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Electronic Structure of a Series of Metals
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Self-consistent calculations of the electronic structure, including screened exchange, are carried out for
Li, Be, Na, Mg, Al, K, and Ca. Results are presented as orthogonalized plane wave (OPW) form factors.
They agree well with values of these form factors estimated from split tings at symmetry points in the Brillouin
zones obtained from existing band calculations. For calcium, the form factors are used to compute the Fermi
surface in detail. The computed form-factor curves may be approximated within a few hundredths of a ryd-
berg by the Fourier transform of a simple one-parameter potential in which the core is replaced by a delta-
function repulsive potential. There are no apparent trends in the strength of this repulsion with valence nor
with atomic number. The familiar dropping of the even state at the zone face in the alkali metals as the
atomic number increases is to be associated with the larger atomic volume rather than with changes in the
core potential. An attempt to treat copper in a similar manner indicated that the form-factor approach is
quite inadequate for the noble metals.

I. INTRODUCTION
"

N an earlier communication, which we shall call I,
- - it was shown that the Fermi surface of a polyvalent
metal and many of its electronic properties are obtain-
able directly from an "orthogonalized plane wave
(OPW) form factor. " This single function of wave
number (for wave numbers between zero and twice
the Fermi wave number) depends only upon the atomic
cell volume and the individual ion potential.

If the crystal potential could be written as a sum of
simple potentials centered at the ions, the OPW form
factor would correspond to the Fourier transform of a
single potential. Matrix elements of the Hamiltonian
between plane-wave electronic states would then be
given by the product of a structure factor, depending
only upon the arrangement of the ions and the difference
in wave number between initial and final states, and
the Fourier transform of a single ionic potential cor-
responding to that difference in wave number. In the
real crystal, the corresponding separation can be made.
The same structure factor enters, and a single potential-
dependent factor can be dined if we restrict the
matrix elements to be between two states at the Fermi
surface. We call this factor the OPW form factor.

Because this form factor, which represents a most
important aspect of the electronic structure, is in-
dependent of the crystal structure it is of interest to
compare the curves for a number of metals in the
periodic table in order to see any trends in the electronic
structure. A series such as sodium, magnesium,
aluminum can readily be compared in this way though
each has a diferent crystal structure. It was the hope
of seeing trends in electronic structure with atomic
number or with valence, as well as the desire to obtain
the curves which can be the basis of an understanding
of the electronic properties of the metals in question,
which motivated the present study. To this end, the
OPW form factors were obtained for all nontransition
elements through zinc. The curve for copper was

' W. A. Harrison, Phys. Rev. 129, 2503 (1963); hereafter
referred to as I.

included in the interest of comparison, but was not
regarded as useful since approximations in the approach
are not appropriate for a noble metal. The curve for
zinc was available from previous work, ' which we will
call II.

In Sec. II we deine the terms which enter the
calculation and indicate the approximations made; a
detailed outline of the procedure used is given in
Appendix A. In Sec. III we summarize the results for
the various metals and compare with existing calcu-
lations. In Sec. IV we consider a simple model which
describes the results quite well and look for trends with
valence and atomic number. A detailed study of the
Fermi surface of calcium is given in Appendix B.

II. CALCULATION OF THE OP& FORM FACTORS

The matrix elements which enter the calculation of
many electronic properties are simply the matrix
elements of the total Hamiltonian between orthogonal-
ized plane waves. A method was developed in I and II
for computing these matrix elements, as well as for
computing properties in terms of them. Because
orthogonalized waves are not orthogonal to each other,
this matrix element will depend upon the zero of
energy; in I we selected the zero of energy to optimize
the convergence of the perturbation treatment.

We assume that the cores in the metal are the same
as in the free ion, and include in the one-particle
Hamiltonian, the kinetic energy, a sum of free-ion
potentials (one at each ion site), exchange between
conduction and core electrons, and the self-consistent
field of the conduction electrons. Orthogonality co-
efBcients are obtained using the core wave functions
from a Hartree —Fock treatment of the ion.

In I we wrote the matrix elements as matrix elements
between plane waves of a pseudopotential W(k) and
separated them into structure-dependent and potential-
dependent factors:

&&+tl[ ~(&) [&&=S(tl)&&+tl)to(&) [&) (&)
s W. A. Harrison, Phys. Rev. 129, 2512 (1963); hereafter

referred to as II.
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Here the wave numbers k and k+q lie on the Fermi
sphere. The structure factor, S(q), is given by

where the sum is over all X of the ion positions r;. The
OPW form factor, (k+qi w(k) I k), is a simple function
of q for 0(q(2k' and is evaluated from the Hartree-
Fock Geld and core wave functions of the ion.

The calculation of these form factors has been
described earlier. '' Here we will simply describe the
modiGcations which we have made for the current
calculation; these greatly simplify the numerical work.
Since the calculations remain rather complex in detail,
we give in Appendix A the step-by-step procedure
which was used.

In the course of evaluating the form factor, matrix
elements of the core potential, including exchange,
between plane waves and core wave functions must
be evaluated. These can be simpliGed by noting that
the core wave functions, P„are solutions of the
Schrodinger equation containing this same ionic
potential, v„',

+4t+&op 6= ere ~

where e& is the customary Hartree —Fock parameter. It
is then readily shown that

so these matrix elements are given directly in terms of
the orthogonality coefficients, (t i

k).
We also require matrix elements of the core potential

between plane waves. The core potential includes the
self-consistent Geld of the core which may or may not
be tabulated in the literature. If not, the Fourier
transform of the charge density is readily calculated,
from which the Fourier transform of the potential is
directly obtained using Poisson's equation.

v p also includes exchange between conduction and
core electrons. In our earlier treatment of zinc'' this
exchange entered as an /-dependent potential in the
Hartree —Fock treatment used by Piper. ' We would
expect to make little error by using instead the approxi-
rnate treatment of exchange given by Slater'; that is,
free-electron exchange, and we use that procedure here.
In this approximation the exchange potential is given
by —3e'(3pp/gs. )&, where ps is the local density of
(core) electrons. This, again, may be computed from
the tabulated core wave functions, and v,p' becomes a
simple potential.

Vile Gnd the inclusion of exchange in the calculation
reasonably important. In Fig. 1 is shown. the OPW
form factor computed for aluminum with exchange
included as described above. In addition, the form
factor is shown computed without exchange by using
the Hartree parameters, rather than the Hartree —Fock

& W. A. Harrison, Phys. Rev. 126, 497 (1962).
4 tv. ~. Piper, Phys. Rev. 125, 1281 (1961).
s J. C. Sister, Phys. Rev. 81, 385 (1951).
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F&G. 1. The OP%
form factor for alu-
minum calculated
from the Har�tre-
eF�o field and in-
cluding exchange;
calculated using the
Hartree parameters,
but including ex-
change between con-
duction and core
electrons; and calcu-
lated from the Har-
tree parameters
omitting exchange
between conduction
and core electrons.

parameters, and by dropping the exchange in v,p'. The
curves are rather close, but diGer by as much as 0.09E&
in places. This is considerably larger than the other
errors we expect to make and, therefore, the inclusion
of exchange is appropriate.

Also shown in Fig. 1 is the form factor obtained
including exchange in v,p' but using the Hartree
parameters in the computation of (tIv, v'Ik). This is
in slightly greater error and suggests that if we treat
a metal for which only the Hartree calculation had
been done for the ion, it is preferable to omit exchange
altogether. This suggestion has been made earlier by
Heine. 6

Finally, we need the self-consistent Geld arising
from the conduction-electron charge distribution. The
two interesting contributions to this charge distribution
are the deviations from uniform distribution arising
from orthogonalizing the plane waves to the core wave
functions and those arising from the screening of the
core and exchange potentials.

The eGect of orthogonalizing all conduction band
waves to the core is to localize a charge of

(&/&) Zs(s, Z~ (kit)(teak)

at each core. For the interpolation we used in the
treatment of zinc' the terms in this sum were in-
dependent of k, and we make that approximation here.
We find the number of charges, bZ, localized at each
core to be given by 8Z= Z P & (k I t) (t

~
k), where Z is the

valence (the column number in the periodic table). In
our treatment of zinc we concentrated this charge
at a point at the nucleus; here we improve
on this by distributing it as the core charge is
distributed. The fact that this improvement only very
slightly modiGes our result supports the contention
that it is unnecessary to determine the distribution
more accurately.

The self-consistent shift of the conduction-band
charge density also depends upon the individual be-
havior of all of the electrons. In II we obtained the
shift by integrating over the conduction band. Cohen
and Phillips~ have suggested an approximate treatment

6 V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
r M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
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where the appropriate matrix elements are simply
divided by the Hartree dielectric function corresponding
to the wave number in question. We wish to avoid the
determination of matrix elements for states below the
Fermi surface, but find the Cohen —Phillips approach
inadequate in that it disregards an inherent non-
Hermiticity in the matrix elements which arises from

the nonorthogonality of the orthogonalized plane waves.
As a consequence it would lead to a limiting value for
small wave numbers of ——;Es(1++g (k l t) (t l k)),where-
as we showed in II that the correct value is simply

2Et—/3; thus, the Cohen-Phillips approximation leads
to errors of the order of 10~~& in this region. In I we
wrote the screening field as

SC—
q

4n-e'

q2Q L&ky Tk Tk+q Tk Tk—q

(k+qlw(t'B)'lk) (k—qlw(t'B)'lk)* 4n-e'

g k~k+ -Tk Tk+q ~k ~k—q-
(3)

The sums over the first and second terms in square
brackets are identical (a fact which we previously
overlooked for the general case), so the square brackets
may be contracted to twice the first term. We then re-
place (kyqlw(&) Ik) by (k+qlw(~) lk)+z(T's 2'[+g)
X Pi(k+ql t)(tlk), a form suggested by the form of
the non-Hermiticity of the matrix elements. )Note
added irt proof. Current machine calculations being
made of the energy-wave number characteristic for
aluminum (to be published) have given incidentally a
check on the accuracy of this procedure, and have
indicated that it is good to a few thousandths of a
rydberg over most of the wave number range. ]Ke then
neglect the dependence of the matrix elements upon k.
Thus, we find the screening field to be given by two
terms; the first is (1—B,)/Bg times the unscreened
matrix element; the second is given by

4~e'~ Zt (k+ ql t)(t Ik)/Lq'"«(q)&

This second term, which is absent in the Cohen —Phillips
treatment, leads to the correct limiting behavior at
long wavelengths.

These modifications were incorporated into the
method developed earlier' ' to obtain the procedure
which is explicitly described in Appendix A.

ends in copper. We carried out the analysis for copper,
treating the 3d bands as core states though these
states actually diGer significantly from the correspond-
ing ion states. Finally, we list the results for zinc which
were given earlier'; in zinc, the core is again rather
small.

In each case we computed the form factors for the
metal at the observed density. We obtained values
for q/ks equal to 0, 0.5, 1.0, 1.5, and 2.0. These are
given in Table I and plotted in Fig. 2. Before consider-
ing trends in the OPW form factors, we shall discuss
the calculations for the individual metals and compare
the results with existing calculations where possible.

The comparison with existing calculations is not
direct. We have obtained matrix elements of the
Hamiltonian between two states on the Fermi surface.
If the free-electron (or single-OPW) surface intersects
a zone face, the OPW form factor for q equal to the
corresponding lattice wave number (2gr times the
reciprocal lattice vector) equals half the band gap for
that zone face, evaluated at this intersection. This
neglects modifications of the band gap from inter-
action with neighboring bands; i.e., it assumes that
the wave function can be approximated by the sum of
only two plane waves. Errors associated with this

TABLE I. OPW form factors in Ry.

g'/kg 0 0.5 1 1.5

Li
Be
Na
Mg
Al
K
Ca
CU
Zn

—0.237—0.703—0.154—0.353—0.573—0.100—0.231—0.345—0.472

—0.207—0.500—0.145—0.301—0.427—0.104—0.196—0.423—0.329

—0.137—0.145—0.110—0.165—0.183—0.087—0.119—0.336—0.176

—0.046
+0.124—0.051—0.009
+0.019—0.052—0.036—0.164—0.036

+0.064
+0.299—0.001
+0.095
+0.113—0.014
+0.039—0.102
+0.074

III. COMPUTATION AND COMPARISON WITH
BAND CALCULATIONS

The computation was carried out in detail for all
metals through atomic number 20 (Ca). In all of these
metals the core is small, and the approximation that it
is the same as in the ion should be quite good. 21 is
scandium and begins the first transitions series which

FxG. 2. OPW form
factors computed for
a series of metals.
The key appears to
the lower right;
Zip It)(t I 0) gives
a measure of the
orthogonality co-
eKcients, or the core
size; (4z r,'/3) ' is
the electron density.
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Cu 29

Be 4/
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Tmz.z II. Comparison with band calculations. All energies in Ry.

Li
Be

q

110
100

j101]
[002]
110]
100]

[002]
1 101]
L111]
[200]
L110]
L111]
L200]

(k+9I~(&) Ik)

0.064
0.172
0.229
0.253—0.001
0.023
0.046
0.069
0.026
0.071—0.014
0.003
0.039

0.101
0.093
0.254
0.247
0.008
0.027
0.052
0.071

0.030, 0.026
0.055, 0.048—0.016

(N)
(E)
(H,E)
(P)
(~)
(E)
(r)
(H)
(W)
(w)
(&)

0.076 (P)
0.155 (M)

0.018 (P)
0.056 (H)

—,0.024 (E)
—,0.042 (E)
+ 0.020 (P)

0.052 (H)

0.026 (H)
0.044 (M)

—,0.015 (L)
0.062, 0.038 (X)

+ 0.039 (H)

Estimate from symmetry-point splitting Reference

10
12
12
12
10
15
15
15

17, 18
17, 18

10

approximation are expected to be small compared to
uncertainties in the potential in most cases.

The band calculations give us energies, or band gaps,
at symmetry points. Again neglecting the interaction
with neighboring bands, we may deduce splittings
associated with the zone faces which intersect this
point, but now evaluated at the symmetry point rather
than at the Fermi surface. We have shown in II
(Fig. 1) that these matrix elements may vary signifi-
cantly over the zone face, so some error is introduced
in the comparison which will, however, be small if the
two points are close. In spite of these difFiculties, it is
desirable to estimate the OPW form factors from
previous band calculations as a check on our calcula-
tions. In the case of calcium, for which there do not
exist any previous band calculations, we will compute
the Fermi surface in some detail from our OPW form
factors.

1. Lithium

The Hartree —Fock wave functions for lithium were
taken from Holoien'; the Hartree —Fock parameters
were taken from Fock and Petrashen. ' For both
lithium and beryllium, analytic approximations to the
wave functions were given which greatly simplified
the numerical work. In addition, the presence of only
the 1s state in the core reduced the computations
required.

Only very rough comparison is possible with previous
band calculations in the monovalent metals. The Fermi
surface does not intersect any zone face, so the splittings
corresponding to OPW form factors have not been
obtained. However, the Fermi surface approaches rather
close to a (110) zone face near the point E. Therefore,
rough comparison may be made between computed
splittings at X and the OPW form factor corresponding
to q=2kp. We compare with "Fourier transforms of
the effective potential" computed by Ham" from the
calculated band splittings at E, I', and H. The com-
parison appears in Table II. The differences between
values given by Ham from different symmetry points

' E. Holoien, Proc. Phys. Soc. (London) A68, 29'I (1955).' V. Pock and M. J. Petrashen, Phy. Z. Sowjet. 8, 547 (1935).
's F. S. Him, Phys. Rev. 128, 2524 (1962).

shows that there are sizable variations of the matrix
elements over the zone face, as he has indicated, and
that comparisons of our values with the symmetry-point
splittings are not very reliable. It also emphasizes the
importance, for computing properties, of obtaining
matrix elements between states on the Fermi surface
as we have done rather than at symmetry points. In
the alkalis, the comparison at E is more significant
than the others, but still corresponds to a transform
with wave number differing by 10% from that in our
calculation. We regard the agreement as suitable in
view of this difference.

2. Beryllium

Hartree-Fock wave functions were taken from
Holoien, s but since published Hartree —Fock parameters
were not found for Be++, the computation was carried
through without exchange. All other metals have been
treated including exchange. Hartree parameters were
taken from Hartree and Hartree. "

Comparison is made with the band calculation of
Herring and Hill. " Form factors were obtained from
our calculation for beryllium and for the other poly-
valent metals by linear extrapolation between q= 1.5k+
and q=2kp. The comparison appears in Table II.
Values for the (100) form factor were obtainable from
both E and M; E lies nearer the Fermi surface and is
therefore listed first. Only two band energies were given
at H, so it was necessary to take the (100) form factor
from E in order to deduce the (110) value. The rather
large discrepancies are presumably due to the influence
of higher bands; a few-OPW treatment of the band
structure is rather inadequate when the form factors
are as large as they are in beryllium.

3. Sodium

Hartree —Fock wave functions and parameters were
obtained from Hartree and Hartree. " In sodium, and

"D R. Hartree a. nd W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935)."C.Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).

'sD. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).
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in the remaining metals, all integrations were performed
numerically by hand. In the integrations the region
was divided into twenty to thirty intervals. Approxi-
mately one day of computation was required for sodium.
As in the case of lithium, comparison is made with the
splittings found by Ham. "

4. Magnesium

Hartree —Fock wave functions and parameters were
obtained from Yost.' We compare our OPW form
factors with values obtained from the band energies at
symmetry points computed by Falicov. " Values for
the (100) form factor are listed in order of proximity
to the Fermi surface of the symmetry point in question.
Agreement is remarkable; it should be noted, however,
that the band energies at II do not differ from the
Fermi energy much more than those at E, so a com-
parison with the (100) value determined at H is about
as appropriate as with the value from E. We might
also compare the discrepancies with the errors inherent
in band calculations, which Falicov" has attempted to
reduce to 0.03 Ry.

S. Aluminum

Calculations were based on the Hartree-Fock treat-
ment of the AP+ ion by Froese."We compare with the
splittings computed both by Heine' and Segall. "
Heine's values at E' have not been included because
of an apparent numerical error in the third-band
energy. ""The agreement with the values at H/', which
lies quite close to the Fermi surface, is quite good, and
comparable to the discrepancies between the two band
calculations. We note that, even in aluminum, estimates
based upon the different symmetry points differ by
about 0.01 Ry.

6. Potassium

The Hartree —Fock calculations for K+ by Hartree
and Hartree" were used, and again comparison is
made with estimates from the band calculation by
Ham"

7. Calcium

Calculations were based upon the Hartree —Fock
treatment of Ca++ by Hartree and Hartree. " There
has apparently not been a previous band calculation
for calcium, and our examination of band energies at
symmetry points for the other metals suggests that a
tabulation of the energies at symmetry points estimated

'4 W. J. Yost, Phys. Rev. 58, 557 (1940)."L.M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962)."C.Froese, Proc. Cambridge PhiL Soc. 53, 210 (1957).
'r V. Heine, Proc. Roy. Soc. (London) A240, 361 (1957)."B.Segall, Phys. Rev. 124, 1797 (1961).
'9 W. A. Harrison, Phys. Rev. 118, 1182 (1960).
soD. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A166, 450 (1938).
~'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A164, 167 (1938).

Q. Zinc

The form-factor curve was taken directly from our
earlier treatment, ' which was almost identical to that
described here. There was no previous band calculation
to compare with, but a comparison' with the observed
Fermi surface suggested agreement comparable to the
agreement we find with the other metals.

IV. A SIMPLE MODEL AND TRENDS IN THE
PERIODIC TABLE

We 6nd that it is possible to account remarkably
well for the OPW form factors we have computed in
terms of a simple model with a single adjustable
parameter. We note that the main attractive contri-
bution to the effective potential comes from the long-
range Coulomb field of the net ion charge, Ze. The
remaining contributions (except for screening) are
restricted to the core and may be approximated by a
delta function. Of these localized terms, the largest
arises from the orthogonalization terms so the delta
function is positive. We screen these with a Hartree
dielectric function for free electrons of the density in
question. Thus, we approximate the OPW form factor
by

p (q) = (—4s Zz'/q'+P)/Q&e (q) . (4)

P is the strength of the delta-function repulsion.
Clearly, because of the operator nature of the

repulsive term, P may depend upon the Fermi wave
number and, therefore, upon the atomic volume. We

ss B. Segall, Phys. Rev. 125, 109 (1962).

from the form factors would not be particularly reliable.
It is of some interest, however, to determine the Fermi
surface of calcium. This we can do from the form-
factor curve for calcium. The calculation is given in
Appendix 8, along with preliminary comparison with
experiment.

8. Copper

Copper was treated only for comparison with the
other metals. The assumption that the core states are
the same as in the atom is completely inadequate for
copper, where the conduction and d bands are intimately
mixed. Further, the entire perturbation treatment is
questionable when the bands are as seriously deformed
as in copper. However, we may proceed just as in the
other metals to obtain a form factor. We have used
the Hartree —Fock treatment of the Cu+ ion given by
Piper. 4

As in the alkali metals we compare the form factor
for q= 2k' to the splitting at the center of the nearest
zone face, in this case at the point J.We find a negative
value, implying that the even state lies lower, whereas
the band calculation of Segall2' gives the odd state
lower. This confirms our misgivings at the start and, in
fact, the comparison of copper with the other metals
does not seem very informative.
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FIG. 3. The OPW
form factor for alu-

q/kF minum calculated at
the observed density
(r, =2.07) and in an
expanded crystal

(r, =2.N).
Dashed lines are the
corresponding curves
computed from the
model potential with
P =36.6 Ry-a. u.3.

TABLE III. The strength, P, of the repulsive pseudopotential
in units of rydbergs —atomic units of volume.

Li, 29.1
Na, 27.0
K, 31.5

Cu, 22

Be, 30.8
Mg, 41.6
Ca,

'
50.6

Zn, 26.5

Al, 36.6

will first test the validity of the wave-number depend-
ence implied by Eq. (4) for the observed atomic volume.
We will then examine the dependence of P on the
atomic volume.

In Fig. 3 we have shown again the computed form-
factor curve for aluminum (r,=2.07). We also show
Eq. (4) plotted with P adjusted to fit at g equal to 2k+.
The fit is extremely good (within about 0.03 Ry) over
the entire wave number range. Similar fits to the other
metals have been made. The corresponding values of
P are listed in Table III. In all cases, except copper,
the agreement with our computed curves is comparable.

It should be pointed out that for treating a band
structure per se, the increased accuracy of the full
calculation is rather important. However, for treating
electronic properties the approximate form should be
quite adequate. It should also be pointed out that, as
we found in zinc, ' the breakdown of the simple-potential
approximation gives variations in matrix elements of
about a tenth of a rydberg when we consider interaction
of states which do not both lie on the Fermi surface.
This shortcoming was also apparent in variations in
form factors estimated from the splitting at various
symmetry points in Table II. Thus, it is not reasonable
to extend the use of this potential to the atomic
properties.

The most striking aspect of the values for P listed in
Table III is the lack of any trend with atomic number
or with valence. Even in the alkali metals there is no
trend, and the familiar lowering of the s state at the
zone face with atomic number, which corresponds to
the very apparent dropping of the form factor curves
in Fig. 2, is due to the increase in atomic volume with
atomic number rather than to changes in the effective
core potential. This lack of trend in the P values
manifests itself in the striking similarity of all of the
form-factor curves of Fig. 2 for the polyvalent metals,

where there does not exist this marked dependence of
atomic volume on atomic number.

We now consider the variation of P with atomic
volume for a given metal. In Fig. 3 we show the OPW
form factor for aluminum with an expanded volume
corresponding to an increase in r, by a factor of 4.

(The form factor in this case was computed for q/kg = 0,
2a, f, and 2.) We also show Eq. (4) plotted for the
increased volume with the value of P chosen for the
normal volume. Clearly, the same value of P accounts
rather well for both densities, though a 14% decrease
in P would be required to make the fit exact at 2k+.
Thus, Eq. (4) may be used, at least for aluminum,
with a single value of P over rather large variations in
atomic volume and very little error is introduced.

We have not made the corresponding comparison for
the other metals, but we can And an indication by
considering Ham's" band calculations on the alkali
metals. As we indicated above, we may obtain an
estimate of the OPW form factor for q=2kp from the
splitting at cV (between the states E~ and Ã~'). Ham"
has listed these splittings as a function of atomic
volume for the alkalis and we may, therefore, make an
estimate of P as a function of atomic volume. This
estimated P drops as the atomic volume drops in all
cases (in contrast to aluminum), but the size of the
variations for lithium and sodium are comparable to
those in aluminum. For potassium, and particularly
for rubidium and cesium, the drop in P is very rapid
at small volumes. It seems likely that this drop is
associated with the depression of the even state by the
incipient d band, rather than with a real drop in the
matrix elements derivable from the OPW form factor.
With increasing atomic number the d band, and the E2
state in particular, drops. Furthermore, for a given
element, the d band drops as the atomic volume is de-
creased. Strictly speaking, an Ã2 state cannot interact
with a~ X& state, but their proximity indicates a
strong interaction between the plane waves from which

they are derived. Thus, we would say that the band
gaps at E are not given well by the OP% form factor
for the alkali metals of high atomic number, but the
form factors themselves may still be describable by
Eq. (4) with values of P comparable to those of the
light metals and these may not be inordinately sensitive
to changes in volume.

The results for the alkalis are consistent with our
suggestion of a 49 which does not vary significantly
with atomic number or atomic volume, but do not lend
strong support to the suggestion. Further, these results
give a warning against too literal an application of
form factors to the band structures in the heavy
elements. Equation (4) would indicate that the form
factors at q=2kp become less negative in the heavy
alkali metals as the volume is decreased whereas the
band gaps apparently become more negative. "

~ The author is indebted to Dr. F. S. Ham for pointing out to
him this discrepancy in the alkali metals.
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V. CONCLUSIONS

We have presented a rather simple scheme for
computing the OPW form factors for metals from the
Hartree —Fock calculations on the corresponding ion
and applied this to a series of metals of low atomic
number. The results are suKciently similar to that
obtained earlier' for zinc, that we expect the treatment
of electronic properties in terms of these curves to be
quite adequate for all of these metals, as we found it
to be in zinc. The direct application of the technique
to copper was quite unsuccessful, and indicates that
the approach is not applicable to the noble metals.

The comparison with existing band calculations
given in Table II was rather informative. There are
two approximations implicit in relating the OPW form
factor to the band splittings at symmetry points. First
is the assumption that the matrix element between any
two plane waves diGering in wave number by q is the
same as that when both initial and final wave numbers
lie on the Fermi surface. We found explicitly in zinc'
that this is not the case, and the errors become more
serious as we move further from the Fermi surface.
Second, we neglect the eGect of neighboring bands:
These give shifts of the order of the square of the matrix
element divided by the energy diGerence from the band
in question, and are not always negligible. The dis-
crepancies we found between our values and estimates
from the symmetry points were no bigger than the
differences between values of the same form factor
obtained from diGerent symmetry points. Furthermore,
the discrepancies were smallest for the symmetry points
lying closest to the Fermi surface, and were of the
order of a hundredth of a rydberg there. Thus, the
band calculations generally may be regarded as
confirming our calculations.

The fact that the discrepancies become small for the
symmetry points closest to the Fermi surface suggests
that the main errors in computing symmetry-point
energies from the OPW form factors comes from the
wave-number-independent pseudopotential approxi-
mation rather than the inclusion of only a few plane
waves. We may note from Table II that the associated
errors are larger in the alkali metals than in the poly-
valent metals, but not significantly larger. A cursory
look at the heavier alkalis suggests that neglect of
interaction with higher bands becomes increasingly
serious at higher atomic numbers.

The most striking result of our analysis is the degree
of success of the simple model for the eGective potential
with a single parameter for each metal: Particularly,
the fact that the model seems to carry over reasonably
well to changes in volume. This means that we may
directly treat alloys in a simple manner, including the
distortions of the lattice due to alloying if they are
known: Computations of resistivity or of band struc-
ture become very direct.

Another striking finding is the apparent lack of

trends in the repulsive term in the potential which
arises from the ion core. It was natural to expect a
uniform lowering of s-like states in comparison to
p-like states with increase of atomic number, since
this was known to occur in the alkali metal series. We
6nd that that tendency does not occur in the polyvalent
metals, and that in the alkalis it is largely due to the
increase in atomic volume with atomic number: In the
heavier alkali metals there appears to be an additional
depression of the s state from higher bands which drop
as the atomic number increases.

It is interesting to indicate the degree of reliability
of the delta-function strengths, P, given in Table III.
We regard our OPW form-factor curves as reliable to
one or two hundredths of a rydberg; similarly, the
values obtained from the effective potential are reliable
to this order. Since the atomic volumes are of the order
of a hundred a.u. ,

' and the dielectric function of the
order of one when q is near 2k«, we see from Eq. (4)
that the P values are reliable to the order of S. In
view of the sizable variations from element to element,
this is sufFiciently accurate to allow very informative
studies of the properties of the corresponding alloys.
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APPENDIX A: PROCEDURE FOR CALCULATION
OF THE OPW FORM FACTORS

The right-hand side of each numbered equation
below is a mathematical operation which is carried out.
Values obtained for aluminum are given in square
brackets at each step. All energies are in rydbergs,
other parameters are in atomic units. All integrals over
r run from zero to infinity.

For the observed volume, Qo, we compute

4v./Q, L0.1128],
radius of the equivalent sphere, ro(2.985], and free-
electron Fermi wave number, k«L0.9273]. From a
Hartree —Fock treatment of the ion we obtain the
normalized radial wave functions, P„~(r), and parame-
ters) &ng, ng

t
4~~'I'

(k
~
P„,)= i

—
~

«j,(k,r)P„,(r)d»; (A1)
knot

L1s, 0.032; 2s, —0.234; 2p, 0.0816].

P, (k+q~t)(t~k)
=Pq (2t+1)P~(cos20~) P„(k[f„~)'; (A2)

$0.0560+0.0200 cos20'].

v, (')=P, (k+qit)(trav. ,'ik)
=P~ (21+1)Pg(cos20) Q„(k~g„~)'

&& (—~
e„(,„(

~

—kg'); (A3)

f—0.844 —0.196 cos20 j.
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We select a set of q values for which we will compute
the form factor. All computations will be made for
these q's and for q=0 if the corresponding value is not
infinite.

That contribution to the screening Geld which arises
directly from the non-Hermiticity of the pseudo-
potential is given by

I q/kr =0, 0.5, 1, 1.5, 2],
cos20. = 1—q'/2&r',

$1& 0.875, 0 5& .—0.125, —1].
(A4)

4g 2Z
v, ' =——P (k+q~t)(t~k);

Qp g2

L—,0.231, 0.052, 0.019, 0.007],

(A13)

~o"'=
I

I
Zro'+ — ~ 'L&dr) .

&n, )
(A8)

The Fourier transform of the exchange potential is
proportional to

1.2707 4m.

v~&z& = — — sinqrt rU(r)]1dr; (A9)
q Qp

I
—0.377, —0.343, —0.262, —0.172, —0.105] .

The Fourier transform of the potential arising from
orthogonalization is proportional to

4v 2Zn(q)
P (kit)(teak); (A10)

a, q2 n(0)

L—,—0.237, —0.057, —0.024, —0.012].

Ilk) = vo&'&+vo1'& —vo&'& (A11)

L
—2.473].

(k)Nik)
v, 1'& =—— Q (k+ q i t) (t i k); (A12)

1—P, (k~t)(t~k) &

L
—0.203, —0.197, —0.177, —0.143, —0.096].

Expressions (A2) and (A3) above are evaluated for the
q's in question:

L0.0760, 0.0735, 0.0660, 0.0535, 0.0360;
—1.040, —1.016, —0.942, —0.820, —0.648].

We define U(r)=4v-r'po(r), where po is the core-
electron density. If U(r) is not tabulated, we compute

U(r) =+&,„2(2t+1)P„P(r). (AS)

The Fourier transform of the electron density is
proportional to

&&'sinqrq

~U(r)~r;
& qr )

L10, 9.90, 9.52, 8.95, 8.24] .

Note n(0)=+„,i 2(2l+1) is equal to the number of
core electrons.

The Fourier transform of the ion potential is
proportional to

v, 1'&= (4 /0)(2/q')I —Z—n(0)+n(q)], (A7)

3.253, —0.913, —0.472, —0.312],
where Z is the valence $3]. For q=0 the integral is
restricted to the equivalent sphere;

divided by the Hartree dielectric function for free
electrons, e(q).

1 1 1 rtz —1+g
e(q) = 1+ — ln +1; (A14)

27Pkp Q 2g 1

L—,6.375, 2.252, 1.478, 1.172);

where rt =q/2k'. The dielectric function for other metals
may be computed from that for aluminum according to

e(q/kr) = 1+Le (q/kr)» —1](0.9273/k ) .

The OPW form factor is

(k+ql~(&) Ik)
= Lv "&+v 1"jv 1'&+v &'&+v, &'&—v, 1'&7/e(q); (A15)

E
—0.573, —0.427, —0.183, +0.019, +0.113].

The q= 0 value is simply —2k+'/3.
In the absence of a Hartree —Fock calculation for the

ion, Hartree parameters may be used in Eq. (A3) and
v, (2' is taken equal to zero.

APPENDIX 8: THE FERMI SURFACE IN CALCIUM

Calcium is face-centered cubic with unit cube edge
of a=10.5 a.u. Zone faces intersect the Fermi surface
corresponding to lattice wave numbers of type
L111]27r/a, and $200]27r/a. The OPW form factors to
be associated with these faces are 0.003 and 0.039 Ry,
respectively. If the (111) gap is, in fact, as small as
this, magnetic breakdown" will occur at high helds.
(At the breakdown field' of II= mr&tcU, 'kr/eAErq, which
is 50 kG for V, equal to 0.003 Ry and the other parame-
ters taken for calcium, the probability of jumping the
gap is 1/e. ) Our calculation is not sufficiently precise
to be sure even of the order of magnitude of this break-
down field, but we should consider a high-field and a
~ ow-Geld Fermi surface.

At low fields, both types of zone face are effective.
Except for the change in connectivity of the surface,
the distortion of the surface by the (111) face is
negligible: The effect of the (200) faces are readily
included by treating a two-by-two Hamiltonian matrix.
In Fig. 4 is shown the resulting Fermi surface, as well
as the free-electron surface for a divalent fcc metal.
Because of the smallness of the gap on the (111)faces,
the second-band electron surface is essentially the same

'4 M. H. Cohen and L. Falicov, Phys. Rev. Letters 5, 544 (1960);
7, 231 (1961).
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FIG. 4. The calculated low-field
Fermi surface in calcium; (a) and
(c) are the first- and second- band
surfaces in the one OPW, or nearly-
free-electron approximation; (b) is
the first-band surface from our
calculation; the second-band sur-
face is essentially unchanged "by
our calculation.

~ N

/

/
/

/
/

as that for free electrons. The main effect of the finite
lattice potential on first-band hole surface is to open
gaps in the thin sections of the free-electron surface.
The resulting hole surface has the connectivity of the
third-band electron surface in aluminum. The intro-
duction of interaction with a second plane wave also
shifts the Fermi energy by about a percent. If we
correct for this shift, to obtain a surface of the correct
volume, this reduces the sensitive cross section (f)
described below by about 14%, and affects the others
by smaller amounts. We have neglected this correction.

We may list the sections of the surface which are
most interesting from an experimental point of view.
The corresponding estimated areas and de Haas —van
Alphen periods are given in Table IV.

(a) The minimum section of a first-band arm, cor-
responding to orbits in a field in a L110J direction.

(b) An orbit around the intersection of four arms at
W, as viewed along a $1007 direction.

(c) An orbit around the intersection of four arms at
W, as viewed along a L110J direction.

(d) An orbit around the second-band disks. The
minimum area is seen with fields along a $110]direction.

(e) Another interesting section of the second-band
disks arises with fields parallel to a $100j direction and
has been computed by Berlincourt. "

TABLE IV. Predicted sections of Fermi surface and
De Haas-van Alphen periods for calcium.

Section

(a)
(b)
(c)
(d)a
(e).
(f)
(g)

Field
direction

[iO gO

110
110

Area
(a.u.)

0.0062
0.035
0.038
0.054
0.064
0.09
0.31

Perj.od
(10 ' 6 ')

4.3
0.76
0.71
0.50
0.42
0.30
0.085

(f) The nearly circular region surrounded by four
arms, seen with fields in the $100] direction.

(g) An approximately square orbit around the outside
of these arms and concentric with (f) as viewed along
a

C
100J direction.

In the high-field limit all of these disappear except
(f) and (g), each of which has the same area as above,
and no new extremal orbits appear for fields in the
$100J direction. The Fermi surface then becomes the
same as that for a monovalent, simple-cubic metal.

Berlincourt25 observed de Haas-van Alphen oscilla-
tions in calcium with a magnetic field parallel to L100 J
using fields pulsed to 200 kG. He found a period of
0.59)&10 r G ', with an estimated error of 10%, and

' T. G. Berlincourt, in Proceedings of the Seventh International
Conference on Low-Terlperatgre Physics (University of Toronto
press, Toronto, 1960).

a These orbits occur in the single-OPW approximation, and are not
appreciably modified by the lattice potential. Single-OPW areas are listed
here,
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indication of a period shorter by a factor of about 8.
The Grst does not match any of the periods given in
Table IV for L1007 fields very closely, but is of the
order of (b), (e), and (f). Neither (b) nor (e) is very
sensitive to the size of the form factors and we do not
expect errors this large. We would be inclined to guess
that the sensitive orbit (f) has been observed. The
shorter period agrees nicely with (g) and with no other
orbit. These are just the two orbits which remain for
high fields in the $1007 direction and suggests that at

the 200 kG which he used, breakdown has become
important.

Condon and Marcus" and Condon'~ have studied
the de Haas —van Alphen eGect in Gelds up to 30 kG
and find results consistent with the low-Geld surface,
though quantitative comparison is not complete.

~6 J. H. Condon and J. A. Marcus, Bull. Am. Phys. Soc. 6, j.45
(1961).

s' J. H. Condon (to be published).
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Evidence for the (110) Swelling Constant Energy Surface for Heavy
Holes in Silicon

H. MIYAZAWAq K. SUZUKIq AND H. MAZDA

Toshiba Central Research Laboratory, Ecmusaki, Japan
(Received 23 April 1963)

A newly devised experimental technique has revealed that the puzzling weak-Geld anisotropy of the
galvanomagnetic effects in p-type silicon above 77'K belongs, according to our classification, to the last of
the four possible types for cubic semiconductors. The strange behavior is ascribable to the growth of the
(110) swelling energy contour for the heavy-hole band. A brief description is given of the calculation of the
nonparabolicity with the recent band parameters and of the calculation of the conductivity tensor for a
fictitious energy surface.

YMMETRY arguments predict that only four types
can exist for the anisotropy of the weak-field

galvanomagnetic eR'ects in cubic semiconductors. ' These
are listed in Table I, together with the corresponding
materials and their band shapes, in accordance with the
results thus far established. ' The similarity of the

valence band of silicon and germanium might suggest
that p-type silicon would belong to the third type, as is
the case for p-type germanium. Careful measurements of
the weak-field magnetoresistance, ' however, have dis-
closed that the anisotropy of the former above liquid-
nitrogen temperature is not of the third type and that

MAGNETIC FIELD H

SPECIMEN I H

POTENTIOMETER 300 K

I

FIG. 1. Principle of the differential method to detect the
anisotropy with a low-precision magnet. The merit is in the
simultaneous observation of two competing responses within a
small space.

FIG. 2. An experimental result observed by the differential
method. The measurement was made with a Bitter-type air core
solenoid generating 90-ko maximum field. The result proves that
RJI&&11&&RII&oo1&at finite fields.
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