fiattening
the potential outside the inscribed sphere, used by other
workers, was made here too." The empirical ionic
potential was used out to the radius of the inscribed
sphere, and the potential in the outer part of the cell was
replaced by its average value V,.From the potential, the
Fourier coefficients and outer Fourier coefficients Lsee
(A2. 18) and (A2.19)j were determined by integrations
over the polyhedral cell. A short table of the Fourier
coe%cients of the fIattened potential is given in Table
III, and covers all values used in the calculations on Li
and Na."

2. Energy Bands in Li

The energy values of the conduction band at some 30
points in the Brillouin zone of I.i are given in Table IU,
including the next higher energy at three points on the
zone surface, ka/2rr= (1,0,0), (1,1,0), and (1,1,1). The
points fall mainly along the six directions $100j, $110j,
L111j,$2217, $310$, $311jand the «(k) curve is plotted
along these directions in Figs. 2, 3, and 4.

It is an important test of our method to establish the

"F.Seitz, Phys. Rev. 47, 400 (1935), who tabulated the poten-
tial incorrectly. Kohn and Rostoker (Ref. 6) give a correct
tabulation of —rV(r) which was exactly the potential used here
(with quadratic interpolation between arguments where needed).

~ W. Prokofiev, Z. Physik 58, 255 (1929).
3' The method is, of course, not restricted to flattened potentials,

and, in fact, no additional work is required to use matrix elements
of a nonflattened potential in (A2.31) or (A2.32). The explicit
formulas in (A2, 31) and (A2.32) do require a spherically sym-
metrical potential for r &r;, but a simple modi6cation can handle
general potentials (see Ref. 55)."A much longer tabulation, of the Grst 125 Fourier coeKcients
for both Li and Na, &s given in Ref. 26, where they were used for
studies of simple plane-wave representations of the wave function.



SOLUTION OF. ENERGY BAN 0 PROBLEM I N SOLI DS 2537

TmLz Dt'. Energy values for Li at various points in the Brillouin
zone. a=6.5183 a.u. r;=2.8225 a.u.

kga/2s ksa/2v Asa/2s.
BS%'

notation

LITHIUM

100 AXIS
a = 6.5I83 a, u,

0
0.2
0.31505
0.5
0.60629
0.8
0.9
0.96

1
1

0.1
0.3
0.5
0.5

0.1
0.3
0.4
0.5
0.5

2x
0.2
0.35
0.5

3x
0.3
0.525
0.75

3x
0.3
0.525
0.75
0.3
0.45
0.4

0.1
0.3
0.5
0.5

0.1
0.3
0.4
0.5
0.5

2x
0.2
0.35
0.5

0.1
0.175
0.25

0.1
0.175
0.25
0.15
0.5125
0.5275

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.1
0.3
0.4
0.5
0.5

0.1
0.175
0.25

0
0
0
0

0.1
0.175
0.25
0.1

0
0

b line

~1

+15
II12

Z line

N, '
Nl

h. line

P4
Pl

FDp line

Dp

FGp line

Gp

F1 p line

—0.68345—0.65593—0.61538—0.51040—0.42706—0.23294-0.11898—0.06147—0.04615
0.16337

—0.66953—0.56176—0.41051
-0.19454

—0.66277—0.49993—0.35789—0.18395
0.16265

—0.620—0.4962—0.353

—0.61502—0.47357—0.294

—0.60829—0.45325—0.2420
—0.59990—0.41161—0.41439

Vl 3
C9
K
LU
0)
p -4
lL

-5—

7

POINTS OF F. HAM

GLASSER 8 CALLAWAY

~ THIS CAI CUI ATION

-8
0

I . I I I

.I,2 .3 4 .5 .6 .7 .8 .9 I.O

{ka /2~)

Fro. 2. Li energy values along the 6 line, L100j, versus reduced
wave number. ka/2s'; points of other workers are also shown.

0--

be made with the results of Ham, "who computed many
points along the $100j, L110$, and f111) directions.
His results along [100]are shown in Fig. 2, and corre-
spond closely to our values, but lie slightly lower.
Similar results hold in other directions. Since Ham's
lattice constant was 2% larger, this would be expected
to lower the energies slightly, and thus explain the
difference between the two sets of results. "

Still less precise comparison is possible with the calcu-
lations of Glasser and Callaway" and of Callaway"
who use the orthogonalized plane-wave method. Glasser
and Callaway use the Seitz potential without Battening
in the outer part of the cell, but continued spherically
to the cell surface. The potential then has a strong

quantitative accuracy of the calculations by com-
parison with results of other workers using other
methods. The best check is against the values obtained
by Kohn and Rostoker' who used the identical potential
and lattice constant. In our notation, they obtained
energies, e(ka/2rr), at four values of k, three of which
were also used in our calculations (a,nd appear in
Table IV), namely «(0,0,0)= —0.6832, e(0.3151,0,0)—0.6158, e (0.6063,0,0)= —0.4275, which may be
compared, respectively, with the values (from Table
IV) —0.6834, —0.6154, and —0.4271. It is noteworthy
that agreement is obtained to within a few units of the
fourth 6gure, which is about the accuracy of their
calculation. "

Less precise but more extensive comparisons may

3'ln fact, they assume e and calculate k in two successive
approximations corresponding to the use of two or three spherical
waves in the expansion of the trial function. The k increased in the
third figure between approximations, hence, the fourth figure is not
established and probably lies slightly higher still, corresponding
to the slightly higher values of Table IV, in which- up to 12
spherical waves were used in the trjat wp. ve functj. on,

-.I
— LITHIUM ENERGY BANDS

v) -3
K
CQ

LLi
CQ
C)
&-

-5

I I . I . I I . I I J, I

.I .2 .3 4 .5 .6 .7 .8,9 I.O

& ka/2~)

Fro. 3. Li energy bands in the L100), I 110$, and I 111/ directions
versus ka/2s", points of other workers are also shown.

'8 Reference 22, p. 9; Fig. 1 on p. 16.
"When Ham uses the same lattice constant, he -checks our

results more closely (private communication). His calculations
use the quantum defect method, rather than the Seitz potential,
so we cannot easily say how close exact energies for the two
calculations would be.

~ M. L. Glasser and J. Callaway, Phys. Rev. 109, 1341 (1958).
4' J. Callaway, Phys. Rev. 124, 1824 (1961),
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at Ir=0, we have

tg 2
g(«)d«= —,

g3
(4)

-3—
CO
C9
LL
4J
«8
Cl

-5

"6—

~ 7

—.&
0

F (.25,25,.75)J'

~~ Go (,75,.25, 0)

o (.5, .5r.25)

J.I .2 .3 4 .5 .6 .7 .8 .9 I.O

since 2/as is the conduction electron density (and, by
definition of ep, the number of states below ep is equal
to the number of electrons). Since the density of states
per unit volume is 1/4rrs in k space (2/as in It space),
we also have for the number of states of energy less
than e, per unit volume,

g(«)d«= (2/3as) ks(or, «)dor,

(ka/2m)

FIG. 4. Li energy bands in the [221], [310],and [311]directions.

discontinuity of slope at the cell boundaries which pro-
duces a pronounced oscillation of the Fourier coeS-
cients V, as a function of

~
n

~
', and makes some energy

values quite different from the present calculations
(well outside the computation error), particularly the
point ka/2rr= (1,0,0) (Figs. 2 and 3), although the gap
at (0.5, 0.5, 0) is not very different. In Callaway's more
recent paper, the spurious discontinuity in slope of the
potential has been removed by a method other than
flattening. 4' The value of «(1,0,0) rises from —0.092 to
—0.009 compared to our value of —0.046, while
«(0.5,0.5,0) falls from —0.404 to —0.408 compared to
our —0.411, and «(0.5,0.5,0.5) rises from —0.189 to
—0.177 compared to our —0.184. Thus, the new values
are somewhat closer to ours but still do not provide a
precise quantitative check. Presumably, the diGerences
are due to use of a diferent potential, but there is also
the residual uncertainty in OPW energies arising from
lack of precise orthogonality to the core functions in
the crystal.

3. The Fermi Energy and Fermi
Surface for Li

From the calculated energy values «(k) listed in
Table I, an estimate of the Fermi energy ~p and the
Fermi surface can be made. This cannot be made with
accuracy comparable to that of the individual «(k),
since rather few points are available, but a systematic
procedure for evaluation of the energy will be used
which could be readily extended to a larger number of
points, and will give some idea of the accuracy attained.

If g(«) is the density of electronic states in energy per
unit volume (including both spin states), then, measur-
ing energy from the bottom of the conduction band

4«The potential of a unit point charge, 2/r, which —gives
almost all the Seitz potential for r& r; (97—,

'
Pz of it), is replaced by

the easily calculable, smooth potential of a bcc lattice of unit
positive point charges screened by uniform negative charge;
the effect of this change has also been discussed by R. S. Leigh,
Proc. Phys. Soc. (London) 71, 33 (1958).

where k =ka/2rr is the reduced wave number, and k (or, «),
is its magnitude in the direction ~ on the energy surface
«. From (4) and (5) with «= «p we obtain a convenient
equation for cp,

kps (or)dor =3, (6)

43 These functions were de6ned and used by von der Lage and
Bethe, Phys. Rev. 71, 612 (1947), and later applied bv D. D.
Betts, A. B.Bhatia, and Max Wyman, Phys. Rev. 104, 37 (1956).
We are concerned here with the functions of angle, rather than
with the kubic harmonic polynomials, which are homogeneous
polynomials in the components of k with cubic symmetry. A
general and simple procedure has been found for obtaining these
angular functions to all orders and will be reported separately.

4 For example, J. Callaway {see Ref. 41) 6ts the energy values
in Li, as determined by his OPW calculation, to an expansion in
kubic harmonic polynomials through the sixth power, and uses
this expansion to Gx the Fermi energy.

where kp(or) ==k(or, «p)
An upper and a lower bound to ep are obtained by

using the fact that for given k, the energies along t 100]
lie highest and along L110] lie lowest of all directions,
as shown by Figs. 3 and 4. Now, from (6), the average
value of kp (more precisely the cube root of the average
value of kp') is 0.6203; at this k along L100] Fig. 3 gives
a value of «= —0.414, whereas along $110],c= —0.439.
Thus, «p( —0.414 (since the surface e= —0.414 would
everywhere lie outside the sphere with k=0.6203), and
cannot touch the Brillouin zone boundary whose lowest
energy is the S'& point, «rv, = —0.4105 (Table IV).

The appropriate average to take of the energies in
various directions to allow for the deviations from
spherical symmetry is conveniently found by using
the cubic symmetry of k(or, «) at given «, and the fact
that the surface «= «p is a smooth surface (i.e., does
not intersect the zone boundary). Then k(or, «) may be
expanded in the complete orthogonal set of cubically
symmetric angular functions, the kubic harmonics. 4'

We seek a representation of the angular dependence of
k at given «and not a polynomial expansion of «(k)
valid at all points within the Fermi surface, as is some-
times used. 44 At diferent energies, a different representa-
tion of k will be used, determined by its values along the
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directions of the curves of e(k) given in Figs. 3 and 4;
it is clear that to 6x ~p we need consider at most only
the portions of these curves between e= —0.414 and
e= —0.439 (or between k= 0.592 and k=0.697) and in
fact the surface ep will be found to range between
k=0.603 and 0.647.

The six directions in which e(k) is given in Figs. 3
and 4 permit an expansion in six kubic harmonics,
E;(ar), i = 1 to 6, in the form

25, .75)

~& =-.42I—~ =-.4i

N(.5, .5, 0) k
[ii o]

where we take Xi (&u) = 1.We choose to expand k' rather
than k, since then 2& gives immediately the integral
in (5), (because of the orthogonality of the K;(&o) over
a sphere); then we have for the average value of ks,

(1/4w) k'((0, e)do) =A i (e) . (8)

(1/4s) f(to)dho

—0.285714 f(100)+0.457143 f(110)
+0.257143 f(111), (9a)

=0.0761905 f(100)+0.270899 f(110)
+0.168750 f(111)+0.484160 f(311), (9b)

—0.022411 f(100)+0.158678 f(110)
+0.037257 f(111)+0.292624 f(311)

+0.280905 f(221)+0.208125 f(310), (9c)

where f(100) is the value of f in direction 1100],etc.
Application of (9) to k'(&o, e) at various e between

—0.414 and —0.439, and interpolation to satisfy
(6), gives from (9.1), (9.2), and (9.3), respectively,
~p= —0.431, —0.429 and —0.429. This suggests
op= —0.429 Ry, accurate to within 0.001 Ry, and that
the three-point formula (9.1) over-emphasizes the 1110]
direction. 4' This may be compared with Ham's4 value of
—0.433" and Callaway's" value of —0.433.4~

4~ This is the best we can do with e(k) curves in six directions
(and six kubic harmonics), but to check this apparent convergence
of ~p to —0.429 Ry, some additional directions would be desirable.
In fact, the bulge in the constant energy surfaces in the $110)
direction is more localized than expansion (7) gives, and the value—0.429 may be low because the bulge is overemphasized. The
true shape of the energy contours is indicated by the last two

Betts, Bhatia, and Wyman~ give the erst six kubic
harmonic polynomials (in fact, the first seven, which
includes two polynomials of the 12th power), and also
a set of integration formulas based on various sets of
directions, up to six. However, they do not include all
the directions used here, hence, we have extended their
procedures; formulas (9) use the first 3, 4, and 6 kubic
harmonics and invert (7) to find Ai for the directions
of interest here; then we can write the spherical average
of a cubically symmetric function, f(&u), in the forms

FIG. 5. Central vertical section of Brillouin zone for Li through
center of hexagonal face, (1i0) plane, showing section of energy
surface at e= —0.421 eV and a section of the adjacent higher en-
ergy level at ~= —0.41 eV which touches the zone face at the X
point; the points at which the energy has been calculated are
marked.

Finally, we note that the expansion (7) can also give
a value for the density of states at energy e. It is con-
venient to write this for the density of states per atomic
volume, g(e)a'/2, hence, from (5) and (8)

4x. d t' 1 ) 4wdAi(e)
g(e)(as/2)= ——

I
— &s(~,e)de

~

=—,(10)
3 deE4rr 4 ) 3 ds

where Ai(e) is given by formulas (9), when f(a&)
=ks(cu, e). Applying (9.3) to Ai(e) around e= —0.429,
gives g(es)as/2=7. 0 states/Ry atom which may be
compared with Ham's' value of 6.8 (or 0.312 state/Ry
As), given in his Fig. 1 (Part II).

Figures 5 and 6 give energy contours roughly sketched
in vertical and horizontal sections of the Brillouin zone,
at several energies. These show the outward bulge
from spherical behavior in the $110] directions, and
the inward bulge from a sphere in the f100] directions;
at ep the former amounts to 4.4% and the latter to 2.7%.
entries in Table IV which corresponds to energies of about
—0.41 Ry at points of general k; they have been used in Fig. 6 to
6x the energy contours, which are rather spherical until close
to f110).

4' Ham uses a lattice spacing of a=6.651 a.u. , 2% larger than
ours, which could lower ep by 0.003 or 0.004 Ry, as shown by his
Table III, Ref. 4, Part II; note in our Fig. 2 that his energy values
lie below ours. Also Ham uses a special representation for the
energies around each $110) axis, which assumes independent
cylindrically symmetric bulges from a sphere in each of these 12
directions; the accuracy of this assumption could be tested by
use of our expansion (6). By interpolation in his computed values
F. S. Ham (private communication) has found cs = —0.430 Ry
at our lattice spacing, which agrees with our value within the
computational error.

47 This value seems low for Callaway's energy values, since all
his energies lie above ours (and Ham's) at the same k, hence, one
would expect his er to be higher than our (and Ham's) value. In
fact, a replotting of his tabulated energies near ep., and use of the
three-point formula, (9.1), leads to op= —0.429 Ry, and this is
probably low because (9.1) overemphasizes the low value in the
L110)direction; thus a reasonable estimate of e~ from his energies
would be —0.427 Ry.
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T~x,E V. Fnergy values for Na at various points in the Brillouin
zone. a =8.0427 a.u. , r; =3.4826 a.u.
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Fro. 7. Na energy bands in the (100), L110), and L111) direc-
tions versus reduced wave number; points of Ham are also shown.
The structure near the E point is shown on an enlarged scale.1Pj
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4. Energy Bands in Na

4l
-AO

H(O, I,O)

TmLE VI. Comparative energy values for Na at a few points of
high symmetry from Ham, SaGren, this paper, and Callaway.o)

ltu/2s (Ham) ' (Saffren) s (This paper) (Callaway) '
CONTOUR

—0.5974—0.263—0.316-—0.162

(0, 0, 0) I'1 —0.6041 —0.6082 —0.6076
(0.5, 0.5, 0) X1 —0.2910 —0.2988 —0.2944
(0.5, 0.5, 0) N'g —0.3078 -0.2972 —0.2938
(0.5, 0.5, 0) I'4 -0.1669 —0.1546

FIG. 6. Central horizontal section of Brillouin zone for Li,
(001 plane), showing sections of three adjacent surfaces of con-
stant energy.

4s Unpublished; quoted by L. Allen in the Quarterly Prog-
ress Report of the Solid State and Molecular Theory Group
(MIT), No. 29, 1958; and M. Saifren (private communication).

Private communication (Ref. 4), c =8.11 a.u. ; uses Green's-function
method and quantum defect.

b Unpublished {Ref.8); uses APW method.
o J. Callaway, in Solid State Physics, edited by F. Seitz and D. Turnbull

(Academic Press, Inc. , New York, 19S8), Vol, 7, p. 131;based on a pseudo-
potential chosen to fit the S and P states of the free atom, and the OPW
method.

Numerical results for calculations of the energy
bands in Na are given in Table V using the same pro-
cedures as for I,i. The conduction band is plotted in
Fig. 7 and is seen to be almost spherical with very small
deviations near the band edges in the various symmetry
directions. These results are in good agreement with
results of Ham' using the Green's-function method and
of Saffren" using the APW method as shown in Table
VI. The band gap at the E point is found to be approxi-
mately 0.0005 Ry, with Ez below EP.



SOLI DS@ANDENER 6

ction sati

SOI UTION 0

the trial wave func i sfies (2). Putprovided .

e A1.3)—
g

re, ue wave function and e

l satisfying Hgg=eg g.vaue, s
order in the bgg( s

with aid intechniques and wi
t

"poga v
the extensive

Sampson odM C 1

IT Computa ioll h ofth MMiss Marion Ca a
P. LaSe}le of IBM, an . '

o
an .Electric Comp

THESSIONS FORTIONAL EXPRE
WAVEENERGY APP

DISCONTINUOUS

alues, e, of th

be, dQ Pg*gg

dQ bf*(H—eg)it g+ dQ Pg*(H—eg) bf

a regs

dQ — V' dS ($8„gtg gtg8„$) —(A1.5a)dQ PV'gtg= dQ $V'f

(A1.5b)dQv v&4+ dS4~.4
0

&* and erst withThen (A1.5a) with P=Pg* an
then with y =bf, gives

dS Pgg*g)„g, g)„pg*g,), —(A1.6a)

v e

*(w.—w )dSLaa. ,

egg*(8—bf. 8—}li h
e uation,

o u lontherightva
'

on
'

anishes,g
, b t are con-

be trans orme

'th n the cell
h 1 ttice nd t

ra

1 cond it lolls . s 0

1 va
function a

'
tiona exprif ngteu

0

ls over 5. The
1

tinuities agains
unction in t e in

'
l ave funct

suitable sur ace i adion 0„ th

dQ *(H—eg) g;t

he usua varia
'

in the equation

0;

energy e, in

'*)(0.—4')dSfa(8„$,*+8„f,
dQ Pg*(H cg)g. —

'*)(~-4.-~-4')3. (A1.1)

1C=C=2,

of the sur-4' No e a aregrtly more getrneral form o
p gie+bg y.g) (p

diiiers from the o y

y @)(s
th f it i

their 6rst-or
f o t

i ted bee se
of diferent form
Lsee (A1.7)j.

—c(P. +P
ral are erst order

es ce first order in
rface integra

the
The terms in

discontinuities
ctionfromt e r

function
of t ese

rst-or er va
the volume term. 4' It wi

(A1.2)

variational if

dS fg*a„by,—a„y,*g.)

dS g „, .— g*b .) . (A1.6b)dS(gg*B,bp. B,fg*b . . —

al toQ;andn, theout-
( cl

),
the cell. Since c i

ll 1 bo d
''

e
A1.6b) vanis es yb

oints at which n, as op
(A1.6b) give(A1.6a) and

dQ Pg*(H—eg) bf

dS g „,— b, —8 /gal(bg. —bf,)j. (A1.7dSQ ge (B„g, Bbf,) 8g —. —. A1.7



ARCUSND P. M ~SSER AN0

t o erator does not app,„A 12) the real par 'p"'
v w}11ch

'
ce al]. tern1S are

ex ressions for
since

f varlatipnal exp
-o der terms»

A family o
(A111) by secon-d;ff., from (A19) "

given by

s+Qo

+(1—g)BQP' j(gBn

A1.14)&.—a.&,)~

dQ(ViP* Vl +
O;+Op

(A1 g)dS(y Qg P.—$0 n4 &

Os+9 p

t (1—c)$0 + ~

(A1 14) always g'vefpr arbitrary
e compactly wri

g and. c
ttenpf g and

cellular bh follows fi'om (
f (A1 1) are obtaineact forms «conditions

l rt pperato} seof ther P

vanishesrA1 y) in (A1 4) '" . ,d to m«e
Finally, us g

2 holds as ls(to first order) if (A.i.
ressjpn fp

1S

'ational expres
A11) is that &~

(A ' '
ful property

The terms are
further .

ave function.l fpr any trial wave
use the identity

always rea r
'

ate pajrs if we useseen tp grou p 1nto conjuga e

dQ(V4*' V&+~
s+Q p

;+Go

) (A1 9)p @)(g f0+8mf & +2 Re p sy(] —g)~A &g ~ o

(A1.15)
O;+Qo i+Qo

(A1.10)dS(g sg 1t .—Pg F40
8

u ]ished. "» a(A1 10) has been pr
1 10) foi»ws f™revjously pThe form '

th r form of (Are]imln. ary note.p .
pA1 5b) just to Qoapplyjng

Q +Qo ;+Oo

(A1,16)dS(y sg P, fg~A'0—

pthpr Wor"

s trial func-pntlnuoul expressions wl
Lejgh14 and by

Varlatlona
en roppsed y

~

have also been p
la equivalent «

tjons a .
h

-
es a formu ag evensee. "&e'g

s+Qp

dQ(V~* V~+~*&~)dQ P*HP+
Q;

dS $,*8„$, (A1.11)dS(4.* 4'')~ 4"+-
are d b forming Illlears are obtaine ystill other forms are

f (A1.9), (A1.10), an
'al funct ons is restricte o

d (A1.11) i lin S then (A1.9 ancontinuous on

dQ(Vy* VP+y*l y) pression o

.—')(~-4.*+~.4' )dQ4 *HI+- L(4"—'s„dQ @*f=

.*)(B„P, B„ijf,)jdS—,—(y,*; „.— dS,

Os+0 p

dQ(Vg* VP+P*&P)dQ /*HE+
QoQs

A1.13)+ dS $,*8„$;

olecular TheorySolid State and Molecu"' "' """'
1959 (-.-bl':h d ~-~ Quarterly ogr

bli h d), . 61.No. 55, 1960 (unpu is

ma e pus on S and satisfyma be discontinuous on
dar con ltions.

nn. Phys. (N. Y.)5~ Robert M Bevensee, Ann.

n omitting the opeA1.1o) o 11C l S

al nle
l tho h' h

Hllits his tria
ri

scanbec ps
dc}.

1 j 'D1.16) Ur a i ct g
plexconjugationp t e u

n t onal ex-n a variationa
SP 1S 6v.

's E . 83) has givenBevensee (his q.
(A1. he form



SOLUTION OF ENERGY BAN 0 P ROB LEM I N SOLI DS 2S43

equivalent to (A1.1) with a= c=-,', and with rfr* and rfr

treated as independent functions, in which case e, is
not, in general, real.

scalar r, and this will be assumed in the applications.
Then the spherical waves used in the expansion are
exact solutions of the Schrodinger equation in 0; corre-
sponding to a trial energy value, ep. 55 The simplest as-
sumption about the coeScients of the expansion is that
the L terms in rlr; agree on S with the first L spherical
wave terms of P., as given by (A2.3); i.e., the first I.
spherical harmonic components of p; and ll, are matched
on S. This fixes the coefficients of ll; in terms of the A „
and we have

APPENDIX 2: DERIVATION OF THE
SECULAR EQUATION

Expansion of the Trial Wave Function

For detailed calculation, the inner surface 5 is chosen
spherical, of radius ri around the single atom in the cell,"
and the trial wave function is expanded in the com-
posite form using Splane waves and I.spherical waves.
Thus, the trial wave function in the outer region 0„
the outer trial wave function f„is written

N L
ll'i(krr) = Z An Z &ntir (tJtleer/(Rteei) r (A2.6)

n 1 l 0

N

P, (r,k)= P A„e'~n'
n=l

where (Rt„r=—(Rt (r, es) is the solution of the radial Schro-
dinger equation for energy es and potential V(r) which

(A2 1) is regular at the origin,

where k„=k+K, and K, is a reciprocal lattice vector.
Each of the plane waves e'"~' thus satisfies the cellular
boundary conditions, (2). The summation runs over
the first ill' vectors k„arranged in order of increasing
magnitude.

The expansion of lf, in spherical waves is obtained
from the expansion of the individual plane waves in
spherical waves, namely"

(A2.2)

In (A2.2),

(Rt"+2(Rt'/r+ fee—V(r) —l(l+1)/r'](R—t—0, (A2.7)

and (Ri„;—=fRt(r;, es). Clearly, (A2.6) and the first L
terms of (A2.3) are identical for r=r, .

Evaluation of Volume and Surface Integrals

The evaluation of the variational expression for the
energy in terms of the A requires evaluation of various
volume and surface integrals of the trial wave function
in terms of the 2„, hence, these are now tabulated for
later use.

From (A2.6) and (A2.4), the inner normalization
integral is given by

with
ji,„—=jt (knr) —= (m'/2k, r)Jt+; (k,r),

k,—= fk, [, r= jr/, L=On, n'=1

N L

P,*f,do= r s P A, *A n.r g litnn Ii„;. (A2.8)

is the spherical Bessel function of order /,
'4 and

Pi,—=Pi(C, ,) is the Legendre polynomial of order l,
with argument C,,—= (k, r)/(k„r), the cosine of the
angle between k, and r. Then ll, becomes

In (A2.8), tbe angular integral over all directions of r

~nlir ~n'l, 'ir~f*

ll'o= p An Z &nadir (jinr/jlni) r (A2.3)
=4rr(2l+1)j i„,j i„,Pi „.h«. =b,. f'r«, (A2.9)

where

n=l L=O
depending on the orthogonality relation"

Snh'r= &(2l+ 1)j—iniPinr r

j.;-=~ (k";)

(A2.4)

(A2.5)
Pi„,Pt n rdoor= (4ir/2l+1)Ptnn 5tt, (A2. 10)

The trial wave function in the inner, spherical region
0;, the inner trial wave function P;, is expanded in L
spherical waves. It is convenient to assume V(r) is
spherically symmetrical within 0;, hence, a function of

~~ This restricts the discussion to monatomic Bravais lattices,
which are the crystal structures of the materials considered here.
Straightforward generalizations to lattices with a basis are
possible, in which separate spherical surfaces are introduced
around each nonequivalent nucleus.

ee See, for example, J. Stratton, Eteetromageretr'e Theory (Mc-
Graw-Hill Book Co., Inc. , New York, 1941), p. 409. Note that
the choice of kn as the polar axis for r in the argument of Pl in
(A2.2) avoids introduction of associated Legendre functions here
and in (A2.6).

'4 Reference 53, p. 404.

has served to eliminate one l summation, and the radial
integral I&„i is defined by

Iteei= r Jtteer dr ~/re (Ries' ~ (A2.11)

From (A2. 1) the outer normalization integral is

5' For nonspherical potentials the expansion can still be made
in terms of a solution for a suitable spherical potential, for example,
the spherical average of the actual potential. The development
is the same as given here, but additional integrals appear in the
matrix elements and the convergence to the eigenvalue might not
be as good. This case is treated in Ref. 26.

"Reference 53, p. 407.
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given by Finally, from (A2. 1), the outer integral of
~
Vg, l' is

fn*f.dQ=Q Q A *A 0 ", (A2. 12)
n, n' 1

on introducing the outer plane-wave overlap integrals

~P.* ~g,dQ=Q Q A *A .k, k .0„„". (A2.20)
n, n'=1

The surface integrals of interest are

e'& "n'—xn&'dQ=—0(n n )', (A2.13) l=on, n' 1
P,*'d„g,dS=rP Q A.*An Q Zt„,b(nn, (A2.21)

where the single-index quantity Q,*B„P,dS=r, 2 Q A ~A„
n', n=l

O~'—=0 '

Q./Q, for K,=O
(A2. 14)

3(j—&(K r,)/K r,) (Q;/Q), for K„WO

is the outer eth Fourier component of a constant, and

j~(x)—= (~/2x)'"J3/2(x) = sinx/x' —cosx/x.

XQ k. (j i;,'/j t. ;)&i:, (A2.22)
l 0

N

Q,*B„g.dS=r„2 Q A *A„
n, n'=1

XP k„(j~n „'/j~;,)btn„, (A2.23)
l =0

It follows from (A2.6) and (A2.7) that the inner average where the logarithmic derivative of the radial func-
energy is tion on 5

(A2.24)

f,*HP,dQ = ep P,*g,dQ, (A2. 15) and j&„.,'= LBj&(k .r)/B(k„r)7, =,, Note the difference
in the l summation limits in (A2. 22) and (A2.23).

while from (A2.1) the outer average energy is

Q,*HP,dQ

N
=Q Q A,~A (k '0,„"+V,„"). (A2. 16)

V(r)e'x" xn~'dQ—= V

where the outer Fourier coefficients of the potential

V o—g-1 V(r)e '"n'dQ

= V —(4s/K, Q) rV(r) sin(K r)dr,

In (A2. 16) occur the outer matrix elements of the
potential (which need not be spherically symmetrical
in Q.),

Variational Exyressions and the
Secular Equation

Substitution of the composite expansion of the trial
wave function, (A2. 1) or (A2.3) and (A2.6), into various
variational expressions for the energy leads to a linear
equation for e„, all terms of which are quadratic in the

and A„*,
N

Re( P A *A„(H —e„D )) =0. (A2.25)
n, n'=1

The variational character of this equation for e„means
that the 6rst-order variation of e, vanishes when a
first-order variation of any A„ is made. Hence, linear
equations for the 2 ~ are obtained by differentiating
(A2.25) with respect to the A *, holding e„constant.
The matrix elements obtained using (A1.10), denoted
by superscript one, evaluated from (A2.15), (A2.8),
(A2. 16), (A2.21), (A2.22), and (A2.8), (A2. 12) succes-
sively, are

I
thus expressing Vn' in terms of the Fourier coeKcients Hnn' = &o&P P IlenÃlnn'+Q(kn' 0nn' +Vnn' )
of the potential

Vn=Q-' V(r)e 'xn'dQ.
0

(A2. 19)
L

+&' P (+ho~ (kn' Jtn'i /JL ))klnn n~' q

l 0

(A2.26)

and
For flattened potentials, (Sec. II), V(r) has the constant
value V, in Q„hence, V„'= V,O„' and is given by
(A2.14).

I

l-0
(A2.27)



SOLUTION OF ENERGY BAN D P ROB LE M I N SOLI DS 2545

Similarly, the matrix elements from (A1.11), super-
script two, have the form

L
IInn' —est i 2 Ileoiblnn'

L 0

L

+Q(k. k„.O.„"+V. )+r,s P Zi„,bi...
L 0

tained by differentiating (A2.25); instead of treating
the real and imaginary parts of A as independent
variables, it is convenient to use the linearly independent
combinations A, and A *.This leads to a set of homo-
geneous linear equations for the A,

N

P A, (B„.&'& —«„D, )=0, v=1 to E, (A2.33)

+rP P Ii, (j &; /j &n,)b»n, (A2.28)
l 5+1

(A2.29)

The equivalence of (A2.26) and (A2.28) also follows
directly from the useful identity, obtained by applying
Green's theorem (A1.5b) to two plane waves,

Q~n' Onn' &i ~n' p (j in'i /j / i)nbl 'nn
L=O

=Qk, k..o..". (A2.30)

Now to take the real part of the summation in
(A2.25), observe that all parts of II„, and D„, are
real, with the possible exception of V, which, how-
ever, always has the Hermitean property V = U

Thus, all parts which are real and symmetric in n, n',
or Hermitean, make a real contribution to the summa-
tion on combining the complex conjugate terms of
(A2.25) with coefficients A,*A and A *A,. This
leaves the contributions of the real but unsymmetric
parts of (A2.26) and (A2.28) which may be obtained by
making these parts symmetric with respect to n and n'.
Hence, we introduce the index-symmetric matrix
elements

L
H...&"&= e,ris P I„„b,nn, +QE(kns+k. ,s)0... /2+ V... j

L 0

L
+r" 2 t:~i.,'—s (&-ji-'/ji. '

L 0

+~ jnln'i /jln'i) jb inn' 1 (A2 31)
I

II„;is'1=esr, s P Ii„,bi, +Q(k„k„O "1V,„"]
0

L 00

+»' 2 ~lepiblnn'+sr 8 Q ()rnjlni/jini
L=O l L+1

+&nj'ln'i'/j ln'i)blnn' (A2 32)

for the matrix elements in (A2.25) and remove the real
part operator.

Note that if the l summation goes to inanity, the
original forms of the matrix elements (A2.26) and
(A2.28) are already index-symmetric. This is apparent
for H &'~, and is true for the equivalent form H &'& as
a consequence of (A2.30).

As noted above, linear equations for the 2 are ob-

and since H, „&') and D are Hermitean, to the com-
plex conjugate equations for the A *.In either case, the
condition for the solution gives the same secular equa-
tion from the vanishing of the determinant of the
coefficients

(A2.34)

whose roots e„are always real. '
Note that if V( r)=—V(r), corresponding to the

nucleus being a center of inversion, V„~ and the matrix
elements are all real, and the coeKcients A are then
real. This is the case for the lattices to which application
is made here. "

Finally, note that the matrix elements do not require
knowledge of the radial functions within S, but only of
certain quantities at r=r;, namely of the logarithmic
derivative at r, , ZL„; and of the integral Il„;which is,
in fact, the energy derivative of the logarithmic deriva-
tive at ee and on 5, —(r)Zi„;/r)es)

Symmetrized Form of the Secular Equation

The theory has been developed to this point without
explicit account of the symmetry of the lattice. How-
ever, at certain symmetry points and along certain
symmetry axes in the Brillouin zone, one may greatly
reduce the order of the secular equation which must be
solved to obtain accurate energy eigenvalues by taking
lattice symmetry into account in constructing the
matrix elements entering into the secular equation.
One notes that the accuracy of the representation is a
function of the number of plane waves which are in-
cluded in the expansion of the trial wave function; the
greater the depth of the expansion in k space, the more
accurate is the representation. The use of properly sym-
metrized matrix elements yields a smaller secular
equation and the same energy for a given number of
plane waves in the wave function expansion than the
use of unsymmetrized functions. Hence, one can obtain
greater accuracy at symmetry points than at general
points with the same labor in solving the secular
equation, or equal accuracy with less labor.

~7 Since the secular equation is not in standard form, this re-
quires an extension of the theorem that the roots of a Hermitean
matrix are real. Noting that the matrix D» is positive definite,
the matrix D»r "~H~~~ D~"11- " can be formed, whose secular
equation has standard form and has the same roots as (A2.33).

5 The relation was erst published by R. A. Silverman, Phys.
Rev. 85, 227 (1952); for a simple proof, see H. Brooks, Nuovo
Cimento 7, Suppl. No. 2, 165 (1958); see p. 197, specifically.
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Projection-operator techniques" are used to con-
struct the symmetrized matrix elements. A projection
operator has the property of projecting out of any arbi-
trary function the portion which transforms according
to a particular irreducible representation of the group. A
detailed discussion has been given by Schlosser, "who
has tabulated symmetrized combinations of plane
waves and matrix elements of the Hamiltonian for the
simple cubic, face-centered cubic, and zincblende
lattices, as well as the body-centered cubic lattice used
in the applications here. %e shall quote some results
from that discussion. Let p;; be the jth normalized
projection operator transforming according to the ith
row of the o.th irreducible representation of the group
of k defined by,

p, ,-= (~./g) P r, ,-*(R)R, (A2.35)

where r;p"(R) is the complex conjugate of the ijth
element of the representation matrix for operation R
of the nth irreducible representation of the group, q
is the dimension of representation 0., g is the order of the
group and the sum is over all the operations R in the
group.

The properties of projection operators can be used
to show that matrix elements of the Hamiltonian
between two symmetrized functions can be reduced to
a matrix element between a symmetrized and an un-
symmetrized function. Consider

vrhere

f.=—0(k.),
N„= (e„—)'",

and I„ is the number of independent elements in the
star of k„(that is, the number of different independent
k„'s which transform into each other under the opera-
tions of the group). We note that H;;, s( ~ &" has been
normalized over the cell volume Q. It follows easily"
that

H;;,si »"= (Q„,Hp; PP„)N„16„'6so;s . (A2.37)

Thus, we have reduced H;;,~pt'&" to a matrix element
between a symmetrized wave function and an unsym-
metrized wave function, and have demonstrated that
the Hamiltonian does not have matrix elements between
wave functions belonging to diferent irreducible repre-
sentations of the group of k, or between functions
belonging to diGerent rows of the same representation
when the representation is degenerate.

Therefore, making use of (A2.37), we can write the
symmetrized form of the secular equation for the o.th
irreducible representation of the group of k,

p A, N N„.(rl jg)

X(P r j( *(R)LHn(Rn') eeDn(Bn')] j= O,

H,;,si ~»"= (p,; p„)*—Hpg, (sp,dQN„N,

= (p;PP„,HpsPQ. )N„N„, (A2.36)
"G. Koster, Tech. Rep. No. 8, Solid State and Molecular

Theory Group, MIT, Cambridge, Massachusetts, 1956 (un-
published).

"H. Schlosser, J. Phys. Chem. Solids 23, 963 (1962).

m = 1 to N, (A2.38)

where II„(~„)and D ~g„) are obtained from the matrix
elements H„and D, , given in (A2.27), (A2.31), and
(A2.32), by substituting in these expressions Rk„
for k„ .


