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We consider the many-body ground state and elementary excitations of the Matsubara-Matsuda cell
model, which can be interpreted as a erst approximation to Siegert's exact but untractable operator algebra
for hard-core boson fields. The model has unphysical aspects, but allows treatment of some many-body
e8ects of the interaction. It represents the hard core by restricting cell occupation numbers to &1, which
changes the algebra from Bose to Pauli type; kinetic energy and attraction appear as interactions between
nearest-neighbor cell pseudospins, equivalent to a Heisenberg ferromagnet with anisotropy in pseudospin
space. Our treatment, valid for scattering length fo)0, splits the Hamiltonian into an isotropic "unper-
turbed" part Bo, describing a system with hard core plus attraction of strength making f0=0, and AIIj.,
consisting of the attraction's deviation from this strength, the parameter A &0 giving the magnitude of this
(repulsive) deviation. The exact ground state of Ho, for any density, is the state symmetric in all pseudospins,
with the appropriate eigenvalue of the total pseudospin component S&') which measures S. These states
exhibit what corresponds to "incomplete Bose-Einstein condensation, " the "excluded volume" eRect of the
hard-core constraint producing relative depletion $0 of the condensate, proportional to p. Exact single
excitations of Ho are density Quctuations p& with, however, free particle-like excitation spectrum, the
ground-state energy being density-independent. Relaxing the restriction to eigenstates of S permits de6ni-
tion, by rotation of the total pseudospin from the vacuum, of a quasiparticle vacuum and operators, for any
mean density. These serve as starting points for treating the full Hamiltonian by the equations-of-motion
method in the random-phase approximation. The excitation spectrum is now phonon-like for small k, with
s~(pA)~tm. fp being expressible exactly in terms of 2, Ez/X can be written in terms of fo, p, and to, self-
consistent in the RPA to order fo'~' .In the low-density limit, $0 —+ 0, there results the well-known expansion
in (ofa'), but there are higher density corrections including a term ~pfo(pfo')'t'$0't, due to the strong
interaction included in the unperturbed many-body ground state.

1. INTRODUCTION; NATURE OF THE MODEL

E consider the ground state and elementary exci-
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tations of a simple "pseudospin" model which
embodies some characteristics of a many-body Bose
system with hard core plus attractive interaction. The
model, which has been used previously by Matsubara
and Matsuda' for treating the X transition in liquid
he1ium, has some obviously nonphysical features (pri-
marily an artidcial "band" structure due to the use of
lattice quantization, resulting in anisotropy of and a
quasimomentum cutoff in the excitation spectrum).
However, it is possible in this model to treat certain
aspects of the strong short-range interaction exactly,
in zero order, and, for reasons to be outlined presently,
we believe that the properties of the model may be of
interest for a better understanding of the physical
many-body Bose system.

As has been pointed out by Siegert, ' the presence of a
hard-core interaction profoundly modifies the structure
of the 6eld description of the many-body Bose system:
There is no longer a unitary transformation from a rep-
resentation in terms of free particIe states (or operators)
to one in terms of the eigenstates of the interacting
system, so that a perturbation treatment starting from
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' T. Matsubara and H. Matsuda, Progr. Theoret. Phys. (Kyoto)
16, 569 (1956); 17, 19 (1957).' A. J. F. Siegert, Phys. Rev. 116, 1057 (1959).

the noninteracting system, is not, strictly, possible at
all. Of course, for an actual system such as liquid
helium, one need not use the idealization of a com-
pletely impenetrable core. Nevertheless, the expecta-
tion of a profound qualitative effect of the strong
short-range repulsion remains. For a one-dimemsioeal
system of hard-core bosons one knows that the prop-
erties are very different from the free-partic1e (or
weak-repulsion) case, the energy spectrum and space
correlations being identical with those of the correspond-
ing fertttioe system. ' In three dimensions the effects of
the hard core are probably not quite as drastic. In the
low-density limit it was shown by Lee, Huang, and
Yang4 and by Brueckner and Sawada' that the hard-core
effects may be incorporated into the basic Bogoliubov'
theory of the weakly nonideal Bose gas by treat'ing the
two-particle scattering with sufhcient accuracy. How-
ever, in contrast to the fermion case where the statistics
itself tends to slppress the many-particle effects of the
short-range repulsion, there is no reason to suppose that
in the boson case a pair approximation is at all adequate
except in the low-density limit. On the contrary, e.g.,

s M. Girardeau, J. Math. Phys. 1, 516 (1960).In the pseudospin
model these results follow immediately by applying a Klein trans-
formation LK. Baumann and R. Sexi, Nucl. Phys. 26, 117 (1961);
M. Bolsterli, Phys. Rev. 122, 1946 (1961)g to the pseudospin
operators. R. T. Whitlock, Western Reserve University disserta-
tion, 1963, and T. D. Schultz, J. Math. Phys. 4, 666 (1963).

4 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

5 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128
(1957).

e N. N. Bogoliubov, J. Phys. IT.S.S.R. 11, 23 (1947).
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the Green's function treatment of Beliaev~ shows clearly
how the Bose condensation enhances the contributions
of three-particle (and higher) scattering amplitudes.
Thus, it would be highly desirable, if one knew how, to
work in a representation which includes the essential
many-body effects of the hard core from the start.

Now Siegert's' work shows how the hard-core part of
the interaction, instead of being treated as the limit of
a repulsive potential in the Hamiltonian, may be de-
scribed by algebraic relations between the field opera-
tors which follow from the basic constraint.

lt (r)P(r')=0 for ~r—r'~ &a,

where a is the hard-core diameter. These algebraic rela-
tions amount to a nonlocal q-number modification of
the basic commutator

fit�

(r),&&«t(r')] and appear to be
highly untractable in their exact form. However they
suggest, as a first approximation, a simplification which
is precisely our model as follows:

Algebra of the Model

We divide the volume 0 of the system into M cubical
cells of size d',

0=Md',

where d corresponds to the hard-core diameter (eventu-
ally we are of course interested in the limit 0, M —+,
with d fixed), and define 6eld amplitudes and occupa-
tion numbers for each cell:

N, =&I,@;; ¹=Q, n, , (j=1, ,M). (1.2)

S,I, is the total particle number operator. We have, as
usual for a discrete set of Bose operators,

[4',l(~]=0; L4',~J]=4'3', (1.3)

but introduce the hard-core constraint approximately
by limiting the eigenvalues of the m; to 0 and 1, i.e.,

This, together with (1.3), implies the basic commuta-
tion relation

I &, &,']= (1-2;)3;,; (1 5)

The algebra of the model, as deiined by (1.2)—(1.5), is
equivalent to that of a set of Pauli operators: If we de-
fine "pseudospin" operators for each cell by

o .ir& —p.+1&, .1'
&r,

&'& = i(l«P —lt;), o;&s& =1 2n;, (1.6)— ,

o ~&s=1 (n=1,2,3);
o;& &o &&'&=io. &'r& (rr, P,y, cyclic);

E~'~]=o (s&i).
(1.7)

r S. T. Beliaev, Zh. Eksperim. i Teor. Fiz. 34, 417, 433 (1958)
Ltranslation: Soviet Phys. —JETP 7, 289, 299 (1958)g; see also
N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

the e, satisfy the standard relations for a set of inde-
pendent Pauli spins:

T= (A'/2m) (~+t) ~ (VO)dsr ~ (&&i'/2esd')

Xg&;;& (+ —+ )(P;—0;),
where (ij ) stands for nearest-neighbor pairs in the cubic
lattice space (each cell has 6 nearest neighbors).
Similarly, the potential energy becomes

2 M~ j~; 8;p.pt.j

The ~;; involve only t'he attractive part of the interac-
tion. For reasons of computational simplicity we make
t&e further nonessential simplification of taking t&;, to be
zero for all except nearest-neighbor cells, where it takes
the value —v. Thus, we have

and, of course,

t ¹„H]=0. (1.9)

To show explicity the effect of the hard-core con-
straint, it is convenient to express H partly in terms of
the pseudospin operators (1.6). One has, for i 4j,
z(A'0'+0 "4~)=st~' ~—~'"&~~"&]

=-', (e; e;—1)+-,'(&s;+I;)—e,~;,
so that

(md'/A, ')H=Q&;;& —,'(1—&r; rr;)+A P&;;& tz,~;
=Ho+A Ht, (1.10)

with
(1.11)A = 1—t& (md'/5') .

In the following we shall express energies in units of
As/md'.

In the cell approximation the drastic effects of the
hard-core interaction thus appear in a simple intuitive
form. In particular, there exists, in the hard-core case,
a group of simple canonical transformations —the
pseudospin rotations —which mix field amplitudes
(o.;&'& and o;&'&) and particle densities (o;"'). This has
consequences which are basic to the interest of the
model:

(1) The part Hs of the Hamiltonian —corresponding
to the isotropic Heisenberg ferromagnet —being in-
variant under uniform rotation of the pseudospins, one
can obtain a degenerate many-particle ground state of
Hs for any mean density (S)/Q(d ' by such a rotation,
Eqs. (2.23)—(2.25), from the vacuum (which corre-
sponds to all the pseudospins "up"). This "unperturbed
quasiparticle vacuum" takes the place of the Bose-
condensed free-particle ground sta, te a,s &he starting

Hamiltonian

The Hamiltonian to be used in the cell approximation
is to some extent undetermined. The simplest choice,
following Ma, tsubara and Matsuda, is to replace the
continuum kinetic energy operator by its finite-difference
approximation
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point of a perturbation treatment, the long-range order
appearing as pseudospin alignment. There is no need to
asslme the persistence of Bose-Einstein condensation in
the presence of the hard-core interaction at Gnite densi-
ties, though we shall see (Sec. 2) that something like a
Bose-Einstein condensation does, in fact, persist. Note
that the "unperturbed" system, described by Ho, in-
cludes the hard-core interaction plus a "square-well"
attraction of depth is'/md' between particles in adjacent
cells. As has been shown by Dyson' for spin waves' in
the isotropic Heisenberg ferromagnet, this corresponds
to zero scattering length for long-wavelength particles.
Because of the "isotropy" of Ho it also corresponds to
zero scattering length for long-wavelength quasi-
particles at any density. The perturbation parameter A,
Eq. (1.11), measures the deviation of the attractive
interaction from this unperturbed value. As in the treat-
ments starting from a Bose-condensed free-particle
state, ' ' the present treatment starting from a homo-
geneous ground state of Ho is valid only for positive
scattering length, "i.e., for A) 0.

Since both IIs and AHt (for A &0) are positive semi-
dehnite operators this means that, with the simple
form of the Hamiltonian we are using, the pseudospin
model cannot describe a "liquid" many-body bound
state. This is not, however, an inherent limitation of the
model, but could be remedied by including a longer
range part in the attraction v;;.

(2) Because of the mixing of amplitudes and densities
by the pseudospin rotation from the vacuum, the quasi-
particle excitations at Gnite density —corresponding to
spin-wave excitations from a "rotated" ferromagnetic
ground state —explicitly involve collective density Ruc-
tuations. Thus, because of the pseudospin algebra im-

posed by the hard-core constraint, the well-known
density Quctuation character of the elementary excita-
tions in the interacting Bose system emerges in the
present model as the consequence of a simple canonical
transformation. In the unperturbed system the density
Quctuations have a free particle-like energy spectrum,
since the ground state has ininite compressibility (its
energy is density-independent), just as in the ideal Bose
gas. The characteristic phonon spectrum emerges in the
presence of the perturbing Hamiltonian.

The many-body ground state and singly excited states
of the isotropic Hamiltonian Ho are treated in Sec. 2.

It might appear from the preceding discussion that
the presence of a hard core in the interaction may actu-
ally provide a conceptual simplification of the many-
body Bose problem. This may be true, but only in part.
The advantage of being able to start from an "unper-

s F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).'F. Bloch, Z. Physik 61, 206 (1930); T. Holstein and H.
Primakoff, Phys. Rev. 58, 1098 (1940).

' For A&0, in the limit 0, 1V~oo where one can neglect
surface eGects, one easily sees that the true many-particle ground
state of the Hamiltonian (1.10) is inhomogeneous, consisting of a
"crystal" of maximum density (ode=1) and volume Nde, with
binding energy per particle 3A, the rest of the volume being empty.

turbed" ground state and "elementary excitations, "
which are much closer to those of the complete Hamil-
tonian than the usual free-particle states, is paid for in
the present model with the formidable complications
which the pseudospin algebra imposes on the formula-
tion of a systematic perturbation procedure. These
complications are well known in the theory of ferro-
magnetic spin waves. A detailed discussion for the iso-
tropic case is given by Dyson. '

Because of these complications we confine our treat-
ment of the full Hamiltonian, in Sec. 3, to an evaluation
of the ground-state energy and of the elementary excita-
tion spectrum by the equation-of-motion method in the
random-phase approximation, " which is equivalent to
the lowest order decoupling approximation in a Green's
function treatment. "We find that this approximation
gives an expansion for the ground-state energy in terms
of the perturbation parameter A, which is self-consistent
to order A'" LEq. (3.32)]. In the low-density limit this
expansion, when expressed in terms of the scattering
length fs LEq. (3.34)],agrees with the well-known hard-
sphere result of Lee, Huang, and Yang. ' However, there
is a higher density correction which arises from the fact
that the unperturbed Hamiltonian, even though it has
zero scattering length and zero S-particle ground-state
energy, nevertheless has a ground-state toave function
which at finite densities differs essentially from the com-
pletely Bose-condensed free-particle ground state (see
Sec. 2).

bat=BI '"g P;t expLik rg],
Q. |p~ expL —ik r;],

(1.12)

where the r, are the lattice vectors of the cell centers, and
the k range over the 6rst zone of the reciprocal lattice.
Similarly,

p~=M 'Q;rs; exp( —ik r;]; p x ——pat. (1.13)

Note the normalization in (1.13), which is chosen to
make po the mean cell occupation number. Because of
the hard-core constraint (1.4) the amplitudes for dif-
ferent k are not independent. One has

Pa bgbi x=0; ga pxpt a=pt (all l). (1.14)

"See, e.g. , D. Pines, The 3duay Body Problem (W. A-. Benjamin,
Inc. , New York, 1961).

'2 N. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 53 (1959) L'translation: Soviet Phys. —Dokl. 4,
589 (1959)g; R. A. Tahir —Kheli and D. Ter Haar, Phys. Rev. 127,
88, 95 (1962).

Quasimomentum Representation

We impose periodic boundary conditions and deine
the Fourier transforms of the local 6eld operators in the
usual way by
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The commutation relations are

Lbk bi]= tbkt bit( (),

t.bk,Pij- M-'bk+i,
and

LbkPl ]=5k,l 2Pk—1 ~

(1.15)

(1.16)

Equations (1.15) are as usual for Bose operators, but
(1.14) and (1.16) reflect the hard-core constraint.

Using (1.14) for 1=0, we can write the Hamiltonian
in the form

+p Pk(s (yp 'yk)bk bk sM'ykpk pk} ~

AHr ——',-MA Qk ykpktpk,

where

yk ——ps exp(ik 5); (1.18)

8 is a nearest-neighbor lattice vector, and the sum over
8 is over the six nearest neighbors of a given lattice cell.
Note that yo ——6 and

Qk yk (1.18')

&Ov=Mpp=pk vk; vk=bk'bk,

The property (1.18') of the coefficients of the pktpk
terms in the Hamiltonian is important. It reflects the
fact that e;;=0 and would continue to hold if we re-
laxed the limitation to nearest-neighbor attraction.

To avoid misunderstanding it should be stressed
again that, because of the pseudospin algebra of the
Geld operators, the "unperturbed" Hamiltonian IIO
must contain "interaction" terms (pktpk) as well as
"kinetic-energy" terms (bk bk). For the same reason,
the interpretation of the b~t, b~ as creation and destruc-
tion operators of particles with quasimomentum k must
be handled with caution. It is true that

of the classical lattice-gas model to the pseudospin model
is, in fact, the same as that of the Ising model to the
Heisenberg ferromagnet.

Finally, we note that a pseudospin representation
which in some respects resembles the present one has
been used by Anderson and by Wada, Takano, and
Fukuda" to treat the BCS theory of superconductivity.
There the pseudospin operators represent the bound
Cooper electron pairs. The constraint which arises from
the hard-core interaction for the Bose system comes
from the exclusion principle for the electron-pair system.
However, there are important differences between the
two pseudospin models. The Anderson pseudospins are
delned in slomsritum space, and the BCS interaction
between them in momentum space is long range, so
that the elementary excitations in a "molecular Geld"
approximation correspond to "local" (in momentum
space) spin flips, giving the energy gap for quasiparticle
excitations in superconductors. In the hard-core Bose
model the pseudospins are local in coordinate space and
the interaction between them is short range, so that the
elementary excitations correspond to collective non-
local spin deviations, i.e., "pseudospin waves, "with no
energy gap. It seems interesting that the frequently
observed similarities between superconductivity and
superQuidity, 4 together with their characteristic dif-
ferences, should here crop up again in a new context.

2. UNPERTURBED HAMILTONIAN; N-PARTICLE
GROUND STATE AND ELEMENTARY

EXCITATIONS

We begin by determining the exact ground state
C'p(X) of the unperturbed system, described by Hp, for
a given number of particles. It is conveninent to con-
sider IIO in the pseudospin form,

and that

t vk, X.vj=0,
Ilp=s 2&v&(1—~' ~),

(1.20) and to define the total pseudospin operator

(1.10')

pbk, ¹vj=MLbk, ppg=bk. (1.21) S=s Pi S~ (2.1)

Thus, the bk (bkt) do indeed destroy (create) a particle.
However, because of (1.16), neither (bk, vi) nor Lvk, vi]
is zero for k&1.Thus, except for /= 0 or 1, an eigenstate
of S,~ can be at most an eigenstate of only one v~. Be-
cause of the incorporation of the hard-core interaction
into the kinematics there are no "free" many-particle
states in this mode. Nevertheless, the "occupation
number" vo of the zero quasimomentum level turns out
to be an important parameter for describing the ground-
state properties of the system.

It should be pointed out that Matsubara and
Matsuda, ' who were interested mainly in the statistical
mechanics of the X transition, arrived at the pseudospin
model from a starting point different from ours. They
generalized the classical "lattice-gas" model, familiar
in statistical mechanics, to include the effects of the
quantum-mechanical zero-point motion. The relation

which, from (1.6) and (1.12), has components

5&i& =-'M'"(b t+b ) .

5"&= —',sM'"(bpt —bp);

s()=-,'m —x.,
Note that

S'=Mvp+Sis& (Sis&+1)

with vk defined in (1.19). Since

LIIp, sj=0,

(2.2)

(2.3)

(2.4)

we can consider simultaneous eigenstates of IIO,S'3)

"P. W. Anderson, Phys. Rev. 112, 1900 (1958); Y. Wads, F.
Takano, and N. Fukuda, Progr. Theoret. Phys. (Kyoto) 19, 597
(1958). See also K. Baumann, G. Eder, R. Sexi, and W. Thirring,
Ann. Phys. (N. Y.) 16, 14 (1961).

r4 See F. London, Sgperguids (John Wiley 8z Sons, Inc. , New
York, 1950), Vol. I; (1954), Vol. II.
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(i.e., N.v), and S'. Because of (2.3) these will be eigen-
states of vp as well.

In terms of the spin picture the nature of Cp(N) is
determined easily. Because of the isotropy of Hp, its
eigenvalues are independent of the number of particles;
the lowest eigenvalue, zero, belongs to those states which
are symmetric in all nearest-neighbor spin pairs. But,
since the interchange of any two spins can be accom-
plished by a sequence of nearest-neighbor spin inter-
changes, C p(N) must be symmetric in all spins, that is,
S=~~M. The physical vacuum itself is the "ferromag-
netic" ground state in which all M spins are "up" so
that

Cp(O) = ~O)= ~S=-'M S{»=-'M) (2 5)

c' (N)=M »'D {»(-P P')&lo),

where the normalization is

(26')

Cp(N) is obtained from (2.5) by N-fold application of
the S&@-lowering operator bp~. The unperturbed X-par-
ticle ground state is, then,

C'p(N) = ~S= ',M;-
S{'&=,'M -N)—=Dp{~&(b{&t)~~0)) (2.6)

or, in terms of the local operators,

(p—=Pk~p(vk)p/N ~»d'. (2.14)

Thus, for all pd'(1, the unperturbed ground state ex-
hibits "Bose-Einstein condensation" in quasimomentum
space. The depletion is clearly an "excluded-volume"
effect of the hard-core constraint (1.4).

Elementary Excitations

To calculate the mean values of the other v~, we 6rst
express v~ in terms of the local operators

vk Ã.v/M+M 'p—
~ f;tp; expt'ik (r;—r;)7.

From the nature of C p(N) one sees that Q pf )p{ g&g is
independent of i and j.Thus,

( )o=~d' —Q'4')o' '
=Pd' —4((~' ~J)p—((1—20')(1—2~2))p)'~~ (»)
= (pd')', kg 0.

In the limit S,3f —+ ~ we have

(vp)p/N ~ 1—pdP,

(vk)p/N —+0, k&0.

The depletion tp of the free-particle ground state in the
ground state of Hp is

D {N& MN PP&(PE )

C p(N) satisfies

HpC p(N) =0,
S'C p(N) = ', M( ',M+1-)C p(-N) .

Ke now construct eigenstates of Hp containing a single
elementary excitation. In the spin picture an excitation
is a "pseudospin wave" in which S is lowered by one
unit from its ground-state value —,M, while S&@ is main-
tained at —,M—Ã. Consider the normalized states

(2.g) (k~o)
Ck(N)=Dk{"&pk'(bp')"~0& pk'Cp(N), (2.15)

(N, )p ——pp=—pd', all j, (2 9)

with p=N/0, the mean number density. There is no
density correlation between cells, so that

The physical nature of Cp(N) is easily seen from the
form (2.6'). Because of the hard-core constraint, Eq.
(1.4), C p(N) is a symmetric sum of (p{~) product states
in each of which N cells are singly occupied (spins down)
and M-N cells are vacant (spins up). Denoting expec-
tation values in Cp(N) by ( )p, the mean occupation
number for any cell is

where the density Quctuation operator p&t is de6ned by
(1.13) and Dk{~& is the normaLization which we sup-
press below for simplicity. These states are orthogonal
to the ground state and to each other,

(C'p(N) ~C'k(N))=0, k/0,
(Ck(N) ~C&(N))=8k, &, k/0. (2.16)

Since pkt commutes with S{», the states (2.15) are
eigenstates of S(" with eigenvalue —,'M —E. To show
that these states are also eigenstates of Hp, we write
6rst,

(«&p )p= (pd')', &Wm. (2.10) pkt(bpt)~[0&= (N/M)bkt(bpt)N '[0&, (2.17)

The expectation value of the perturbing Hamiltonian is

Wi=A(Hi)p=A P{e'&(apts&p= pypANpd . (2.11)

"Bose-Einstein Condensation"

From (2.3), C p(N) is also an eigenstate of the "num-
ber of particles with zero quasimomentum":

vip(N) =Nt 1—(N —1)/M74p(N)
=N(1—pd')C p(N) . (2.12) &k =p(|p "rk) ~ (2.18)

which results by using the commutator (1.15) a total
of N times so as to commute pkt through (bpt) to act
on the vacuum. Because Hp and bkt commute with
bpt, Hp operating on (2.17) yields

Hppkt (bpt)
~ 0)= (N/M) (bpt) $Hp&bkt7

~
0) .

Expressing Hp in the form (1.17), one finds for this
last commutator

$Hp, bk 7= pk'bk +2 Qi(pk &'—pi')b& pk &,
with
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Combining (2.15), (2.17), and (2.18), we obtain

HpC g(N) = eg'C g(N) . (2 19)

In ~0) all the pseudospins are aligned along the z
direction;

o (0)= (R2o;('&R2—')R2)0) = )0), (2.26)
In general, the energy e&' of the excitation generated

by p~t is anisotropic in k due to the effect of the "lattice
structure" but, for wavelengths long compared to the
lattice spacing d, the energy spectrum is isotropic and
free-particle-like, reflecting the fact that the ground
state has infinite compressibility:

and, since Ho and S' are invariant under uniform
rotation,

Hpi0)=0,
S'i 0)= -', M(-', M+1) i 0).

(2.27)

However, (2.24) is not an eigenstate of S('& and so of
ek'=-', k'd') kd((4. (2 20) the number of particles. (The zero-temperature chemi-

cal potential of the unperturbed system is obviously
zero and so need not be introduced. ) The mean value of

ticle has been excited from the condensate; S js

vp@q(N) = )N(1—pd') —1]4q(N), k/0. (2.21) (S'3))o=-,'M cos0. (2.28)

Thus, using (2.3), Then, the mean number of particles will be described
correctly if

S2C g(N) =-,'M(-', M—1)C ~(N), 0&0, (2 22) cosO= 1—2pp. (2.29)

so that in our previous notation

C g(N) =
i
S=-,'M —1i S(')=-,'M —N). (2.15')

As is well known in spin-wave theory, states contain-
ing more than one spin-wave excitation are not orthogo-
nal to each other (kinetma, tical interaction) and Ho is
not diagonal in such states, i.e., the excitations scatter
one another (dynamical interaction). For long wave-
lengths this scattering is very weak and Hp is approxi-
mately diagonal in such states. A complete discussion is
given by DysorP for isotropic Heisenberg exchange.
Kith anisotropy present the scattering is not so weak,
the two-body scattering length at zero energy being
finite (see Appendix II).

Unperturbed Quasiparticle Vacuum

For the purpose of treating the full Hamiltonian
(Sec. 3) it is convenient, as usual, to relax the restric-
tion to eigenstates of N (i.e., of S(3i). As was explained
in the Introduction, this allows, in the present model,
the use of particularly simple many-body eigenstates
of Hp'. Consider a uniform rotation of the pseudospins
about the 2-axis through an angle 0.

R2(0)=exp| —NS'"j=g;(cos-', 0—io '& sin-', 0). (2.23)

A simple relationship exists between Co(N) and ~0),
which is degenerate with all those states

~ 0;P) which can
be generated by rotating ~0) about the 3-direction
through azimuthal angles &,0 ~g(2s. This "cone de-
generacy" persists in the full Hamiltonian which,
though not isotropic, still commutes with E,~, and thus
with S('i. As is well known (cf., e.g., Thirring et al.i3),

Cp(N) can be written as a superposition of the states
j0;P). The state j0), itself, is a superposition of ground
states corresponding to diferent eigenvalues of E,~ as
can be seen by expanding the product in (2.24):

~ (tan-'8)'
10)= (cos—,'0) g '

(P e &) 10). (2.24')
&=p

Thus, except for normalization, C o(N) is the projection
of ~0) onto the subspace N,o= N:

i0) -C,(N). (2.30)

In the limit M,N —+ ~ the distribution of N in (2.24 )
is sharply peaked at the mean value. One has

(»)~'=(N ')e—(N )~'=(S"")e (S"')~'—

Using (2.29), a simple calculation gives in the limit

(5$)2= 'M sin'0=N(1 —p—d'),
The state obtained from the vacuum by this transfor- so the mean fluctuation
mation is

o;oi = (cos0)o —(sin0)o

a.(2)
)

o;.&ii = (cos0)op+ (sin0) oi*.
(2.25)

I0)=R2(0) I0)=K(cos~0+yit sink0) I0) (2 24)

Denoting axes in the rotated coordinate systems by
x, y, s, the relations between the original and trans-
formed Pauli operators are

0N/N= t (1—pd')/N f12, (2.31)

&i'=R2(0)4~'R2 '(0) =k(oi' i~i"), —
4i = 2 (oi'+&oi."),

(2.32)

vanishes as N-+ ~ and ~0) is a good unperturbed
many-particle ground state for the infinite system.

The chief virtue of the uniform rotation (2.23) lies
in. the fact that, for any density, ~0) is the vacuum for
the transformed creation, destruction operators
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y, ~0)=O, all~;
C, ~0)=0, ailk.

(2.33)

Since Ho is invariant under the transformation and the
commutation relations between the C~, C~t have the
same form as those between the b~, bj,t, the state

C,&i0)—= i0;1 ) (2.34)

containing one quasiparticle created by C&t is an eigen-
state of Hp.

H, (0;k)=., ~0;k). (2.35)

Thus, the C),t acting on ~8) create "unperturbed quasi-
particles" having the same energy spectrum as the
density fluctuations p),t acting on Co(N). These quasi-
particles are linear combinations of particles, holes,
and density fluctuations, as can be seen by using (2.25)
in (2.32), (2.32'):

g;t= io(1+cos8)g, t—o (1—cos8)/+iosin0(1 —2g, tg, ),
or

with Fourier transforms

C),t——I('.o (8)b), tIt'. o '(8)
=M '"P y;t expfik r ]. (2.32')

Ck=M "P;P;exp)—ik r,].
For, from the unitary property of the transformation,

where ( ) denotes expectation values in Vo(A, p) and,
therefore,

po=N/M=oi(1 —o cos8). (3.4)

The parameters 0 and 0. are to be determined self-
consistently.

Exact Ground-State Properties

The Heisenberg equations of motion for the pseudo-
spin operators are

"4 =o(a~'"Zoai+o —a~ Eo a~+o")

+i
oA a@ Po (cos8 a;+—o' cos'8 —a;+o' sin8 cos8)

—
)tiara cos0; (3.5a)

&at= o (a~' Z o a~+o' —a~' Eo a~+o')

+oA(a, * Qo(sin0 o;+o —sin'0 a;+o—' sin0 cos0)
—a;*Po(cos8 —a,+o' cos'8 —o;+o* sin8 cos8) }

—p(a' sin0 —ag cos0); (3.5b)

Aa =—(a"' Qoa o"—a'" Po a o )
—oAaP Po(sin8 —o;+o* sin'8 —a;+o' sin0 cos0)

—paP sin8; (3.5c)

the sums over 5 range over the 6 nearest neighbors of j.
Since %o is an eigenstate of H', it follows that ( t F,H']) =0
for any operator F. In particular, (da;/dt)=0. Let

(3.6)ai =a+re
C),t ———', (1+cos0)b),t——,'(1—cos0)b o

+-,'M'" sin8(8), o
—2p), t) .

3. FULL HAMILTONIAN; RANDOM-PHASE
APPROXIMATION

) =A (popo+ (cos0/2a) LZo(a'*a+o*)—Zo(r r +o)]
+ (cos28/2a sin8)go(o. ;a;~o )}. (3.7)To relax the restriction to eigenstates of X,~ we intro-

duce the chemical potential p, in the usual way, replac-
ing H, Eq. (1.10), by Kith this relation for p, the expectation values of the

other two equations of motion both yield
(3.1H'= H pNoo IIo—+A—H, pÃ——op. —

(2 36) where (r;)=0 by definition. Taking the expectation
value of (3.5b) and using (3.4), we find the exact ex-
pression for the chemical potential:

Remembering the cyclindrical symmetry of H' about
the 3-direction, we look for a homogeneous ground
state No(A, p) of H', analogous to the unperturbed
quasiparticle vacuum ~8), having a finite net "mag-
netization" 0- per cell in some direction s in the 1—3
plane. Accordingly, we work with the rotated spin
operators (2.25), in terms of which H' is given by

«s0 Z o(aP&~+o)+ si"0 Z o(aPa~+o')
—P o(a .(&)a . o(o) )—0

From the chemical potential the ground-state energy
Eo of H'+pN, o can be obtained in the usual manner by

Eo (A,N) =M pdpo, (constant A), (3.8)

Ho=-', Q(,, )(1—a,'a, ),
Hi= 4 Q(,, ){1—(o,*+o;*)sin8 —(a,'+a ) cos0

+ago;~ sin'8+o *o ' cos'8

+(a;*o;*+a a ) cos8 sin8},

No&= & P,(1—o sin8 —o.,' cos8) .

We have

(a,')=1—2M—' P&,(cgtc),)—=a,

(;)=( )=0,

(3.2c) Eo (A,N) = (Hi)dA, (constant N), (3.9)

by integrating at constant N. Equation (3.9) hol(ls be

(3.3a) cause Eo(0,N) vanishes and

(3,3b) (Hi)= (0Eo'/0A)„= (8Eo/8A)~,

(3 2a)
where the integration is performed at constant interac-
tion strength A. Alternatively, the ground-state energy
can be obtained from the Pauli-Feynman theorem"

(3.2b)
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Linearized Equations of Motion

To evaluate the ground-state energy and excitation
spectrum for the perturbed system, we adopt the
random-phase approximation" and linearize the equa-
tions of motion (3.5) about the state 4'p by using (3.3)
and (3.4). In this approximation, equivalent to the spin-
wave approximation for a ferromagnet with anisotropic
interaction, we find

&n~'= pn(v«P —Zp n+p")+~8 c»0(Avppp —p); (3.1»)
Ad@=a sing(Avppp —p) —~~a[vpo;*—(1—A sin'8)

&(Qp o'&+p*]—o'' cosg(Avppp —p); (3.11b)

Ar; = np s—ing(Avppp —p) . (3.11c)

The requirement that the expectation values of Eqs.
(3.11) vanish now determines the zero-order chemical
potential as

po= Apopo &
(3.12)

which is equivalent to the first-order perturbation re-
sult (2.11). From (3.12) we see that r';=0, i.e., r; is a
second-order quantity.

Upon taking Fourier transforms of (3.11) and using
(3.12) and (2.32), (2.32'), we have

ACkt=io{pkpckt+ ',Jvk(c-kt+C k)}; (3.13a)

AC'k= —in{pk'Ck+ —,Jvk(ck+C kt)}, (3.13b)

where Ep'(A, p) is the eigenvalue of EP in %p. Combin-
ing (3.3), (3.4), and (3.6), the exact expression for
(H~& is

(~.&=!v.&ppp+(~l8)Z p{(;*;+p& si"~
+(r,r;+p) cos'8+2(p.;a;+p*& sine cose}. (3.10)

Ke shall test the self-consistency of the random-phase
approximation by comparing the results it gives in (3.8)
and (3.9).

Equations (3.13), or equivalently II„&,are brought
into diagonal form by a linear transformation of the
Bogoliubov type, which is, however, only approximately
canonical since (3.16) is not exact:

Ck nk cosh(-', Xk)+n kt slnh(pXk) ~

Ckt ——nkt cosh(-,'Xk)+n k sinh(-', Xk),

with Xg ——X g, and

[nk, nk t]=~&k, k .

The diagonalization condition is

(3.18)

(3.19)

(Vp —Vk+ JVk) sinhXk+ JVk coshXk ——0, (3.20)

which yields

cosh Xk——(Vp —Vk+ JVk) [(V,—V„+JVk)'
—(Jvk)'] '" (3 21)

hx.=-~v.[(vo v.+~v.)'--(~v.)']
The excitation energy for a "pseudospin wave" of wave
vector lr is given by

pk= po'[(vp vk+ Jvk) coshxk+ Jvk sinhxk]
=' [(vo—v +~v )'—(~v )']"' (3 22)

Note that in the random-phase approximation e~ scales
with the magnetization. This agrees with the lowest
order decoupling result in a Green's function treat-
ment. "However, as we shall see, the approximation is
self-consistent only to the order in which the deviation
of 0 from 1 can be neglected in the expressions (3.7) for

p and (3.10) for II~ For wave. lengths long compared to
the lattice spacing d,y~ can be replaced by the isotropic
expression Vk=Vp —(kd)', the energy spectrum then is
linear in k as is characteristic of phonon excitations:

pk —+ -', p hd[2 Jvp+ (1—2J)(kd)']"' kd((1. (3.22')

To calculate expectation va, lues in %0 in this approxi-
mation, we take

where
J=—~2A st'8 (3.14)

(nkn)&= (nktngt&= (nktng) =0)

whereas, from (3.19)

(3.23a)

Ke note that these linearized equations of motion could
be obtained from a reduced Hamiltonian of the
Bogoliubov form, '

II„p tv pAXp p+Q——k{pkPcktck

+-',&vk[cktck+p(CkC-k+C —ktck')]}, (3 15)

if the C~, C~t satisfied the commutation relations

Then,
(nkn1 ) &~k, l ~

(Cktck&=-', 0 (coshXk —1),
(cktc k»=(c kck&=-', n sinhXk.

(3.23b)

(3.24)

Using (3.15), the correction to the erst-order perturba-
tion result (2.11) for the ground-state energy is

[Ck,Ck t]=nbk, k, (3.16) AZo=E ',vpASp = ', Q ( —-,'v—)-, (3.25)-

which are equivalent to approximating [o;*,o "]by

Also, note that

Qkvk[Ck Ck+ p (CkC k+C—k Ck )]
=

p Z~, p ~~*~~+ * (317)

where we have used (1.18').This correction is inherently
negative for all positive A. From (3.17) and (3.24), we

have

M pp(o;*o;+p &~o pk Vk(coshx„+sinhX„)
d AEp

(3.26)
df
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Mp Mpp+M(cos8/2p)go(ago;+p*)
d AEp

=MA&ppp+2A cos8—
dJ 0.

p sin'8 d (AEp)
(a,)=-,'M~,p, +

dJ& ~ )'

Thus, (3.8) and (3.9) are consistent with each other and
with (3.25) in this approximation to (and only to) the
order in which the deviation of o. from unity can be
neglected, since, for p = 1, we have from (3.4) and (3.14),

dpp
———', sinod8,

dJ=-', sin'8dA+2A cos8dpp.

From (3.3) and (3.24), p is determined by

o '(J) =M ' Qg coshXg.

For kd«1, cosh'& behaves as k ' and, consequently,
for a finite system (3.27) diverges and o =0. This is due
to the infinite fluctuations of the "spin wave" with
k=0 and means that our treatment cannot be used, as
it stands, for a finite system. A similar situation arises
in the spin-wave treatment of antiferromagnetism. "
However, in the limit 0 —+ pp, the k-space summation
may be replaced by an integral which converges in
(two and) three dimensions (but diverges logarithmically
in one dimension) because of the k-space volume ele-
ment. In Appendix I it is shown that for values of J
in the range in which we are interested, 0(J(1, o (J)
satisfies

1&0.—'& 1.156, (3.28)

where the lower (upper) limit of o ' corresponds to the
lower (upper) limit of J.

To ascertain the behavior of o. near J=0, coshXk can
be expanded in a Taylor series in J and integrated term
by term everywhere except in the immediate neighbor-
hood of the k-space origin where a different procedure is
needed as is shown in Appendix I. One gets

= (2~/pro) Joe(1+2J) (1 2J)—2

the half-integral power dependence being the contribu-
tion from the k-space origin. Then, to lowest order in J,

o ~ 1—(KS/ir') J@'.
'~ P. W. Anderson, Phys. Rev. 86, 694 (1952}.

The last step results from differentiating (3.25) and.
using the diagonalization condition (3.20). The other
terms in (3.7) and (3.10) are of higher order and cannot
be evaluated correctly in the approximation using
(3.16).Then, in this approximation,

Ground-State Energy

To determine the correction to the ground-state
energy for small J we first write (3.25) in the form

AEp/M = (yp/4) OF (J), (3.25')

with an obvious definition for F(J) Af.ter replacing the
summation by integration, the behavior of Ii for small
J is calculated by the same procedure as was used for 0..
(See Appendix I.) The expansion for F has the form

F(J)= (1643/5m') J'"(1—2J) '+ Q (C /n!) J",
n=p

Co =Ci =0; Cp =—0.516, (3.30)

where, again, the half-integral power dependence is the
contribution from the k-space origin. By keeping terms
in F through order J"', the ground-state energy as cal-
culated from (3.25') will be consistent with (3.8) and
(3.9) through order A"', with 0 =1.Thus,

F(J)=——,
'

~C&
~
J'+ (1Q/3/5ir') J'I' (3 30')

Combining (3.4) and (3.14) we see that

J=2A pd'(1 —pd'), (3.31)

to the order to which we are working (o =1). Finally,
combining (3.25), (3.30'), and (3.31), and going over to
ordinary energy units (i.e., multiplying by h'/md'), we
have, to order A"',

Ep/X = (3A A pd/m) (1—
)
C p

~

A (1—pd )
+ (16%3/5ir') (2A) (pdo) i (1—pdo) i ) . (3.32)

The expression (3.32) for the ground-state energy
may be cast into a more illuminating form which per-
mits comparison with other treatments, by expressing
the unphysical model parameters A and d in terms of the
zero-energy two-particle scattering length fp and the
depletion parameter $p, Eq. (2.14), of the "Bose con-
densate" in the unperturbed ground state. fp can be
calculated by the method used by Dyson to treat the
scattering of two spin waves in the isotropic case.' This
is done in Appendix II. The (exact) result is

2irfo= 3Ad(1+ t Cp
~

A)-', (3.33)

where ~Cp~ =0.516 is the same numerical coefficient
occurring in (3.30). Using (3.33) and

(2.14)

we have, to order foo",

Eo/X= (2vrh'p fo/m) {1+(128/15m'") (pfo')' '(1—p)' '
+ (4~ )Co!/3) (pfo')"'5o"'(1—pko)&. (3 34)

Discussion

In the low-density limit, where $o -+ 0, Kq. (3.34), to
the order of its validity, agrees exactly with the well-
known low-density expansion" 7 in terms of pfp'. How
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or
a '(J)(o '(1)=1.156, (A4)

where we have used Anderson's" evaluation of the
integral o '(1). Hence, (3.28) follows.

To find the behavior of o (J) near J=0, the integrand
in (A2) can be expanded into a Taylor series in J and
integrated term by term everywhere except in the
irrunediate vicinity of the k-space origin, where F ~ i.
But in that region one can certainly use the isotropic
expression for F,

1'=1—r'/6 r'= I'+e'+w' r((1.

where the notation is generally the same as Dyson's
except that we use Pt,P for the creation, destruction
operators which obey ordinary Bose commutation rules.
The difference between Dyson's Eq. (48) and (A7) is
the presence of the anisotropy term. In terms of the
local Bose operators we have

&t= 'Z~, -~(n~' n +s—') (n. ~ n~+—s)
IIs= '. 2;-,s n~ "n~+s'(n~ n~+—~)

+s~ E~,s ~~'n~+s'n~+»~.

A state containing two noninteracting particles with
zero center-of-mass momentum can be written as

An integral over a small sphere of radius ro about the
origin then takes the form

[4', )=p,;cos[tt (r.;—r;)]q;tr1, t[0), (A9)

(2a rP') ' [r (1 J)+6J][—r'+12J/t1] I'dr

with g= 1—2J. This integrates to

(4m'g'I ) '( (r'+12J/t1)'~'
X [12J—16J(1—J)/q+ s (1—J)r']}s"'. (II,+e,) )e)=2e„'(e). (A10)

where p is the wave vector for the relative motion of the
two particles and ~0) is the vacuum state for the tb.

operators. Following Dyson, we construct a state ~4)
representing the same two particles with interaction,
satisfying the Schrodinger equation

Thus, the contribution from the origin is

2v3s. 'Js"(1+2J)(1—2J) '. (AS)

A Green's function G(r,—r;) for FIt is defined by

(H, —2e„')G(r,—r ) =b(r, —r ) (A11)

For 12 J/q rs' the contribution from the upper limit
can be absorbed into the Taylor series. Hence, (3.29)
follows. One finds for the first two coeKcients of the
power series, as=1, at ——0. Then, to order J"', (3.29')
results.

Following the same procedure used for 0, the behavior
of (A3) near J=0 can be ascertained. The contribution
from the k-space origin is (1643/Ss-') J"' (1—2J) '. The
first nonzero coeKcient of the Taylor series is

C = (d'F/d J')J = —(2s.)
—'

I'(1—F) ' dldvdm =—0.516, (A6)

When the separation r=
~
r;—r;~ is large, G takes the

asymptotic form

G(r) d exp(its r)/4sr. (A12')

For the state ~%') satisfying (A10) we take

)+)=P;,(cos[p (r,—r,)]
+Ps B~G(r;—r,—S)}r1,ttbt

~
0), (A13)

which, when solved for G gives

G(r,—r;)=M 'g~ exp[ik (r,—r;)]
[2(e&'—e ')] ' (A12)

I+)-2*,{co6 (r' —r)]
+ (de'~"/4~r)g& B&}q;tq;1

~
0) . (A13')APPENDIX II

which has the asymptotic form appropriate for an
where the evaluation of the integral is due to Watson. " incident plus scattered wave:
Hence, to order J'~', (3.30') follows.

To evaluate the zero-energy scattering length for two-
particle collisions we use the method of Dyson' in his
general theory of spin-wave interactions. We im-
mediately go over from the Hamiltonian (1.17) to the
effective (non-Hermitian) Bose Hamiltonian for ideal
spin waves:

Hp .=Qg a'PatPa —(4M) 'Jan (F) -2Aya)
Xpi.&p +.&pip. =K +&. , (A7)

's G. N. Watson, Quart. J. Mech. Appl. Math. 10, 266 (1939).

The coefficients B~, of course, will differ from those in
Dyson's paper because of the presence of the anisotropy
term in (A7).

By virtue of (A11), the Schrodinger equation (A10)
gives an equation to determine the Bq ..

Bs~ (1—2) cosy 5-1+pa Ba
X ((1—&)[G(&—5)+G(&+5)]—G(&)}

= (1—A) cos(p 6)—1—M 'ga Ba Qqexp(ik 4)
X(y„—y~) '[A cos(k. S)+(1—cosk 6)], (A14)
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2 I~ = —v&/l:1+A lcsll (A15')

where 4 is a nearest-neighbor lattice vector. Since we
are interested in the scattering length at zero energy, we
take the limit of (A14) as p ~ 0 and use the fact that
in this limit the B~ cannot depend upon the direction of
S. Thus, one finds that

QsI3e= —ypA/L1+A (yp3II) '
XP, ~,s(~p —~„)-'). (A15)

Replacing the sum over k by an integral and remember-
ing (1.18'), this becomes

where

—C2=
(2sr)'

I'(1—I')—' dttdvdw =0.516, (A6)

as in Appendix I. Inserting (A15') into the asymptotic
wave function, one obtains for the scattering length at
zero energy,

&.=A.~l 4-(1+A I(-.l)j-'
=3AdL2~(1+3 lC, l)$-', (A16)

which is the expression given in the text, Kq. (3.33).
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The absorption of transverse and longitudinal ultrasonic waves has been studied as a function of the
magnetic field applied along the direction of propagation in pure tin and lead crystals at liquid-helium tem-
peratures. At low fields, the attenuation of both transverse and longitudinal waves exhibits oscillations
approximately periodic in reciprocal field, which are ascribed to electron orbits which execute a periodic mo-
tion along the field direction. The attenuation of transverse waves in tin shows regions of rapid decrease
with magnetic field, which are interpreted as the absorption edges first predicted by Kjeldaas. In higher
fields, the absorption of longitudinal waves appears to saturate at a nonzero value, while that of the trans-
verse waves in tin appears generally still to be decreasing with field at fields of about 10 kG.

1. INTRODUCTION

A LARGE number of experiments have been carried
out on the eBect of a transverse magnetic field on

the absorption of ultrasonic waves in pure metals at
low temperatures, and the study of the angular variation
of the magnetoacoustic oscillations has contributed
significantly to the knowledge of the Fermi surfaces of
many metals. Few results have so far been obtained on
the dependence of the attenuation on a longitudinal
magnetic field, however, partly because the results can-
not be so readily interpreted in terms of the geometrical
parameters of the Fermi surface, and partly on account
of the experimental difhculties involved. These measure-
ments do have a certain intrinsic interest, however,
and the present work represents an attempt to under-
stand the coupling between acoustic waves and the
conduction electrons in metals in the presence of a
longitudinal magnetic field, while simultaneously ob-
taining some information about the Fermi surfaces of
the metals studied.

In the following sections the experimental technique
used in these measurements is described briefly and the
experimental results are presented. The theory of the

*Work was performed in part at the Ames Laboratory of the
U. S. Atomic Energy Commission.

attenuation of ultrasonic waves in longitudinal mag-
netic fields is then discussed, and finally the results are
interpreted in the light of this theory. A brief account
of some of the results of this work has already been
published. '

2. EXPERIMENTAL METHOD

The absorption of 80-Mc/sec transverse and longi-
tudinal ultrasonic waves in pure lead and tin crystals
in a longitudinal magnetic field was measured by means
of a "pulse-echo" technique, the details of which have
been described elsewhere. '

The longitudinal and shear waves were generated by
applying a high-frequency electromagnetic pulse across
I- and I'-cut quartz crystals, respectively, exciting
them on their fifth harmonic. Ultrasonic rejections from
the free end of the specimen were reconverted by the
transducer into electrical signals which were amplified,
demodulated, and displayed on a cathode-ray oscillo-
scope. In practice, because of the high attenuation in
the pure crystals used in these experiments, only one
reflection could be observed, in the normal state. The

' A. R. Mackintosh, in Proceedings of the Seventh International
Conference on Low Temperatnre Physics -(University of Toronto
Press, Toronto, 1960},p. j.2.' A. R. Mackintosh, Proc. Roy. Soc. (London) A271, 88 (1963).


