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A Boltzmann equation technique is used to calculate the magnetic field dependence of sound, amplified

by interaction with conduction electrons in the presence of crossed dc electric and magnetic fields. It is
shown that both geometric resonances and cyclotron resonances can be found under conditions of amplifica-
tion. This occurs when the electron-drift velocity in the crossed fields, v&, has a component in the direction
of propagation of sound which exceeds the sound velocity v, . The geometric resonances occur under the
same conditions as in zero electric field, but the cyclotron resonances are Doppler shifted and occur for
co —q V~ ——mo, .

I. INTRODUCTION

ECENT experiments' ' have indicated that ampli-
fication of sound is possible in semiconductors and

~

~

semimetals, whenever the drift velocity of the conduc-
tion electrons in external fields exceeds the velocity of
sound. When we have a dc electric field acting alone,
the drift velocity is ve ———(er/nt)E, while in crossed
electric and magnetic fields, the electron drift velocity
is vier

——c(E&&H)/EP.
A complete theoretical treatment of the amplification

in zero dc magnetic field has been given which accounts
for the major experimental features of the amplifica-
tion. 4 ' In the case of finite magnetic field, however, the
calculations have been limited to treating the problem
in the high-field limit. Dumke and Haering and Hop-
field' have given phenomenological treatments of the
amplification of sound in semimetals and the author'
has given a like treatment of the amplification in ex-
trinsic semiconductors for crossed electric and magnetic
fields. Eckstein' has calculated the amplification in the
high-field limit as a function of the angle between the
drift velocity and the direction of propagation using the
Boltzmann equation. However, none of these treat-
ments are valid in the magnetic-field region where

geometric resonances and cyclotron resonances occur.
It is, therefore, of interest to examine the whole problem
of the electron-sound-wave interaction in crossed elec-
tric and magnetic fields using a Boltzmann equation
treatment which is valid for all magnetic fields in the
semiclassical limit.

In Sec. II, we use the model of a free-electron gas
developed by Cohen, Harrison, and Harrison' for the
conduction electrons in a solid, and in general, adopt
the formalism used by them. We shall only treat the

'A. R. Hutson, J. H. McI'ee, and D. L. White, Phys. Rev.
Letters 7, 237 (1961).' L. Esaki, Phys. Rev. Letters 8, 4 (1962).

3 R. W. Smith, Phys. Rev. Letters 9, 87 (1962).
4 G. Keinreich, Phys. Rev. 104, 321 (1956).
~ H. N. Spector, Phys. Rev. 127, 1084 (1962).' W. P. Dutnke and R. R. Haering, Phys. Rev. 126, 1974 (1962).
~ J. J. Hopfield, Phys. Rev. Letters 8, 311 (1962).
s H. N. Spector, Phys. Rev. 130, 910 (1963).
~ S. Eckstein (to be published).
'o M. H. Cohen, M, J.Harrison, and W. A. Harrison, Phys. Rev.
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case of propagation transverse to the external electric
and magnetic fields. It is in this case that geometric
resonances"" and cyclotron resonances" have been
observed in the attenuation. In Sec. III, we consider the
cas|.'of geometric resonances and in Sec. IV, the case of
cyclotron resonance. In our concluding section, Sec. V,
we give a discussion of the results of our calculation.

J=—troB s, (2.1)

where J and S are the total current and electric field

accompanying the sound wave and B is the diagonal
tensor,

(2.2)

Here, j is a unit vector in the direction of propagation,

"R. W. Morse, H. V. Bohm, and J.D. Gavenda, Phys. Rev. 109,
1394 (1958)."D.H. Reneker, Phys. Rev. 115, 303 (1959).

"B.W. Roberts, Phys. Rev. Letters 6, 453 (1961)."M. J. Harrison, Phys. Rev. 119, 1260 (1960).

II. FORMAL THEOR~

A. Constitutive Equation

In the model developed by Cohen, Harrison, and
Harrison, " the conduction electrons are replaced by
the model of a free-electron gas of density No. The sound
wave of wave vector g and frequency co manifests itself
as a velocity field, u ~ expi(q r —tot), in the background.
If we are considering the case of a metal or an extrinsic
semiconductor, the electron gas is neutralized by a
positive background of the same density No. For a
semimetal, the background is neutral, and the electrons
are neutralized in the absence of the sound wave by an
equal number of holes. "The formalism developed here
can be applied, with some modifications, to either model.
The interaction between the electron (and hole) gas
and the sound wave can be represented partly by means
of a self-consistent internal electromagnetic field and

partly by means of a deformation potential. The self-

consistent electromagnetic field induced by the passage
of the sound wave can be derived from Maxwell's

equations. In our case, the latter can be written in the
forTl1
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hosen to give the cor=o)/o)„'r, P= (c/os)'y, ando is the dc conductivity, y=co cv„r, = 2 and
i t epasma „q

The electronic current can be o aine
tribution function in the usu

~ ~

sual manner;

Jg= —e dv vf, (2.3)

nt. The Boltzmannhe total electronic current.where j, is th
which the distri u io

termined in the presence o externa
netic field is

Bf Bf e v)&VUGH 8—+v ———8,+E+
Bt Br m

(f f.)—
(2.4)

4
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' '
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' '
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~ ~
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' ' '

rini distribution,) is the equilibrium Ferin'where fp(V, E)&q is e

f(r,v, t) =
dt'

t) —(t—t')/ tf, r,v, e (2 6)

istribution function to first order inp ' g
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h t th Bolt toIt has been shown that t e o zm
be solved by a method due to Cham ers.
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t'e (g ')~ e
Ep7 BI' BE

fi=—:1 e

(2.8b)
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The electronic current w ic is p
constitutive equation is

2 EI p

R= —— dV
3 Epv, r

~fo ~'fo
d1 el(t )v + 5$vlr' (v —v)

BE BE'

Bfp 8 fp
dl el(t ) + ttzv~' (v —v)

BE BE'
(2.10a)

l9 p 8fp
e ~ rtlv (o)trwt; 'vtt-dt'e" (') (to,rz+g)

BE BE2

e PgGD 7
(2.10b)

(2.10c)

dVV

1+(o),r)'
f (&') =o[a ("—r) — (&'—&)3+(1'—«.

Ph s. oc. 5 458 (1952); A2M, 544 (1957).
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The equation of continuity relates the nonuniform
part of the electron density S& to the current along the
direction of propagation; i.e., jj=—S~ev, . Defining
a tensor R by means of the relation

R'je= Rg'jg,

we can rewrite (2.9) in the form

j,=~pe'(8, —(mu/er))+o pX' 8,

(2.11)

(2.12)

B. The Absorytion CoeEcient

The quantity of interest experimentally in studying
the interaction between the sound wave and the elec-
trons is the absorption (or amplification) coefficient n.
This coefficient gives the exponential decay (or growth)
of sound intensity with distance. The absorption coeK-
cient is the average power density transferred between
the sound wave and the electrons (or holes) per unit
energy Aux, or

(2.14)

where p is the density of the material.
In a semimetal, the net power transferred per unit

volume is

Q=s Re 1 '8 +j '8 ((» ) u)

where

e'= Ll —Rj-'(o/op), X'=
l I —Rj-'(X/~o). (2.13)

If we have holes present as in a semimetal, then we can
write an identical constitutive equation for the holes
with e replacing —e everywhere in (2.10) and (2.12).

—~oB 8= J.+¹eu. (2.19)

Substituting (2.12) and (2.19) into (2.18), we can now

obtain n for an extrinsic semiconductor. Here, too, the
interaction is appreciable only when there are strong
deformation forces acting. "In this case we have

Xpt5 g'C'pl t'co )
I

—
l

Rej.[e'+X'+B] ' j. (2.20)
pp r mv.

Because 8&1 in extrinsic semiconductors for frequen-
cies greater than 1 Mc/sec, we need calculate only the
diagonal component of the conductivity tensors in the
direction of propagation to determine o. in both semi-
conductors" and in semimetals.

C. The Conductivity Tensor

The coeKcient of absorption is now specified in terms
of the conductivity tensors e' and X'. The present task is
to evaluate explicitly the integral expressions (2.10a)—
(2.10c). We first note that for arbitrary g(v)

the interaction, we 6nd

&= (2¹+/pcs) (q C tt/mess)spoor Reg (e'+X') j,
(2.17)

where P is a unit vector in the direction of polarization
of the sound wave.

In an extrinsic semiconductor, the net power trans-
ferred per unit volume is

Q= sr ReLJ,* 8,+ (qua/er) (J.+¹eu)j. (2.18)

The self-consistent field arising from Maxwell's equa-
tions in this case is

Xomu*
((»)-u), (2 15)

Bfp 3 Ep
dvl g(v) =

BE 8 prEpo
dQ g(vp), (2.21a)

where the subscript e denotes quantities associated
with the electrons and h denotes those associated with
the holes. The self-consistent electric field arising from
the electron and hole currents is

B fo)
lg(v) = ——

Bs' j 8a Epomep'dv

—opB 8= J,+Js. (2.16)
dQ g(v) l, , (2.21b)

Using (2.15) and (2.16) together with the constitutive
Eq. (2.12), one can now calculate n for a semimetal.
For semimetals, the forces arising from the deformation
potential dominate the electrostatic forces for sound
frequencies greater than a megacycle. In fact, it is only
in the region where the deformation forces are strong,
that we have appreciable interaction between the sound
wave and the conduction electrons in materials with
low-carrier densities such as semimetals and semi-
conductors. "When the deformation forces do dominate

so that g(v) need only be evaluated for a= v~.
We also note that in the expressions for the absorp-

tion coeffKient (2.17) and (2.20), o and X occur only
in the combination T=e+X, T'=e'+X'. Since we

are interested primarily in phenomena which occur
when the electrons can go along an orbit several times

"H. N. Spector, Phys. Rev. 125, 1880 (1962)."This can be seen by writing out the tensor appearing in (2.20).
We have

'7 Another case where the interaction between the sound wave
and the electrons can be quite large, even when the carrier densi-
ties are low, occurs when there is a large piezoelectric effect as
in CdS.

where A = (0,„'+Z,„')(o„,'+Z„,')/o»+Z„„'+sk, and we chose
the x axis to be in the q direction. When P&&1, A is negligible com-
pared to the other term in the denominator.
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before being scattered, we can use the condition co,r))1 in the direction of q, the y axis in the direction of E,
in evaluating the expression for the tensor T. and the s axis in the direction of H. In this coordinate

We choose a coordinate system having the x axis system, the relation between (r,v) and (r', v') is

v~ = vg cosLpog(t —t)+$]—vier cospog(t —t)+vtr ~

v„'= v, sinL(o, (t' —t)+y$ —vs sin(o, (t' —t),

v, =v„, v, =v sin8, v/[ v cos8 vrr cE/H,

x' =x+—{sinLco, (t' —t)+Pj—sing} ——sino&. (t'+ t)+vs�(t' —t), (2.22)

y'= y ——{cosLpo. (t'+ t) +Qj—cosQ}—L1—costa, (t' —t)),

s'= s+v„(t'—t),

where cu, =eH/mc is the cyclotron frequency and 8 and P are the polar angles of v.
The integrals that occur in the expressions for the conductivity tensor are evaluated explicitly in the Appendix.

Using the results of the Appendix, we find the following expressions for the components of T and R:
30'p Vlr 1 +~ J„(XV~/Vp)— Ve

+— g (Xng„)/(X) — (1—i(or)Jp.'(2X)
Vp X ~~ ~, A=+i(N —m)(o, r Vp

(2.23)

+~ J„(XVII/VF) ~a
Z.=— P rtg„(X)— Jp.'(2X)

po, —Xyi(e m)(u, r— Vr

where X= Vqp/co„X=1 i~tlr, and p=—1—v&/ve. In deriving (2.23), we have dropped terms that are smaller by
a factor of the order of (ve/vp)' and (v~/vp)' than the remaining terms. In semirnetals and degenerate semicon-
ductors, the ratio of the sound velocity to the Fermi velocity is of order 10 . The ratio v&/vz is also much less
than unity for all attainable electric fields in conducting solids. In any case, our linear Boltzmann equation treat-
ment would no longer be valid if the drift velocity of the electrons became larger than the Fermi velocity. The
functions g„(X) are those defined by Cohen, Harrison, and Harrison" in their paper.

The expressions (2.23) can be rewritten in the form

30p

(qt)'

1—
ZCO&

+ J (XV~/Vp)P(X imu, r)g (X—)+iqVzzr(J& '/X)(2X)j

A+i (e tN)(o,r—n, es=oo

+ (J XVH/Vp)$(X i @co,r)hg (X)—+iqVlrr(1 ia&r) (Jp„'/X)—(2X)$
iqV~r—+X (2.24)

n, vn= —oo A+i (e es)(u,r—

This was done by noting that

g„(x)=1, Q J (Xv~/vp)=1,

radius, i.e., when X is of order unity. In this case, co, is
greater than ~ (by a factor of order vp/ve), X(viz/vr)&&1,
and if in addition ~cv.r/) ~))1, we obtain for the con-
ductivity tensors

mJ„(Xv~/v p) =Xv~/v p.

The latter two relations are derived in the Appendix.
It now only remains to evaluate (2.24) in the regions of
interest and to calculate the absorption coefIicient 0..

III. GEOMETRIC RESONANCES

We expect geometric resonances to occur when the g
phonon wavelength is of the order of the classical orbit

30p
&L1

—gp(X)1
(qt)'

(1—mr) Jp'(2X)-
pqv~r 1—gq(X)+—

X

iqv~r Jp'(2X)—
1—gp(X)—

(3.1)
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r'
\2

\
(UT» 5

where the subscript j denotes the direction of polariza-
tion. Therefore, we see that we have amplification of
the sound wave instead of attenuation whenever v~ ex-
ceeds v, . We also note that we have maxima in the
ampli6cation and the attenuation at 6elds such that

a 0—
ao

cue» 0.5 vrI [1—gp(X)]

vs

(3.5)

0.5 1.5 2.0 2.5

where the upper sign corresponds to ampli6cation and
the lower to attenuation. The value of the absorption
coeS.cient at these maxima is

VI

FIG. 1.The ratio of the absorption coeKcient at finite dc electric
Geld to that at zero field is shown as a function of Vyr/V, g for
X=3, an() for op~ =0.5 and co7- =5. As cur increases, the positions of
the maxima move towards Va/Vs=1.

If the condition ~&v,r/h ~))1 is not satisfied, then terms
with ~N

—m~ higher than zero enter. That these terms
of higher

~

ts —m~ tend to wash out the oscillations can
be seen from the relation

Z g-(X)=1

3Xmuo C .

,) (
—

) co(x), (3.6)

and is independent of the relaxation time. The value of
the absorption coeKcient at these maxima increases
linearly with frequency. As the relaxation time, T, goes
to infinity, the maxima in both the ampli6cation and
the attenuation occur at p=0. The behavior of (3.4)
as a tunction of vrr/vs is shown in Fig. 1 for X=3 and
for o)T=0.5 and coT=5.

In the high-field limit, X(&1, and we can use the
following limiting form for go(X):

and the slow variation of the frequency denominator
with field in the range where or,&)co.

The effective conductivity tensor T' has the follow-

ing form under the above conditions:

it[1—go(X)j
T* '=

(re)' Is+ [1 go(X) j/—
(3 2)

In obtaining (3.2), we have again dropped a term of
order (vH/vi)s, and have used the following relation-
shiP'o between the functions gp(X), gi(X), arid Jp (2X):

gp(X)+Jp'(2X)/X —g, (X)=0. (3.3)

Using (3.2) in (2.17), we find the following expression
for the absorption coeKcient of a semimetal:

6+ops + q 'l (p rp(v. /vF) go(X)[1—gp(X)$

pv, mv, si (cppr)s+[1 —go(X) js

gp(X) = 1—-',X'. (3.7)

Using (3.7) in (3.4), we find that the absorption coeffi-
cient of a semimetal in the limit of high magnetic 6elds ig

2%pm C„' p ((u,r)'
M T (3.8)

pv mv ' p'((p r)'+-'((tl)'(v /v )'

while the maxima in the absorption coefFicient occur
when

qt vp——1&—
v,. 3 ((p,r)' v,

(3.9)

These results agree with those derived by Dumke and
Haering and Kckstein' in the high-6eld limit. In the
limit of zero dc electric field, (3.4) reduces to Harrison's
result '4

For degenerate extrinsic semiconductors, we can ob-
tain the absorption coefficient by using (3.2) in (2.20)

q~PTgo X 1—go X

6 pvs 1/Vi ' (p

[1—go(X)]' 1+-
I

—
I + (~pr)' 1—go(X)+-I

3 vi „i 3&v,

(3.10)

Here, we also have amplification whenever v~/v8) 1. The maxima in the absorption coeKcient occur at fields
such that

1+l(v /v )'( / )'

1+5(V~/Vs)'(~/~. )'—go(X)-
» This relationship can readily be seen from E(l. (A1) in Ref. 10.

(3.11)
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where again the upper sign corresponds to amplification and the lower to attenuation. The value of the absorption
coefBcient at the maxima is

1 (1Vo /pV )(C ~/~V ) ( / „)qgo(X)
Aj=&—

12 [1—go(X)+ l(V /U )'( / .)'][1+l(V /U )'( / .)'j
and is again independent of the relaxation time. The
behavior of the absorption with dc electric field is essen-
tially the same as in semimetals. In the high-field limit,
(3.10)—(3.12) reduce to the expressions previously de-
rived for this case. '

IV. CYCLOTRON RESONANCE

In zero dc electric field, we get cyclotron resonance
effects when the phonon frequency is of the order of
the cyclotron frequency. When we have a net drift
velocity along the direction of propagation in the ex-
ternal fields, we expect the frequency at which resonance
occurs to be Doppler shifted from co to ~p. In these
circumstances, the frequency denominators in the
conductivity tensors (2.24) can become small, and the
possibility of oscillatory behavior arises. Under this
condition, X will be very large, since X= (zrr;/zr, ) (&o/~, ).
Thus, it will be convenient to take the asymptotic form
for the tensors in (2.24). The asymptotic forms for the
functions g„(X) and Jz„'(2X)/X are'0"

g„(X)= (1/2X)+0 (X "')
(4.1)

(Jz„'(2X)/X) =O(X "') .

These expressions are valid only for X&n; when e
exceeds X, g„(X) and Jz '(2X) become small. Hence,
if we take the asymptotic forms for g„(X), etc. , in
evaluating (2.24), we make an error of the form of the
final term in the following equation:

a-(X)

~ A+i (rz zrz)id—,r 2X ~=~ A+i(zz zrz)co—.r

2(7,

inure,

r)—1

2X ~-& (X—izrzv, r)z+ (zzar, r)z
(4 2)

The last term may be estimated by replacing the sum-
rnation by an integration over 1z, and the term is found
to be of the order of 1/(qt)', whereas the first term is of
order 1/q/. We are interested in the case where &or is

large; hence, q/ will be large, and we can retain only
the first term which may be evaluated directly, noting

tT! r
thr=oO

J (XUzz/VF)(X zmv, z) —+ Uzi + 1

J X P —izrza), r)
A+i(rz —zrz)~.r ~= Vr: r =— X+ip(u, r

= (1 iur)—7l M cT 2~Ã 1
+

GDgr iran . cogT 9=i (ll h/cv—gr)+p zr

(1—i(or)
rr coth . (4.3)

COc7c

We can now obtain the limiting expressions for T and R where

R,= (1/i(or)
)& [1—(1—i~r) (rr/2ql) coth (rrX/&e. r)j.

zr tanh(rr/(u. r) sec'(cozzzr/~, )

2ql tanh (rr/zo. r)+ tanz (urzzrr/(a, )

ta,n (~zzrr/~, ) sech'(rr/~. r)

2q/ tanh'(rr/ce, r)+ tan'(~zzrr/&o, )

The effective conductivity tensor T' has the form

3izr, 1—(zr7i/2q/) coth(iran/~. r)
(4.5)T-'=—

qlzr~ 1—(zr/2ql) coth(re/or. ~)

A+i 8= (zr/2q/) coth(iran~/e, r) . (4.7)

)& [1—(rrli/2ql) coth(rrlr/~, r) j, From (4.7), we can write down the following expressions
for the real and imaginary parts of coth(n4/a&. r):

in the region of cyclotron resonance.
Using (4.5) in (2.17), we find that the absorption

coefhcient of a semimetal can be written as

3N&zrz / C„' v, z zz[A (1—A) —LP]
, (4 6)

pzr, kzrzzr, ' zr (1—A)'+8'
"P.M. Morse and H. I'eshbach, Methods of Theoretical Physics

(McGraw-Hill Book Company, Inc. , New York, 1953), Vol, 2,
p. 1321.

From (4.6) and (4.8), we see that we have oscillations
in the absorption coeKcient as long as ou, 7&1. Since
the sound frequency has to be of the same order of
magnitude as the cyclotron frequency, this means that
we require ~r&1. When this condition is not satisfied,

~ E. T. Whittaker. and G. N. Watson, A Course of Madere
Ari,alysis (Cambridge University Press, New York, 1950), 4th ed. ,
p. 136.
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5.0
R
O
1- 2.5
'C
O
~20
O.E

l.5

Cl
l.O

0 05 I.O l.5 2.0 2.5

Fio. 2. The normalized absorption coeKcient 2npVs/3Ãsmncu
)& (C;/m Vs ) (Vs/Vp)s is shown as a function of the ratio of the
sound frequency to the cyclotron frequency. The product of the
sound frequency and the relaxation time, co7., is taken equal to
ten and Vs/Vs is taken equal to three. The positions of the
maxima are Doppler shifted from their values in zero dc electric
field.

the oscillations are damped out. The maxima in the
coefficient occur whenever or@=mo„so that the positions
of the cyclotron resonance are Doppler shifted from
their value in zero electric 6eld. We also see that we get
amplification whenever vJI& v, .

Since we are interested in the case where q/&1, we
can neglect 2 and 8 with respect to unity, and (4.6)
reduces to

3/emvco/C„~' v, xX
rr, =-

~ ~

—p Re coth . (4.9)
2 pv, kmv, 'i v p 07gT

V. DISCUSSION

In our calculations, we have found that geometric
resonances and cyclotron resonances in the sound-wave

intensity can occur under conditions of amplification.
This happens when the drift velocity imparted to the
conduction electrons in the crossed electric and mag-

From (4.9), we see that the amplification is independent
of the relaxation time as long as or,v & 1.This expression
is displayed in Fig. 2 for co7 =10 and p= —2.

For extrinsic semiconductors, using (4.5), (4.7), and
(2.20), we find that the absorption coeKcient is

1 Epmxvp
Q'=

12 pcs

(C,~/mv, s)'(ce/to„)4qp Re coth (re/oi. r)
X (4.10)

L1+s (v./»)'(~/~ p)']'

where we have neglected terms of higher order in 1/ql.
In this case, as in semimetals, we get Doppler-shifted
cyclotron resonances under conditions of ampli6cation
when vrr& v, . Both (4.9) and (4.10) reduce to the ordi-

nary cyclotron resonances when v~=0.

netic 6elds is greater than the sound velocity. Under
these conditions, the conduction electrons can radiate
phonons in analogy with the Cerenkov radiation of
light in a medium. This analogy has been developed in
more detail by Eckstein' who pointed out that there
would be a resonant transfer of energy between the
electrons and the sound wave when the energy de-
nominators which appear in the conductivity tensors
vanish. When the phonon frequency is of the same order
of magnitude as the cyclotron frequency, this vanishing
of the energy denominator leads to cyclotron resonances.
The frequency at which this cyclotron resonance occurs
is Doppler-shifted from its value in zero dc electric
6eld because the electrons now have an average drift
velocity in the direction of propagation. When the
cyclotron frequency becomes much larger than the
sound frequency, the vanishing of the energy denomi-
nators can only occur when co—q vII=0. Then, the
electrons drifting in the direction of propagation under
the inhuence of the crossed fields are moving in phase
with the sound wave and we get a resonant transfer of
energy. We see that we get maxima in both the attenua-
tion and the amplification which occur when this condi-
tion is satis6ed in the limit of in6nite relaxation time.
When the electrons have a finite relaxation time, the
maxima move away from the position of the resonance.
When err«1, the resonance is damped and the maxima
will not occur at attainable values of the electric field
conducting solids. In this case, the amplification in-
creases linearly with dc electric 6eld and resonant be-
havior is not observed. When ~v))1, the positions of
the maxima move to the position of the resonance. This
is similar to what happens to the resonances in the
tilt effect."

Another way of seeing how this resonance condition
arises is to look at the laws of conservation of energy
and momentum in the electron-phonon interaction.
These conservation laws are satisfied when the fre-
quency denominators vanish. However, to have the
energy of a phonon defined in this interaction, the
phonon energy h&o, must be greater than A/r because
of the uncertainty principle. Rewriting this in terms of
the phonon frequency gives us the condition ~r & 1, for
observing the resonance behavior.

The occurrence of geometric resonances and cyclotron
resonances in the ampli6cation presents the possibility
of studying these effects under more favorable circum-
stances than is possible at present. For cyclotron reso-
nance, we require or 7 & 1, and at frequencies high enough
to satisfy this condition, the attenuation is usually to
large to measure anything conveniently. Under condi-
tions of amplification, however, this problem would not
arise. We would only get large amplification factors at
the points where the resonances occur for ore))1.

Because the maximum amplification increases with
frequency, we would be able to obtain high-intensity

~ H. N. Spector, Phys. Rev. 120, 1261 (1960),
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acoustic waves in the high-frequency region. In these
higher frequency ranges, we can only generate low

intensity acoustic waves by other methods. '4

The mechanism discussed in this paper for amplifying
sound waves in a magnetic field can only be applied in
semimetals and semiconductors. In metals, the conduc-
tivity is too high to obtain the dc electric fields needed
to cause v& to exceed e,.Also, we would have very large
amounts of power to dissipate in metals. In semimetals
and semiconductors, on the other hand, the lower
carrier densities allow us to obtain the necessary dc
electric 6elds in the material and the amount of power
dissipated becomes more reasonable.
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This can be evaluated by noting that "

allows us to do the integration over s in (A1). We now
obtain

APPENDIX
+00

expis sing= g e'"&J„(s). (A6)

The integrals that occur in (2.10a)-(2.10c) are similar
but more complicated than the integrals that usually
occur when considering the wave number and frequency
dependence of the conductivity tensor in magnetic
6elds. " Since the T„component of the conductivity
tensor is the most important component in our calcula-
tion, we will evaluate it explicitly. The other corn-

ponents of T and R can be evaluated in a similar
fashion.

Using the condition co,r))1, and the equations of
motion of the electrons, (2.22), we can write T„=o„
+Z„ in the form

OQ -X
T,= —e' dvv dse ~'i'exp i (v„' v„)— —

0 'Vg

8fo 8'fo v„'
&& (v, '—v~) +mv„- v.' —v. l, (A1)

BE BE ppgr

where we have used the change of variable, s= t—t'. We
can rewrite the product, v, ' exp(ixv„'/v$), as

v, ' exp(iXv„'/v p)
= —(1/iq) $(d/ds)+iqv~ l exp(iXv„'/v p) (A2)

and integrate (A1) by parts. This together with the
relation

v„' exp(iXv„'/vJ ) = ivy (d/dX) e—xp(ixv„'/v$) (A3)

Then we have

g„'(X)= (1/X) L J $ „(2X)—g„(X)j
g„"(X)= (2/X)LJ$„'(2X) —g '(X)). (AS)

The use of these relations allows us to write T, in the
form (2.23). We can evaluate the integrals that occur in
the other components of the conductivity tensor in an
analogous manner.

It can be seen directly that the summation,

+~ ( v~)
Z ~„l x—I=1,

vv)

can be obtained from (A6), by setting /=0. The
summation,

+~ ( va) va
g ~z.lx—l=x—,

vy) v$

+~ e'"&J„(xv sin8/v$) J (Xv~/vv)
~(8,y)=r P . (A7)

),+i (I m)co.r—

The integration over the angular coordinates 8, P
can be done using the same kind of relations. We end
with the functions g„(X), and their derivatives after
using (2.21a)—(2.21b). Using the definition of the func-
tions, g„(X), we find that

24 H. E. Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234,
(195g) ~ 2 29g (1959). 3 g3 (1959) F H jaQQb$$Q ibid 2 249 can be done by taking the derivative with respect to f,
(1959); N. S. Shiren, ibid 6, 16g (1961).. of both sides of (A6), and then setting /=0.


