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phasized, however, that the absolute sign of the hyper-
fine interaction was not measured for either atomic
state in the present experiment.

DISCUSSION

The measured nuclear spin I=-,' for Ge", while
entirely consistent with the nuclear shell model, could
not be theoretically predicted with con6dence because
of closely competing orbits. The simplest interpretation
is that the angular momentum is due entirely to the odd
neutron in the spits orbit. The shell-model magnetic
dipole moment expected from this conhguration is

+0.64 nm, in close agreement with both the measured
value of +0.65+0.20 nm and the value & (0.62&0.06)
nm deduced theoretically from the measured value of
a(sos).
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A new method is developed for determining the distortions (polarizabilities) induced in electronic dis-
tributions by valence electrons and/or crystalline fields and their effect (expressed as Sternheimer shielding
factors) on magnetic and electric hyperfine interactions. For illustrative purposes emphasis is placed in this
paper on the calculation of Sternheimer antishielding factors (y„). Working within the framework of the
Hartree-Fock self-consistent field formalism, it is shown that the 'angular' excitations are gotten by relaxing
the usual restriction that the spatial part of the one-electron functions be separable into a radial function
times an angular function; relaxing the restriction that electrons of the same shell but differing in magnetic
quantum number (mi) have the same radial function yields the 'radial' excitations. To illustrate the method,
calculations are reported for several spherical iona (Cl and Cu+) in an external field, but the scheme is also
applicable to the problem of induced electric quadrupole (and magnetic dipole and higher multipole)
distortions of an ion by its own aspherical charge distribution. The problems of orthogonality, exchange,
and self-consistency, which have complicated applications of the perturbation method are easily resolved by
this approach. Further, since a self-consistent field procedure is followed, the distortions induced in the
inner closed shells by the distorted outer shells are included in a natural way and by comparison with the
results of the perturbation-variation method (which does not take these into consideration) these additional
effects are shown to be significant.

I. INTRODUCTION

q LECTRIC quadrupole and magnetic dipole inter-
~ actions between atomic nuclei and outer electron

distributions have been measured in atoms and mole-
cules, and in metals and salts by a variety of methods
and most recently by recoilless emission and absorption
of p rays (the Mossbauer effect). As emphasized by
Sternheimer, ' the interpretation of these experiments

*Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey; part of the work of this author was done while on
a National Science Foundation postdoctoral fellowship.

t Present address: National Magnet Laboratory, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts.

t Supported by the Air Force Office of Scientific Research.
' R. M. Sternheirner, Phys. Rev. 80, 102 (1950);84, 244 (1951};

(such as the measurement of the nuclear quadrupole
moment Q) is complicated by the contributions to the
hyper6ne interactions arising from the distortion of the
otherwise spherical closed electronic shells of the sys-
tem. One of Sternheimer's important contributions was
the striking demonstration that, for an ion having a
nuclear quadrupole moment, the quadrupole interac-
tion arising from the Geld induced (1) by external
charges (as in a salt) or (2) from the ion's own aspheri-
cal charge distribution (if the ion is not spherically sym-
metrical) was changed appreciably by the distortion

96, 951 (1954); 107, 1565 (1957); 115, 1198 (1959};123, 870
(1961); 127, 812 (1962); R. M. Sternheimer and H. M. Foley,
ibid. 92, 1460 (1953). H, M. I'"oley, R, M. Sternheimer, and D.
Tycko, ibid. 93, 734 (1954).
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of the ion's closed shells. Following Sternheimer's
pioneering investigation, ' much work has been done
using the perturbation techniques which he developed;
more recently Das and Bersohn have used' a (less
precise) analytic function, instead of the more laborious
numerical integration procedure in solving the perturba-
tion theory equations.

In this paper, ' we develop a method for calculating,
within the Hartree-Fock formalism, the distortions in-
duced in electronic distributions by valence electrons
and/or crystalline fields and their eGects on magnetic
and electric hyper6ne interactions. The method was
anticipated by Nesbet" in his work on the symmetry
characteristics of Hartree-Fock orbitals. For illustrative
purposes emphasis is placed on the calculation of
Sternheimer quadrupole polarizabilities and antishield-
ing factors (y„) of Cu+ and Cl . Since a self-consistent
6eld procedure is followed the distortions induced in
the inner closed shells by the distorted outer closed
shells are included in a natural way and by comparison
with the results of the perturbation method (which
does not take these into consideration) these additional
eGects are shown to be signi6cant. The problems of
orthogonality, exchange, and self-consistency which
have complicated applications of the perturbation
method are easily resolved by this approach. Although
the present results are for spherical ions in an external
field our method is also applicable to the problem of
induced electric quadrupole (and magnetic dipole and
higher multipole) distortions of an ion by its own
aspherical electronic charge distributions (e.g. , 3d or 4f
electrons), a problem recently highlighted by Mossbauer
measurements. In contrast to the present approach,
perturbation theory calculations for these are difficult
to carry out.

II. PERTURBATION-VARIATION METHOD

The perturbation theory approach to the problem of
the polarization of electron shells of atoms and ions has
been discussed previously at length. "' Some brief
details are given here in order to provide for making
comparisons.

Writing the Hamiltonian in the usual form, H=Hp
+Hi, with Hp the unperturbed Hamiltonian and Hi a
perturbing potential, the erst-order perturbation f, (r)
to the perturbed solution, fp(r), is determined from the
relation

(Hp —Ep)fr(r) = (Hi Ei)gp(r)

which is the second-order perturbation theory relation.

' T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).
3 A preliminary report of this work was given earlier by A. J.

Freeman and R. E. Watson Bull. Am. Phys. Soc. 6, 166 (1961)."R.K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
4 For a complete review see A. Dalgarno, in A deances in Physi cs,

edited by N. F. Mott (Taylor and Francis Ltd. , London, 1962),
Vol. 11, p. 281,

'See also A. J. Freeman and R. W. Watson, in Treatise on
Nugaetssm, edited by G. Rado and H. Suhi (Academic Press Inc. ,
New York (to be pubiished)g.

Here,

Eo=QoIHoIPo&, E =(4oIH ly, ), and (Aly, &=0.

Equation (1) has been solved in two distinct ways:
(a) directly by exact numerical solution, as was done
by Sternheimer and collaborators' and (b) by the ana-
lytic approach of Das and Bersohn' in which the radial
part of Pi(r) is assumed to be related to the radial part
of Pp(r) by

(2)

and the parameters a are determined by minimizing
the second-order perturbation energy with respect to
variation of these parameters. This technique has the
advantage of being easier to carry out than Stern-
heimer's but is inferior because full variational freedom
is not accorded to Ni' (e.g. , if Np' is a noted function
then Ni' is constrained to have the same nodes). In
more recent applications the problems of properly
maintaining orthogonality, self-consistency, ~ and in-
cluding exchange, ' have been emphasized.

Since for quadrupole interactions the perturbing
potential Hi has Fss(e, p) symmetry, perturbed orbital
character will be mixed into the unperturbed orbitals,
P, in the following ways:

where the X; are normalization constants. The mixing
of a f' of l in common with P is called a "radial"
excitation whereas the P' components having t+2 are
called "angular" excitations.

Sternheimer first discussed the two cases already
referred to: (1) Hi arising external to the ion and (2)
H~ due to an aspherical unclosed electron shell within
the ion. Case (2) and, in particular, the associated
magnetic hyper6ne eGects will be discussed in subse-
quent papers; in what follows we outline our method
and present results only for case (1).

For a quadrupole potential due to charges external
to the central ion, the interaction with the nuclear
quadrupole moment, Q, is given as e'qQ, where q is the
external charge electric-field gradient at the nucleus.
Sternheimer found that the external potential distorted
the electron shells of the ion and that this distortion
also interacted with Q giving a total interaction of the
form

H.="'Q(1-v.)
Here y„ is the Sternheimer antishielding factor. For ions

'R. Ingalls, Phys. Rev. 128, 1155 (1962).
r A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1959)

and references listed in reference 4.
The methods discussed in references 1 and 2 are essentially a

Hartree perturbation theory. More recently, exchange has been
introduced into the formalism by A. Daigarno (reference 7); S.
Kaneko, J. Phys. Soc. (Japan) 11, 1600 (1959); and L. C. Allen,
Phys. Rev. 11S, 167 (1960).
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consisting of more than closed s shells, y„ is negative
and large (typically —10 to —100). The "radial" con-
tributions to y„are generally much larger than (and
of opposite sign to) the "angular" contributions.

III. HARTREE-FOCK SELF-CONSISTENT FIELD
METHOD AND QUADRUPOLE

POLARIZABILITIES

Spin (or exchange) polarized Hartree-Fock calcula-
tions have recently played a prominent role in under-
standing magnetic hyperfine interactions. ' As has been
previously discussed, such calculations involve relaxing
the restriction imposed on conventional atomic Hartree-
Fock solutions that electrons in the same shell but
differing in spin (i.e., ns, quantum number) have the
same radial wave function.

The I, restriction is not the only one imposed on
H-F solutions. ' Two other constraints, which concern
us here, are: (a) that the spatial part of the one-
electron functions be separable into a radial function
times and angular function (for free ions this is a single
spherical harmonic) and (b) that electrons of the same
shell but of differing magnetic quantum number (m~)
have the same radial wave function. Restrictions (a)
and (b) are called the "symmetry" and "equiva, lence"
restrictions, respectively, by Nesbet. "These restrictions
lead to the shell structure description of atoms, mole-
cules, and solids but are only rigorously valid for closed
shell atoms; their imposition gives not only a physically
simple picture of electronic systems but also allows the
computations to be of reasonable magnitude. By anal-

ogy with the well-known spin polarized H-F calcula-
tions one may conveniently define calculations in which
restriction (b) is relaxed as "orbitally" polarized H-F
calculations.

Ke have investigated the physical consequences of
relaxing conditions (a) and (b) and have found that
quadrupole polarizabilities and Sternheimer antishield-
ing factors can be obtained by these means. Relaxing
(a) results in "angular" distortions of the electron
shells whereas relaxing (b) yields "radial" distortions.
LEquation (3) was written so as to make this appear
more self-evident. ] The method is applica, ble to the
distortions due to either the case of an external per-
turbing field" or that arising from an ions's aspherical
charge distribution. For a purely ionic crystal "po-
tential, " such as the one we discuss in this paper, only
electric hyperfine effects are induced"; the case of

' See, for example, reference 5 and R. K. Watson and A. J.
Freeman, Phys. Rev. 120, 1125 (1960); 123, 2027 (1961), and
references therein.

M For example, external electric hexadecapole antishielding
LR. M. Sternheimer, Phys. Rev. 123, 870 (1961)j has been
investigated with perturbation methods. Also, for the case of
external magnetic 6elds, the shielding arising from the second-
order paramagnetic susceptibility (Van Vleck paramagnetism)
may be calculated by the present scheme.

"A crystalline exchange potential can induce magnetic hyper-
6ne terms by polarization. See, for example, A. J. Freeman and
R. E. Watson, Suppl. J.Appl. Phys. 34, 1032 (1963) and reference
5.

induced magnetic and electric hyperfine interactions
due to an unclosed shell with the ion, will be discussed
in a future paper.

A. Method of Computation

For simplicity, consider a closed shell ion (e.g. , Cl
and Cu+) in the field of a single external point charge a
distance E away. In atomic units, the quadrupole term
of the potential expanded in spherical harmonics and
powers of r (the distance from the nucleus having
quadrupole moment, Q, to some point P), is simply

where Z is the magnitude of the point charge and
Q(2,0) is the normalized spherical harmonic defined by
Condon and Shortley. In order to carry out the com-
putations, we include V, in our free ion Hamiltonian
and rederive the Hartree-Fock equations. These equa-
tions are then solved (in principle) in a straight-
forward way; in practice, only the radial antishielding
terms have been obtained as this can be done with
existing H-F computational machinery. The less im-
portant angular distortions require a H-F treatment
involving functions of mixed angular character and
can be obtained if one utilizes and extends existing
analytic H-F techniques. " Since any errors associated
with crude estimates of angular antishielding tend to
be dwarfed by inadequacies associated with the crystal
field model used in y„ investigations (to be discussed
later), the effort necessary to extend the H-F com-
putational machinery to include angular antishielding
did not seem warranted here.

The computations were done with analytic H-F
methods used and described previously. ""A quadru-
pole field due to an external charge distribution was
included in the Hamiltonian from which the H-F
equations were derived, subject to restriction (b) being
relaxed. In the solution of these equations, the ion's
shells were self-consistently distorted and the quadru-
pole interaction of these distortions with the ion's
nucleus then yielded'5 y .

Using this scheme, calculations have been done for

"For details on the analytic approach see C. A. Coulson,
Proc. Cambridge Phil. Soc. 34, 204 (1938); C. C. J. Roothaan,
Rev. Mod. Phys. 23, 69 (1951);R. K. Nesbet, Rev. Mod. Phys.
(to be published) and reference 3a.

"See, for example, R. E. Watson, Technical Report No.
12, Solid State and Molecular Theory Group, MIT, 1959
(unpublished) ."R. E. Watson and A. J.Freeman, Phys. Rev. 123, 521 (1961)."Calculations where the Geld due to a nuclear Q was included
in the Harniltonian could not be done because this term is in-
significant compared with kinetic and nuclear Z/r terms. The
H-F equations were solved with normal accuracy and this was
insufficient for the meaningful inclusion of such a term in the
SCF calculation. This has several unfortunate implications among
which is the fact that we could not test the validity of the per-
turbation approach of turning on q (or Q), allowing the ion to
distort and investigate the interaction of the distortion with Q
(or q). What information was available appeared to completely
justify this approach.
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V,(r)- p(x)—dr+ (6)

where p(x) is the radial distribution of the perturbing
charge density. Such a distributed charge yields a
smaller ps„„than would either a V, given by Eq. (5)
or one arising from a distributed charge completely
external to the 2p shell. In fact, a perturbation theory
estimate of the Cl ys„„,utilizing Eq. (6) and a p(x)
consisting of the external charge plus the distorted 3P

TABLE I. Comparison of "radial" contributions to y„.

Cl
Present
results

Second-order perturbation theory
Analytical-
variationalb

2p
3p
Cu+
2p
3P
3d

—12.1—78.3
—1.5—56.5

—0.62—7.9—8.5

—50 to —60

—0.6—5.8—8.6

a R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, &31 (&9&6).
b E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).

Cl—and Cu+. The antishielding for these ions is of
considerable interest; numerical and analytic perturba-
tion results already exist so that comparisons may be
readily made. In the course of the investigation, a con-
ventional H-F calculation was also done for Cu+ which
is of greater accuracy than those appearing in the
literature. The resulting one-electron functions are
tabulated in Appendix I. The basis set appearing in
this calculation was used in the y calculation. A pre-
viously published conventional H-P' basis set was then
used for Cl .

B. Results

The radial contributions to p as given by orbitally
polarized H-F self-consistent field (SCF) and perturba-
tion theory calculations for Cu+ and Cl—are listed in
Table I. The three sets of results are seen to be in very
good agreement for Cu+ but differ markedly for Cl .
Perhaps the most signi6cant feature of the results is the
increase in p» „by a factor of 2 for Cu+ and 8 for
Cl—.These increases arise from the distortions pro-
duced in the inner 2p shells by the distorted outer
3p (and 3d) shells —distortions which are included in
our SCF treatment but not in the perturbation theory
approach. Upon reflection it may appear somewhat
surprising that the inner shell enhancement is not even
greater for this shell in view of the large distortions of
the outer shells produced by the applied field. However,
the p» „'s are not enhanced by factors proportional
to the ys„„'s because unlike the nucleus, the 2p shell
is overlapped by the 3P (and 3d) shell. As soon as the
perturbing charge overlaps the perturbed shell one
must replace the point charge potential V, given by
Eq. (5) by

TABLE II.Radial and angular contributions to 7 for Cl and Cu+.

Cl
Second-

order
perturba-

Present results tion theory

y„(radial) —90.4 —58.0
y„(angular) 3.4 to 5.5 1.5
Total y —87.0 to —84.9 —56.5

Cu+

Present
results

—17.6
~0.6—17.0

Second-
order

perturba-
tion theory

& R. M. Sternheimer (unpublished).

's The y„(angular) values of Table II are in part based on
analytic perturbation theory estimates of the authors and to a
larger extent on unpublished results of R. M. Sternheimer for
which we are grateful.' P. G. Khubachandani, R. R. Sharma, and T. P. Das, Phys.
Rev. 126, 594 (1962).

shell, crudely reproduces (to better than a factor of 2)
the value appearing in Table I. In other words, a shell
such as the 2p is far from being completely "inside" a
3p (or 3d) shell, where antishielding is concerned (If
it were otherwise we would have a Cl ys„„of —100.)

If one assumes that the enhanced SCF y~ ~ values
are entirely associated with self-consistency (i.e., an
aspherical potential which includes the effects of the
closed shell distortions) one can use the results of
Table I to estimate the same effect on the angular y
terms. Results are given" in Table II where estimates
of the total y„'s are also listed. One could instead
directly estimate the angular Sternheimer antishielding
utilizing Eq. (6); for Cl this method gave the y„
(angular) value of 3.4 appearing in Table II.

It is, of course, naive to expect that the differences
between the perturbation theory and SCF results of
Table I are due entirely to self-consistency. Khubchand-
ani, Sharma, and Das, '~ using a modification of
Dalgarno's method~ for including exchange, showed
that the omission of exchange in the standard perturba-
tion calculations can be numerically significant and
Ingall's has shown4 that the maintenance of ortho-
gonality can have severe effects on a computed y .
Let us now examine the most noticeable feature of the
results listed in Table I, i.e., the substantially larger
value for the Cl 3p term (ys„~) which we have ob-
tained. In order to determine the cause of this differ-
ence we have carried out a series of analytic perturba-
tion calculations for y2~ „and y3„~ of Cl maintaining
orthogonality in a variety of ways. From the results
we conclude that the increased SCF value for y3„„is
largely due to the proper maintenance of orthogonality
with the 2p shell. (These computations also agree with
Ingall's observation that the results are extremely
sensitive to the way that orthogonalization is carried
out; details will be given in a future publication. )

A detailed breakdown of the respective roles of self-
consistency, exchange and orthogonality has not been
attempted but it appears that the former is important
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for inner shells and that the latter contributes heavily
to the final character of outer shell y~ ~ terms.

IV. DISCUSSION

Orthogonality, self-consistency, and exchange are
naturally and properly handled by the method we are
proposing; in addition, the method is computationally
practicable. For these reasons, we believe it's use offers
important advantages over the traditional methods for
obtaining y„'s.

A major defect of any of the methods for obtaining
p„ lies in the deficiencies introduced by the approxi-
mate form of the assumed perturbing potential. For a
given external potential for which a y„has been com-
puted, there still remains the question of agreement
with a y derived somehow from qQ(1 —y) gotten from
experiment. The absence of exact values of q and Q
make it impossible to make definite statements con-
cerning this question but it has been suggested" that
y's of the order of —10 to —15 are appropriate for
Cl and Cu+ implying that the calculated value of
y„ for Cl is a severe overestimate whereas the Cu+
value is only slightly so. This comparison raises doubts
concerning the accuracy of a computed q and the
related V„which go beyond the question of defining
a potential in that it involves the concept of an "ion"
in a solid and of the "potential" associated with it. It
may be argued that such a model is inadequate for the
problems of interest to us here; let us consider this
matter.

The lattice sum over ion point charges, which is
normally done when estimating an electric-field gradient,
yields a potential of the form of Eq. (5). Although the
results may be adequate" for obtaining the direct
quadrupole interaction with the nucleus, such a sum
leaves much to be desired when used as the perturbing
potential seen by the ion's electrons because the ion's
charge density overlaps that of the neighboring ion
electrons and nuclei. Hence, a potential of the form
r'Ys'(e, p) is clearly not appropriate over that region.
In addition to more accurately defining an electro-
static field, problems associated with wave function
orthogonality (between neighboring ions) and covalency
(if some of the ions have unclosed shells) occur. Also
the crystal potential will have components of other
than quadrupole symmetry which may distort the ion
and in turn affect the electronic quadrupole distortion.
For example, it has been argued that the tendency of
negative ions to contract when inserted into ionic
crystals may possibly result in severe repercussions"
for y„.

The importance of some of these problems can be
's G. Burns and E. G. Wikner, Phys. Rev. 121, 155 (1961),

and references contained therein.
@E. Brun, S. Ha(ocr, and F. Waldner LCompt. Rend. Soc.

Suisse Phys. 34, 391 (1961)j have indicated that the standard
point-charge lattice sum estimates of q for ionic crystals are in-
adequate and that in addition one should include lattice sums over
the dipole and quadrupole moments induced in the ions.

.8

FIG. 1.The 3P ~ P
antishielding contri-
bution, y(R)/y, for
Cl . (See text for
definition and dis-
cussion. )

4 6
R(in au)

illustrated if we consider y computed as a function of
the distance (R) of the source of q from the nucleus in
question; utilizing Eq. (6), with p(a)=b(x R), o—ne
obtains Sternheimer's y(R) factor. ' The ps~ „result
for Cl is plotted as the ratio y(R)/y„ in Fig. 1. Since
internuclear spacings are typically of the order of 5
a.u. , the arguments of the previous paragraph are made
more apparent by the variation of y(R) with R which
is seen in the figure. At best, this means that non-
quadrupole crystal field effects and orthogonalization
repercussions must be dealt with before a realistic
value is obtained for p. At worst, it may mean that
the tight binding approach of perturbing an essentially
free ion by a crystalline environment must be abandoned
before a substantial improvement over current y„esti-
mates is made.
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APPENDIX I

A conventional H-F Cu+ wave function, superior to
those in the literature, is tabulated here whose ac-
curacy is similar to a previously reported" Mn'+ wave
function. Orthonormal analytic Hartree-Pock orbitals,
U, (r), of the form

U, (r) =P; C,,R, (r),

"R. E. Watson and A, J. Freeman, Phys, Rev. 123, 2G27
(1961).
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TABI.E III. Parameters (A, and Z,) and combining coefficients
(C,;) defining the Hartree-Fock orbitais for Cu+.

TAsLE IV. One-electron energies for Cu+ in
atomic units (1 a.u. =2 Ry).

j A;

1 0
2 0
3 1

5 2
6 2

2
8 2

Z2

84.8828
30.4491
26.9961
14.1023
13.3297
8.5681
5.0982
2.8171

Cg, , ,

0.00037044
0.91205876
0.10841891—0.00647884
0.00561417—0.00204424
0.00065755—0.00016921

C2., 2

—0.00036468—0.27950925—0.16245115
0.64460027
0.46415723
0.06610429—0.00454834
0.00134453

~I, ———329.11
&2s = 41.127
c3, ——— 5.324

C3, , ~» ———35.928
e3„———3.641
&3' ———0.8099

R, (r) =N, r "+~ +'&e E'

—0.00038449
0.10652016
0.04976048—0.21227812—0.38260515
0.17263958 The basis functions, E,, are of the form
0.94245212
0.07547339

(A3)

9
10
11
12
13
14
15

C

0 34.5244 0.00103326
0 18.9852 0.13481246
0 11.6372 0.84951100
1 10.8502 0.02041835
1 6.8083 0.02746109
1 3.9668 —0.00525461
1 2.2563 0.00172020

Csu. ~

0.00096650—0.05841121—0.29915630—0.11625686
0.54128259
0.63298421
0.02228438

where E, is a normalization constant and is expressible

in terms of the other parameters, i.e.,

N, = P( 2Z;)"+'" +i'/(2l+ 2A,+2)!g'" (A4)

16 0 1.6956
17 0 2.4954
18 0 4.2881
19 0 7.5015
20 0 13.0768

C3d, g

0.19657400
0.25771318
0.46579549
0.24455545
0.02287090

were obtained, normalized such that

(A2)

U; (r) of common / value are constructed from a common

set of R, (r)'s Zs., A, 's and combining coeKcients

(C;,'s) are listed in Table III; the one-electron energies

are given in Table IV. The C; s define orthonormal

functions to the number of digits reported but have by
no means been uniquely determined to that number of

digits. The total energy for the ion is —1638.7245 a.u.
as compared with —1638.705 a.u. obtained in a previ-

ous calculation. "The improvement is primarily associ-

ated with the greater variational freedom allowed to
the outer parts of the 3s and 3p shells; repercussions

on the 3d shells were small.
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Positron Mean Lives in Scandium, Yttrium, and the Rare-Earth Metals*
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lnstititte for Atomic Research and Department of Physics, Iowa Stale University, Ames, Iowa
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Positron mean lives relative to that in aluminum are reported for scandium, yttrium, and all of the
stable rare-earth metals. An automatic cycling procedure allows these relative measurements to be made

with an accuracy of &3X10 "sec. The average positron lifetime in the trivalent rare earths and in yttrium

is 0.675X10 ' sec longer than the positron lifetime in aluminum, with an average deviation of %0.035X10 "
sec. The positron lifetimes in the divalent rare earths (europium and ytterbium) are appreciably longer,

while the lifetime in scandium is somewhat shorter. The experimental results indicate a correlation be-

tween the positron lifetime and the conduction electron density, and they show that the 4f electrons do not

participate in the annihilation process.

I. INTRODUCTION
' 'F a positron is injected into a metallic sample with an
~ - energy of a few hundred kilovolts, it will be able to
penetrate to the interior of the sample. There it will be
thermalized in about' 3X10 " sec via collisions with
conduction electrons, and it will become part of the
electronic system. Some time later the positron will

annihilate with an electron, producing (usually) two

*Contribution No. 1280. Work. was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

' G. E. Lee-Whiting, Phys. Rev. 9?, 1557 {1955).

0.511-MeV annihilation gamma rays These relatively

high-energy gamma rays can then bring information

about the annihilation process out of the sample with

negligible attenuation or scattering. Thus, the investiga-

tion of the positron annihilation in a metal should pro-
vide some information on the electronic structure of the
metal.

The first extensive measurements of positron mean

lives in metals were made by Bell and Graham, ' and

'R. E. Sell and R. L. Graham, Phys. Rev. 87, 236 (1952);
90, 644 (1953).


