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Flux Creep in Hard Superconductors
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Resistive states of hard superconductors have been investigated by tube magnetization and resistance
measurements. The Qux-creep theory of Anderson is very effective in accounting for the experimental obser-
vations reported herein. Resistive phenomena were observed in the presence of transport current density J
and magnetic Geld B perpendicular to J. It is found that the whole spectrum of resistive states can be repre-
sented in terms of a single parameter n= J(B+Be),where Be is a constant of the material. This parameter
represents essentially the Lorentz force or the magnetic pressure gradient in the material. While a wide range
of a values is possible, under given experimental conditions superconductivity usually can not be maintained
above a critical value. In tube magnetization, the critical value 0., is determined primarily by the rate with
which the persistent current J decays. Ifn is raised beyond n„Jdecays rapidly and a quickly falls near to n, .
a continues to decrease slowly, but proportional to the logarithm of time as predicted by the theory. The
observed temperature dependence of a, is accounted for by the theory. Discrete, stochastic changes in Geld
anticipated from the motion of Qux bundles have been detected through pickup coils placed in close prox-
imity to the superconducting tube. In resistance measurements, voltages appearing across 3Nb-Zr wire
samples were measured by supplying J externally in the presence of a perpendicular Geld H. The voltage
observed is interpreted as a manifestation of an uncompensated emf arising from Qux creep. At a given tem-
perature, voltage readings obtained over a wide range of J and H are found to be a function of a =j(H+Bp)
only. V (u, T) follows qualitatively a form expected from the theory. In resistance measurements, the critical
value n„is determined by the power dissipation in the material. Ifa is raised beyond 0.~, thermal conduction
lags the power dissipation and the sample undergoes a catastrophic transition to the normal state.

I. INTRODUCTION

ECENTLY, we have reported" that in bulk hard
superconductors the critical current density J in

the presence of transverse magnetic field 8 is limited

by the Lorentz force parameter 0, JB&e.. o., is a
structure-sensitive constant of the material and its de-
pendence on temperature is nearly linear as far down
as 0.1T„where none of the bulk superconducting
properties is expected to vary noticeably. To account
for these observations, Anderson' introduced a mecha-
nism of Aux creep arising from thermal activation. In
consequence, his theory predicts the decay of persistent
currents proportional to the logarithm of time. This
logarithmic decay has been observed' from one to about
10' sec. In this article we report additional experimental
facts that can be explained most naturally by the flux-

creep model. In particular, it will be shown that the
broad resistive transitions commonly observed in hard
superconductors can be represented in terms of the
Lorentz force parameter n.

Insofar as the bulk electromagnetic properties are
concerned, superconductors may be classified into three
groups. The phenomenological theory of London4 is

very eRective in accounting for the properties of ideal
soft superconductors, or SI. The possible existence of
another group of superconductors SII has been indi-
cated by the theory of Ginzburg and Landau, ' which

' Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
Letters 9, 306 (1962).' Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys, Rev.
129, 528 (1963).

e P. W. Anderson, Phys. Rev. Letters 9, 309 (1962).' F. London, SNpergsssds (Dover Publications, Inc. , New York,
1960), Vol. 1.' V. L. Ginzburg and L. D. Landau, Zh. Kksperim. i Teor. Fiz.
20, 1064 (1950).

has been shown to follow from the microscopic theory
of SCS' by Gor'kov. ~ According to the theoretical work
by Abrikosov, ' and later by Goodman, ' a bulk sample
of homogeneous, strain-free SII material enters into a
mixed state in a region of magnetic fields B,1&8,&P,~,
below and above the thermodynamic critical field H, .
Essential to the occurrence of the mixed state is a small
coherence distance in the superconducting state, since
this leads to a negative interphase surface energy and
makes the mixed state thermodynamically stable. Thus,
the magnetic behavior in the mixed state is expected to
be reversible and independent of the sample size. Many
recent experiments" support the existence of a mixed
state when the sample is made homogeneous and strain-
free. SII materials in the mixed state allow the Row of
body currents because of the field penetration in the
form of Aux filaments, but they are not expected to
support large transport current densities. In the pres-
ence of transport currents transverse to the magnetic
field, the Lorentz force will set either the Aux filaments
or the superconducting regions into a continual lateral
motion, " thereby developing an eff'ective resistance in

' J. Bardeen, L. N. Cooper, and T. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959);
37, 833 (1959) Ltranslations: Soviet Phys. —JETP 9, 1364
(1959); 10, 593 (1960)g.

s A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32& 1442 (1957)
/translation: Soviet Phys. —JETP 5, 1174 (1957)g.' B. B. Goodman, Phys. Rev. Letters 6, 597 (1961).' Abrikosov mixed-state behavior has been observed in Ta-Nb
by A. Calverley and A. C. Rose-Innes, Proc. Roy. Soc. (London)
A255, 267 (1960); in Nb by T. F. Stromberg and C. A. Swenson,
Phys. Rev. Letters 9, 370 (1962); in In-Bi by T. Kinsel, E. A.
Lynton, and B. Serin, Phys. Letters 3, 30 (1962); and in Mo-Re
by J. K. Hulm, 8th Conference on Magnetism and Magnetic
Materials, Pittsburgh, Pennsylvania, (unpublished).

n J. C. Gorter, Phys. Letters 1, 69 (1962); 2, 26 (1962).
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the material. Thus, in the high-6eld superconducting
materials capable of supporting large transport current
densities, some mechanism must be present to provide
a rigidity against the Lorentz force. These materials are
basically of the SII type, but contain a large amount of
structural irregularities such as impurities, strains, dis-
locations, or other physical defects. In this respect, we

may call these materials the third group, or SIII. If
structural irregularities are introduced in SI materials,
in many respects they also behave like SIII.

In Anderson's Qux-creep theory, ' the moving entities
are assumed to be the bundles of magnetic Qux which

may contain single or many quantized Qux filaments.
Although the internal structure of a Qux bundle is
visualized as similar to the Abrikosov structure, the
theory does not take this into account explicitly. Struc-
tural irregularities present in an SIII material are
assumed to pin down Qux bundles and act as free-energy
barriers. A Qux bundle so pinned, however, can hop the
barrier by thermal activation aided by the Lorentz
force. This concept of activated motion of Qux struc-
tures and a simple theory resulting from this concept
are substantiated by the experimental facts reported
below.
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F o. 2. 1/3I versus H* plots for a Nb powder sintered tube.
H'(H) curves for this tube at 4.2 and 3.3 K are given in ig. 1
of Ref. 1.

II. TUBE MAGNETIZATION AND FLUX CREEP

Inasmuch as Anderson's Qux-creep theory was de-
veloped in parallel with our tube magnetization experi-
ments, we will erst summarize the analytical approach
used in tube experiments and its connections to the
Qux-creep theory. If the external 6eld B,applied parallel
to the axis of a hard superconducting tube, is varied, the

axial field H' inside the tube follows along a curve" such
as shown in Fig. 1. When the values of II and H' lie on
this curve, the sample is said to be in a critical state,
wherein every macroscopic region of the sample is
assumed to carry the critical current density J(B) de-
termined only by the local magnetic field 8 at that
region. Once J(B) is specified, H' in a critical state is
determined from the relation

W
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J)B(r)7dr,

where r is a radical variable measured inward from the
outer surface of the tube. Elimination of r leads to an
integral relation

H++$3f gled

a'—isr J(B)
c

x
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Fzo. 1.Tube magnetization curve of a 3Nb-Zr tube. o.,=5.0&(10'
emu (G-abamp/cm') and B,=1.1 kG are obtained from this
magnetization curve. I' is the point at which a 3-h decay run was
made with a YIG probe. The insert shows the tube geometry
(a=0.33 cm, w=0. 153 cm, b='4 45 cm) and the pi.ckup coil
arrangement used for pulse detection. Pulses observed in I'1 an
P2 are shown in Fig. 5.

where H*=-', (H'+H) is the mean field in the sample
wall, and M=H' —H is the field produced by the in-
duced supercurrent. The average current density in the
wall is then given by M/4xw. Since H*, M, and w are
available from experiments, (2) enables us to deduce
J(B) empirically.

For many SIII materials, the critical-state curve
H'(H) consists of two hyperbolas and one circle. A more
sensitive way of representing such systematics is to
plot the data points in the 1/3f H* plane. A typical-

'2If II is changed too fast, a Qux jump occurs and B' falls
quickly to H. The Qux jump is more frequent in the low-Geld-
high-current region and is believed to be caused by locally exces-
sive values of e.
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Fzo. 3. A schematic model of Aux creep.

plot of 1/3f versus H~ obtained with a Nb powder
sintered tube is shown in Fig. 2. Representing the
straight line by

4vnen. /M =Bo+H*, (3)

two constants 0..and Bo can be obtained from the slope
and the intercept. The critical-state curve H'(H) associ-
ated with this straight line is given by two hyperbolas

and a circle

(H'+Bo)' —(H+Bo)'= a8~ . (4)

Note that for B»BO, the parameter

n-JB= ((H"—H2)/8~( (7)

represents the Lorentz force or the magnetic pressure
gradient in the sample. Thus, the supercurrent density
in an SIII material cannot be raised beyond the point
where the Lorentz force parameter n exceeds a certain
critical value e,.

The values of n, are generally larger for SIII materials
having higher transition temperature T.. For a material
of given chemical composition, however, 0,, is strongly
influenced by the amount of structural irregularities in

(H'+Bo)'+(H —Bo)'= 2(4vrwe, +B02) .

It is now readily seen that (3) follows from (2) for a
critical current density relation

n.=J(B+Bo)=n, .

the material, although the presence of such irregularities
does not affect T,. Also, n, depends strongly on tem-
perature, even down to a low-temperature range where
none of the bulk superconducting properties is expected
to vary noticeably. This is apparent from Fig. 2. As T is
lowered, n, (the inverse of slope) increases linearly in T.
This trend is common to SIII materials investigated in
our tube experiments (Nb powder sintered material,
Nb-Zr alloys, Nb3Sn intermetallic compounds), and an
empirical relation,

(Fo—qn, )/kT = const,

has been established. The significance of Fo and q will

become apparent from the Qux-creep theory.
Anderson' inferred a thermally activated process from

the empirical relation (8), and developed a simple theory
which is quite effective in accounting for the transport
current properties of SIII materials. The working model
behind this theory is shown schematically in Fig. 3.
(a) represents the periodic structure of flux lines in the
Abrikosov mixed state. When the separation between
flux lines becomes of the order of London penetration
depth X& 5&10 ' cm, Qux lines will be bound together
to some extent by the interaction of their fields and
wave functions. Physical irregularities present in an
SIII material may also aid the formation of such Qux
"bundles" as in (b). (c) shows the spatial variation in
free energy for such a structure. Since the physical
irregularities tend to pin down the Qux bundles, free-
energy maxima centered around these irregularities will

become free-energy minima for the motion of flux
bundles (d). The average energy barrier experienced by
the bundles is then expressed by

Fo ——pH, s'd'/8~,

where H, ii is the bulk critical field and p is a parameter
representing the pinning strength. In the presence of
transport current density J (transverse to B), the
Lorentz force JB on Qux bundles will result in a tilting
of the barrier structure as in (e). This, in effect, reduces
the barrier height to

Fo—Jy ggd'= Fo—nd')

where y~ ——Bd' is the total Qux in the bundle. The inter-
bundle spacing, as well as the length of the bundle which
can move independently, are assumed to be of the order
of d. For other possibilities, the d factor will contain
additional parameters. The approximation n~ JB hoMs

only in the high-field limit where B»BO. Thermal acti-
vation now enables the bundle to hop a barrier and go
down the hill. This rate is given by

Hop rate= Ro expL —(Fo—qn)/kT$,

where Ro is an appropriate frequency factor. We have
replaced the d4 factor by q, anticipating various modifi-
cations to the theory.
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In the tube experiment, if H is held at a constant
value greater than H', the Aux bundles creep into the
tube and the difference ~3E~ =H H—' will become
smaller in time, that is, the persistent currents decay.
This consideration leads to an equation of creep rate

d 2dROB*
(H —H') =———

CQ

(12)

where c is a parameter giving the number of eBective
barriers that are encountered by a bundle in crossing
the tube wall. According to this theory, the critical
state as observed in tube experiments represents only a
quasiequilibrium state at which the rate falls below a
practically observable limit. Under this condition, the
exponent in (12) will become a constant and n therein
will be identified experimentally as n„leading to the
empirical relation (g). The observed linearity of cr, with
T follows simply from the fact that Fo is insensitive to
temperature at low temperatures.

Since the creep in (12) continues at any values of J
and 8, the value of n in the sample will be continually
decreasing. The theory is specific on this time behavior
of a and predicts

0

(b)
TUBE )02A

V METAL
AT 2.80K

Bo.= const —(kT/q) Int.

In terms of the observable quantity H', (13) gives

(13)

4+m kT
bH'= — — ink.

H'+Bp q

In other words, the internal field H' will change loga-
rithmically in time. Experimental verifications of this
logarithmic behavior have been reported earlier. ' In
recent runs, we have been using a sensitive yttrium
iron garnet (YIG) electron spin resonance probe to
measure H' with a precision of one part in 10'. All runs
made with this YIG probe verify the logarithmic decay
to a high degree of accuracy. For example, a decay run
made at P of Fig. 1, which lasted for 104 sec, gave
dH'/d(lnt) = (5.01&0.02) G per decade. The depend-
ence of decay rates on field and temperature are cur-
rently being investigated with the YIG probe.

So far, we have described a particular group of SIII
materials for which the I.orentz force relation (6) holds
almost up to the upper critical field. For classification
purposes, we may call them ideal SIII's. Two samples
shown in Fig. 4 do not behave in this way. In the Nb
metal tube, if the lower shielding portion of H'(H) is
fitted to (6), the critical current density at high fields
is much lower tha, n that expected from (6). In the V
metal tube, the situation is reversed in that the critical
current density at low fields is too small. In spite of such
deviations, however, we do observe logarithmic changes
in H' for both Nb and V tubes. The logarithmic decay
has also been observed near the upper critical field of
ideal SIII samples, where H'(H) no longer follows from

0
0 3 4

H(k|;)
Fio. 4. Tube magnetization curves for (a) a Nb metal tube,

(b) a V metal tube. The dashed line in (a) is obtained by fiftjng
the lower portion of the observed curve to expression (6) of the text, .

(6). DeFeo and Sacerdoti" observed the trapped Aux in
a Pb ring to decay under the bombardment of o. parti-
cles. Replotting their data, we find this decay is also
logarithmic up to t I.SO(10' sec, the period of their
observations. Thus, the logarithmic decay process ap-
pears to be quite general in a certain domain of
superconductivity.

III. MOTION OF FLUX BUNDLES

According to the Aux-creep model, the motion of fiux
bundles is expected to be discrete and stochastic.
Anticipating that this behavior would be rejected in the
change of magnetic fields, we placed pickup coils inside
(Pi) and outside (Ps) the 3Nb-Zr tube shown in Fig. 1.
Signals in the pickup coils were displayed on an oscillo-
scope via a low noise amplifier having a voltage gain of
about 900. Typical pulse signals observed in P& at the
shielding portion of H'(H) are shown in Fig. Sa. Signals

"P. DeFeo and G. Sacerdoti, Phys. Letters 2, 264 (1962).
The fact that the trapped Qux decay observed by these authors
follows a logarithmic decay law was pointed out by P. W. Anderson.
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tative interpretation requires further work, the basic
concept of activated motion of Aux structures seems
very real in these pulse observations.

(a)

IV. RESISTANCE DUE TO FLUX CREEP

Energy dissipation associated with Aux creep is quite
different from ordinary ohmic dissipation. Nevertheless,
we may associate an equivalent electrical resistance with
the flux creep by a simple argument. Since H —B'=
4nI/b (se. e Fig. 1), the change in II' due to flux creep is
interpreted as a decay of persistent current I in the tube
wall, with a rate

dI/dt = (b/4rr) (d/dt) (H H') . —

For the closed system, we may attribute this change in
I to an equivalent R by the circuit equation

L(dI/dt)+RI =0. (16)

(b)

FIG. 5. Pulses observed in pickup coils of Fig. 1: (a) pulses ob-
served in Pq at the shielding region (20 @sec/div, 5@V/div); (b)
pulses observed in P2 at the circular region (200 psec/div, 2
mV/div).

vary in amplitude, but they all have about the same
rise time. Calibrations of the pickup coil and amplifier
system indicate that such a signal results from a voltage
pulse lasting for about 10 @sec or less, and the signal
amplitude is proportional to the voltage impulse fVdt.
The smallest signals discernable from noise are esti-
mated to contain 20 to 50 Aux quanta.

In the shielding region of H'(H), where H'&H and
flux creeps inward, we observe unidirectional pulses in
P~ but not P2. In the trapping portion where flux creep
outward, we observe similar pulses in P2 but not P~. It
appears that flux leaves the tube in the form of bundles,
but Qux replenishment from the other side of the tube
need not be in the form of bundles, or the bundles are
too small to be detected. Pulses are frequent near the
critical state where Qux creeps faster. If 8 is heM at a
constant value on H'(H), the number of pulses decreases
in time in a manner consistent with the logarithmic
decay in H'. In the circular region, pulses in P2 are
dominated by the type shown in Fig. Sb. Such pulses
are also observed occasionally in P&. These large, wide

pulses, or a succession of them, may be due to an
avalanche motion of flux bundles or/and some sort of
domain motion. "Pulses qualitatively similar to those
shown in Fig. Sa, but much smaller in amplitude, have
also been observed in a Nb3Sn tube. Although a quanti-

'4 Fluctuation of the resistance in SIII materials, probably due
to domain motions, was reported by B. Lalevic, Phys. Rev. 128,
1070 (1962). Earlier work on domain motions are quoted in this
article.

Taking the case w«a«b, which leads to L~4vr'a'/b
and R~p 2s. a/( btt)!, we derive an expression for the
resistivity,

1 dI
p = 2m QG) ——= 2m GG)I

| dII'

At P of Fig. 1, using the above expression, we estimate
p=3)(10 "0-cm at the very beginning of the decay
run. As the current decays due to flux creep, p falls as
1/t. After 104 sec, p then falls to 3&(10 'r 0-cm. In spite
of this large change in p, however, n decreases by only
1% during this period.

In our tube experiments, the test of logarithmic decay
is confined to a very small range of n near n, . For n
substantially smaller than n„the experiment is difFicult
because of the enormously long time scale involved. "
For n) n„onthe other hand, the decay is too fast to be
measured conveniently. We, therefore, proceeded to test
logarithmic decay over a wide range of n values. This
amounted to measuring the resistance of a sample by
supplying a constant current externally in the presence
of a transverse 6eld H. Under this condition, Aux creep
generates an uncompensated emf and a voltage will
appear along the direction of current flow. We expect
this voltage to be dominated by the exponential term
in (11), i.e.,

V= f expL —(Fp —gn)/kT]. (18)

For a sample of small cross-sectional area, 8 appearing
in n Lsee (6)j may be approximated by H. The factor f
depends on the sample geometry and contains some of
the structural constants defined by Anderson. ' It may
also depend on J and H.

To check expression (18), we measured the voltage

's J. Pile and R. G. Mills, Phys. Rev. Letters 10, 93 (1963),
observed a persistent current decay in a closed Nb-Zr coil at a
level of p~5X10~' 0-cm. We feel their observation is consistent
with the Qux-creep model, although it may be due to some other
effects.
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. 1.8 K
2 0.91 B0(kG)
0.9

As long as the exponential term in (18) dominates V,
and Fo is insensitive to e, we expect to observe the slope

c) ln V/Bn= q/kT (2o)

4.
102

to be constant at a given temperature. The experimental
curves show, however, that as n or V increases, the
slope decreases. At the largest values of V, the slope
drops until V is almost linear in n."Neither the probable
dependence of Eo on n nor the possibility of the sample
being at a higher temperature than the bath accounts
for this behavior. Both of these eGects would tend to
raise V at large values of e, rather than lowering it.
As for the possible dependence of f on zz, some estimates
can be made using the rate equation (12). For a tubular
geometry, the back emf V= Idl/Ch=—RI arising from
Qux creep is determined by (12) and leads to

10 I

20. 25 30 35 40 45
a: IN 106 EMU

50 55 f= 2rradRpH*/c (21)
Fzo, 9. V(o)'s at various T's. At each temperature, Bp was

obtained from a plot similar to Fig. 7. Using 80 so obtained,
V (H) curves at different J's have been reduced into a single curve
V(p'}. Below TX, the dashed portions of V(n)'s indicate where the
sample temperature rose above the bath temperature.

included. From the slope of parallel straight lines, we
obtain Bo=0.5 kG. What is actually implied by this
plot is that at a given temperature V is a function of
n only

f} lnV & inf 1 r)Fp g

Ba kT BQ k1
(19)

H V depends only on u, then

dV dV 8n Ba dJ(.) =
d '=d .(JH)+aJd(JH) '(' )

For V(o}=const, i.e., SV =0, So =0 leads to
Bn Bn dJ dJ

8(JH) 8Jd(JB) d(JH)
or dJ/d(JH) = —l/Bp which is observed in Fig. 7.

3. Dependence of V on e

Having obtained Bo, we can display V directly as a
function of n =I(H+ Bp) . We find then all curves of
Fig. 6 coalesce into a single curve, as expected from the
analysis in A. This is shown in Fig. 8 in two steps. The
curves of Fig. 6 are erst plotted against JH to show that
they are nearly parallel in this representation. The
addition of JB0 to the abscissa displaces each curve to
the right by such an amount as to coalesce all curves to
(f). The degree of this coalescence is indicated by the
horizontal Bags, the scatter being larger in the low
voltage range where the measurements are more subject
to noise. There are some second-order systematic trends
in the scatter which require further investigation. How-
ever, the basic dependence of V on J and H can be
represented in terms of the single parameter n.

From (18), we can formally derive

For a wire sample we estimate

f EdR pII/c . (22)

The approximation 2pra ~ E (the length of a wire
sample) is very crude, but f must depend on H because
of dimensional considerations. The present data, how-
ever, do not exhibit this particular field dependence of f.
Thus, the theory in its present form is inadequate to
explain the observed behavior of V in a. The assumption
of a constant average barrier height used in the theory
can be satisfactory only over a small range of e values,
a situation typical of the tube experiments. There must
certainly be a distribution in barrier heights and the
number of effective barr iers will decrease as n increases.
Such parameters as Fo, q, and c will change depending
on a specific distribution in barrier heights.

"P. W. Anderson has pointed out that this behavior suggests a
viscous Row of fIux lines rather than creep. At suSciently large
values of a, a point may be reached at which the average barriers
are nearly overcome by the force. At such a point the exponential
dependence on n will cease and a new conventional rate equation
will become effective, the rate being proportional to force, or
This is compared to the difference in magnetic domain motion
below and above the "coercive force": below; slow, creeplike
processes occur, while above one has viscous motion of the domain
walls with velocity proportional to FI.

C. Temperature Dependence

Figure 9 shows how V depends on n at a number of
different temperatures. The curves were obtained from
a different 250-cm-long sample of 3Kb-Zr wire. The
values of Bo obtained at each temperature are shown in
the 6gure. Bo increases as T is lowered, as has also been
observed in tube experiments. As T is lowered, a higher
n value is required to give the same voltage V. Clearly,
as the thermal activity is decreased, a greater tilting of
the barrier structure by n is required to give the same
Aux-creep rate and thus V.

To test the specific temperature dependence pre-
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dieted by (18), we may rewrite it as

(18.2)

10"

Nb WIRE AT 4 ssoK

and compare this expression with the observed depend-
ence of n on T at a constant V. In Fig. 10 is plotted a
family of data points at various 6xed values of V. The
linear dependence of n on T as implied by (18.2) is
apparent. Although this test is somewhat obscured be-
cause of the uncertainties mentioned in (b), it should be
noted that (18.2) is essentially the same expression as
e,(T) from the tube experiments Lsee (8)], but at much
higher levels of V. The slope dnv/dT 3.5)&10' emu/deg
for this wire sample, compared to dn, /dT 1.2&(10s
emu/deg for the 3Nb-Zr tube of Fig. 1. Discontinuities
are present at the helium X transition temperature Tq.
These could be caused by different thermal conditions
above and below Tz. Further investigation is required
to clarify this point.

From the above analysis, it is empirically shown
that in 3Nb-Zr wire samples, V(J,EI,T) reduces to
V(n, T) given by (18), a form expected from the flux-

creep theory. Verification of the theory resulting from
voltage measurements is essentially of the same quality
as that from the tube experiments. The voltage measure-
ments are, however, more explicit in showing that the
effect due to a distribution in barrier heights may have to
be taken into account in the theory. Friedel, DeGennes,
and Matricon" have recently made a refined calculation
on the driving force in flux-creep phenomena, but have
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not explicitly included the effect of a distribution in

barrier heights.

We again expect (18) to hold closely only for the class

of ideal SIII materials. As an illustration, we cite the
resistance measurements on Nb wires reported by
Autler, Rosenblum, and Gooen. " In Fig. 11, part of
their data are shown in the form of V versus JH. For
curves (e) and (f), we ignored the "peak effect" observed

by these authors at II=5.5 kG. Clearly, there exists no

positive constant Bo that may help these curves to
coalesce (see Fig. 8 for comparison). If (18) is fitted, for

example, to curve (a), experimental curves for low J at
high fields give a higher resistance than expected. In
tube experiments, this material would give critical
current densities at high fields much lower than that
expected from (6). This is what is observed in the Nb
tube data shown in Fig. 4(a).

Fio. 10. 0. versus T at a constant V. At various fixed values of V,
the values of o. obtained from Fig. 9 are plotted versus T.

"S.H. Autler, E. S. Rosenblum, and K. H. Gooen, Phys. Rev.
'0 J. Friedel, P. G. DeGennes, and J. Matricon, Appl. Phys. Letters 9, 489 (1962). We are indebted to Dr. S. H. Autler for the

Letters 2, 119 {1963). detailed experimental data used in our comparison.
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V. POWER DISSIPATION

When a superconducting sample is driven into a
resistive state, power is dissipated in the material. The
power dissipation per unit volume may be expressed as

P= VJ/l= (f/I) J exp/ —(Fo qn)—/kT j, (23)

where / is the length of that part of the sample across
which the voltage appears. This power may be small,
but its extreme temperature dependence must be con-
sidered. Thermal equilibrium is possible only when a
proper balance is maintained between the power dissipa-
tion and thermal conduction to the bath. Once thermal
conduction begins to lag power dissipation, the sample
will soon undergo a catastrophic transition to the normal
state. In fact, for the sample shown in Fig. 6, this
catastrophy occurs whenever the total power dissipation
in the sample reaches 1.1 mW. This critical power level
depends also on the rate with which n is increased. When
0. is increased faster, the sample goes normal at a lower
power level. This is no doubt caused by locally excessive
values of n, as is the case with the Aux jumps observed
in tube experiments.

Thus, the critical value of o. that can be reached in
voltage measurements, which we designate by n„,is
limited by the power dissipation in the sample. Struc-
tural constants and thermal conductivity of the material
as well as the cooling condition will enter into the
determination of 0,„.In the sample shown in Fig. 9,
below Tz the critical power level increases by a factor
of 15 because of the better cooling condition. Even if
all of these factors are held constant, however, e„also
depends on the value of J. This is clear from the de-
pendence of P on n and J as given in (23). A larger
value of o.„canbe attained at a lower level of J, as
shown in Fig. 8. This also explains why in tube experi-
ments Aux jumps are more frequent at the low field —high
current region. In practical applications, this means that
SIII materials will behave better at the low current-
high field region than at the high current —low field
region.

Also note that the average power expression (23) is
meaningful only if a uniform condition is preserved
through the entire length of the sample. Otherwise, n„
will be controlled by the weak spots in the sample. Some
indications of this effect are evident if we compare the
two samples shown in Figs. 8 and 9. Both samples
shown here were taken from the same batch of wire and
had been treated identically as far as practically possi-
ble. The comparison of V(n)'s at 4.2'K indicates that
the structural conditions are not the same for these
two samples. Measurements were made on several more
samples of varying lengths, but all taken from the same
batch of wire. For any particular sample, however, V(n)
could not be predicted with certainty on the basis of
similar measurements made on other samples. This
lead us to doubt the uniformity even among different
sections of one sample. We therefore measured the

voltages appearing across 6ve different sections of a
250-cm-long wire sample (identical geometry to those
shown in Figs. 8 and 9), by attaching to the sample six
equally spaced voltage leads. V(o;) obtained with this
sample at 2.0'K is shown by curve (10) of Fig. 9. In this
measurement, the voltage always appeared across one
particular section. The voltages across the remaining
four sections never rose above the noise level ( 1 pV)
throughout the entire range of V(n) observed.

The above test indicates that the resistive state as
observed in the present experiments is controlled by a
weak spot in the material. Flux creeps rapidly through
this spot and instabilities leading to a catastrophy grow
quickly. At present, very little is known about the exact
nature of the weak spots and we are far from being able
to control them. Consequently, the performance of a
long length of wire cannot be predicted with certainty
from measurements made on a small number of short
samples, a fact that has been bothering those concerned
with practical superconducting magnets. It is also ob-
vious that such expressions as p= V//J and P= VJ/l
containing the length of wire /, must be taken with some
care. For example, the resistivity as given in Fig. 6 is
certainly a gross underestimate.

In the analysis of the previous section, we tacitly
assumed that the sample temperature T was close to the
bath temperature T&. Several observations justify this
assumption. First, if T exceeds T& appreciably, the
great sensitivity of U on T would cause an increased
slope in the V(n) curve just before the sample goes
normal. This is, in fact, observed for curves (8) and (9)
of Fig. 9, where the high thermal conduction of the
helium bath below Tq permits much higher power dis-
sipation before the normal transition. Over most of the
curves, however, there is no sudden change in slope,
indicative that T must be close to T~. Second, in Fig. 8
are shown curves taken with different values of J and
hence at different power levels. However, they all
properly coalesce to a single curve, indicating in each
case that the sample temperature must be close to the
4.2'K bath. Figure 9 shows that this also occurs at the
other temperatures. By relating the power dissipation
in the equilibrium state to the conditions for thermal
instabilities, we estimate that the region of a weak spot
in our 3Nb-Zr sample is rather small. It could be as
short in length as 10 ' cm. This may preclude any
attempt to measure directly the local temperature of
the sample.

VI. SUMMARY

In the present investigation, we have attempted to
unify various phenomena observed in the resistive state
of hard superconductors. Instrumental to this unihca-
tion is the Aux-creep theory. This theory assumes
basically the Abrikosov mixed state, but the phenomena
associated with transport currents are affected mainly
by Aux pinning. The central feature of the theory is that
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Qux pinned by physical irregularities present in the
material can creep by thermal activation, the rate of
creep being determined by the relative strength of
pinning and magnetic pressure. The dissipative process
associated with Aux creep is intrinsically different from
ohmic dissipation. Nevertheless, we may conveniently
talk about electrical resistivity as such by equating
power dissipation per unit volume to pJ', as long as we
confine this power into the region where the dissipation
actually takes place.

Experimentally, the resistive state has been investi-
gated by two methods: tube magnetization and resist-
ance measurements. In both cases, the observations can
be united in terms of the Lorentz force parameter
a= J(B+Bo).In tube magnetization, the internal field
H' is measured as a function of the external field H (see
Fig. 1) and a, is determined from (3). If u is raised be-
yond n., Aux creeps so fast that it quickly falls to n, .
Thus, o., simply represents the value of ot at which the
rate of flux creep (12), or dH'/dt, falls below a certain
level. For the tube geometries used in our experiments,
this level corresponds, typically, to p 10 "Q-cm Lsee

(7)$. In time, both H' and n change linearly in int, and
p falls as 1/t. p may fall by several orders of magnitude
within a few hours, but the decrease in n during this
period amounts to only a few percent. Therefore, the
value of o., determined by tube magnetization is not
seriously affected by this transitory behavior. For the
same reason, however, tube magnetization also restricts
our observations to a narrow range of n near n, . Specific
verifications of the theory resulting from tube experi-
ments are:

(1) At high fields (B))BO), the observed temperature
dependence of n, (8) follows from the rate equation (12);

(2) The logarithmic decay as predicted by the theory
[see (14)$ has been verified. The dependence of decay

rates on fields and temperature has not been fully
tested, however;

(3) Experimental observations of discrete, stochastic
pulses can be interpreted most naturally in terms of the
Aux-creep theory.

We tested the theory over a wider range of n variation
by measuring resistance of SIII samples. Voltages ap-
pearing across a sample were obtained as a function of
externally supplied current J and transverse 6eld B.
We interpret this voltage as a manifestation of uncom-
pensated emf arising from Qux creep. We again find that
at a given temperature the voltage so observed is a
function of only n= J(H+Bp), Bp being the same order
of magnitude as found in tube experiments. V(n, T)
follows (18), a form expected from the theory. These
measurements gave rise to another critical value n„,
which is dictated by power dissipation in some local
regions of the sample. When o, reaches o.„,thermal con-
duction begins to lag power dissipation and thermal
instabilities grow quickly from these regions, leading to
a catastrophic transition to the normal state.

The summary presented above indicates that the
Aux-creep theory is very effective in unifying various
phenomena associated with the resistive state of hard
superconductors. In its present form, however, the
theory is not adequate to account for: (a) the depend-
ence of V on a, (b) the significance of Bo and its tem-
perature dependence, and (c) the "peak effect" observed
in some material near the upper critical 6eld.
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