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We study the motion of a Brownian particle in a Quid from a dynamical point of view, i.e., without the
a Priori introduction of purely stochastic elements. The Brownian particle is distinguished primarily by hav-
ing a mass M which is much greater than the mass of the Quid particles m. Our method consists of rewriting
the Liouville equation for p, , the joint distribution of Quid and Brownian particle, as a pair of coupled equa-
tions for the distribution function of the Brownian particle f and the conditional distribution of the Quid
P = (ts/f) The eq.uation for P is then solved formally in a perturbation series in the square root of the mass
ratio (nl/M), which is then substituted in the equation for f to obtain a collision term Sf representing the
effect of the Quid on f We cons.ider two situations: (1) A constant external force acts on the Brownian
particle and f is stationary, the external force being balanced by Sf, and (2) a general time-dependent f
We Gnd in both cases, as expected, that to lowest order 8f has the form of a Fokker-Planck type collision
term, though in the second case this only holds for times much larger than the fluid relaxation time after
an initial time at which p. is arbitrary. The next order terms in Bf di6'er for the two cases. Furthermore,
because of the limitations on the times at which bf is valid in the second case, f(t) does not really obey a
Markman equation to this order when the initial state is arbitrary. In the Appendixes we consider the
formal structure of 8f, the form of f in the stationary case, a "quasistochastic" model of Brownian motion,
the motion of a composite Brownian particle, and the motion of a Brownian particle in a crystal. The latter
makes contact with the work of Hemmer and Rubin.

I. INTRODUCTIOH particle (8 particle), it is still possible when there are a
very large number of such particles to give a deter-
ministic equation for the time evolution of their spatial
and velocity distribution f(R,V,t). Here f(R,V,t)dRdV
represents the fraction of 8 particles in the macro-
scopically very small volume element dRdV which is
suKciently large though to contain many particles.
As is well known, it is more convenient mathematically
to work in terms of an ensemble of systems each con-
taining one j3 particle (since we are assuming that in
the real system the 8 particles move independently)
with the distribution function defined in terms of
probabilities, assumed to satisfy the same equation as
the "coarse-grained" f defined above. s

When use is made, in devising the stochastic proper-
ties of the interaction between the Quid and 8 particles,
of the central fact that the heavy mass of the 8 particles
makes the fractional change in their velocities small
(on a molecular time scale) and results also in their

HE explanation of "Brownian motion" by
Einstein and Smoluchowsky'' in terms of the

kinetic theory and their quantitative prediction of its
features did much to establish the molecular theory of
matter. A more complete description of Brownian
motion was given later by Langevin and others. ' Since
the dyIiamics of the motion of the Quid atoms, which
cause the Brownian motion in the heavier, micro-
scopically visible, particles was not introduced ex-
plicitly, their effect could only be represented sche-
matically. Thus, all descriptions of Brownian motion
were of a stochastic nature ab irido. Despite this
indeterminacy in the motion of an individual Brownian
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nautics, New York University, University Heights, New York,
53, New York.' Albert Einstein, Ineestigations on the Theory of the Brownt'an
Moeernent, edited with notes by R. Furth (Dover Publication
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moving (on the average) at speeds far below those of
the Quid molecules, there results the well-known
Fokker-Planck equation for f(R,V, t)&' 4

8f(R,V, t) 8f 1 8f
+V +—X

r)t c)R M c)V

8
(Vf)+Deaf

8

8 l9

f ln(f/fo) (1 1)
ctV c)V

Here X is the external force acting on the 8 particle,
M its mass; f is the friction and D the diffusion constant
in velocity space, of the 8 particles in the Quid. We
have eliminated the friction constants f from the second
part of this equation through use of the Einstein
relation, '

D= (kT/M)i . (1.2)

fs is the equilibrium distribution function of the 8
particles whose velocity part goes as a &&~v'; P= (kT) '
is the reciprocal of the temperature of the host Quid.
The right side of (1.1) represents the effect of the Quid

on the 8 particles. It is a special case of a collision term
which will be generally denoted by 5f

The purpose of this note is to dispense with the
a priori introduction of a stochastic interaction. We
shall, therefore, start with the Liouville equation for
the distribution function p of the whole system con-
sisting of host Quid and 8 particle. A transport equation
for f will then result, after integration over the
variables of the Quid particles, in certain limits involving
the size of the Quid and the time scale. Such limits are
clearly necessary to derive an irreversible transport
equation from a reversible Liouville equation and have
been discussed extensively in the recent literature on
irreversible processes. ' '

The equation that we shall arrive at for f will be of
the same form as (1.1) to the lowest order in mass ratio
of Quid and 8 particle with an explicit, if unevaluated,
molecular expression for D. We shall, however, also
find higher order correction terms to (1.1).These higher
order terms have relevance to the Kirkwood theory of
liquids~ ' which uses the I okker-Planck equation to
describe the time evolution of the low-order distribution
functions of a liquid. We shall also consider the case
where the 8 particle has internal structure.

4 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).

'L. Van Hove, Physics 21, 517, 901 (1955); 22, 343 (1956);
23, 441 (1957);I. Prigogine, tV onegailibrinm Statistical Mechanics,
(Interscience Publishers Inc. , New York, 1962). E. Montroil,
Suppl. Nuovo Cimento 16, (1960).

e W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
r J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946);J. Ross, ibid

24, 375 (1956).
8 J. L. Lebowitz, H. L. Frisch, and E. Helfand, Phys. Fluids 3,

1 (1960).

II. GENERAL FORMULATION

The Hamiltonian of our system, consisting of host
Quid and 8 particle, exclusive of the external 6eM, will

have the form
N

H= ', MV'+[+-—,'v +P y(r;;)]++ N(R~)
i~1 i&7 i=1

=Hi+Hi+ U; R,=r,—R, (2.1)

where ri and vi are the position and velocity of the ith
Quid particle. The three terms in II are, respectively,
the kinetic energy of the 8 particle, the Hamiltonian
of the tV Quid particles (of unit mass), and the inter-
action between them. The whole system is enclosed in
a periodic box of volume Q. The joint distribution
function of the whole system will obey the Liouville
equation

(itp(x, y, t)/itt)+ (p H)+M 'E (itp/i)V) =0, (2.2)

where (p, ,H) is the Poisson bracket between p, and H
(expressed in terms of the velocity variables) and we
have used x and y as abbreviations,

x= (R,V), y = (r,', r&,v," vtv) . (2.3)

Since we want to consider only terms which are linear
in E, we write

where
P =Ps+0, (2.4)

pp
——Z—'e—&~, Z= e &~dxdy,

and p,
' is linear in E. p,

' will satisfy the equation

(it@,'/r)t)+ (tt' H) —PE Vps ——0. (2.5)

The distribution function of the 8-particle f, nor-
malized to unity, is given by

pdr =fo+f'. (2.6)

9 I. Prigogine and P. Resibois, Conference on Irreversible Ther-
modynamics held at Brown University in 1962 (unpublished).

We shall consider first the case where the 8 particle
is subject to some external force, such as a constant
electric held E, which does not act on the fiuid particles.
This will enable us to look at the equation satisfied by
the stationary nonequilibrium distribution f, to terms
linear in E. This distribution represents a balance
between the effect of the acceleration by E and the
scattering by the Quid particles. It will thus contain
the collision term representing the effect of the Quid

but will avoid some of the difhculties encountered in
deriving the general time-dependent equation for f.s '
Our method here will be similar to that developed by
Kohn and Luttinger' for deriving the quantum trans-
port equation of an electron moving in the held of
stationary impurities. Discussion of the colhsion term
for the time-dependent case will be left for Sec. V.
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f=~'(po(V)+4(V) j, (2.7)

will bere dealing with a uniform system,Si a
independent of R, and wi con ain
factor 0 ',

8
inPo, H) =PF.V= ——F lnpo (2.18)

liminate the field2 10) has been used to eliminawhere Eq. 2. as hmina
term from above. Now from

po= (2vrtoT/M) "e &~~~'

( +f) is the velocity distribibution of the 8where pp

particle,
(2.g) PoFdy=0. (2.19)

/=0 p, 'dy= tJ, 'dydR. b and writing out exp ylicitl some(2.9) Dividing (2.17) y f an
of the Poisson bracket expressions, we

Integrating Eq. (2.5) over y and R yields

y'FAdo), (2.M
VR MB

1 l9— i H)= —lnQ/") F+-
Bt R

8
» /po)+ LFn —(Fn)j

where
BU io ojg(R;)

BR -i 8R;
(2.11)

(2.20)
aR BR

where

~(*,y, t)
P(x,y, t) = =P,(1+P),

f(x,t)
(2.12)

is
'

ide of (2.10) which will becomeIt is clearly the right si e o
the collision term, g.

now the con itionaWe introduce now
x t~ which gives the pro a ii yb bilit density

th tth P ti 1 iof finding the Quid at y given t a e

where

(" )=

Ho ——Hi(y)+Zu(r, —R), (2.21)

f h Quid in the presenceand B~ is the Ham iltonian o t e ui
of a fixed 8 particle which thus serves a
external potential,

po(x, y)
C~

—p [H)+U]Pp=

V. P, gy= —pV P,F~ y.
Bg

BR

f r the uniform system. W. We alsoand C is a constant or
define

(2.14

(2.22)

p p

f/0
@de

P.(1+.)=
term V Bit/ojR on the left side of

may now rewrite Eq.in it. e ma
notation,From normalization we find

coestcmt member not a canonica 1

) )
u

' '
ives only wit resp

~ . Use has also been ma evariables r, ,v; . s
relation

Ppdp 1
q (2.15) —E Vpo= —— (4(F~)).

at M BV
(2.10')

Ppgdp= 0. (2.16)

Substituting (2.14) into (2.5) yields

—+4 (n, H) = —(4,H) —n Q,H)
8t Bt

—f(q+1) (lnPo, H)H +— p, 'FdydR, (2,17)

III.. STATITIONARY DISTRIBUTIONS

d 2.10' for

p caused by E, are comp yletel genera .
find the finalto specialize these eq

f in the presence of a constant E.steady-state va ue o

0 o d teeffe tsc i g
Th latter effects will be of the system,
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for any fixed time interval, and can be formally elimi-
nated by going to the limit of E—+ pp, 0—+ pp, E/0 =n,
remaining constant, In this limit g would become a
function of infinitely many variables. We are, however,
not interested in g itself, but rather in its integral which

appears in (2.10'), which we expect to approach a value
dependent only on n. Thus, in order to get a transport
equation for f, we shall somehow have to solve for rt

(formally at least) before going to the limit of an
infinite system, substitute that in (2.10'), and then go
to this limit. In order not to get any spurious volume-
dependent terms which would disappear later anyway,
we will have to consider carefully the times at which
we look at the system after some initial time at which
the system was in equilibrium.

There are two, essentially equivalent, formal ways
of setting up the steady-state problem in a way con-
sistent with the conditions discussed above. These
forms were discussed by Kohn and Luttinger' and we
shall adopt their methods here. One is to consider the
electric Q.eld to rise adiabatically from zero at t= —~,
to its final value E at t=0.

E(t) =evooE t&0 (3.1)

H the system was in equilibrium at t = —~,
p(—pp) =top, we would expect to' to have a time de-

pendence of the same form as E,

p'(pp, y, t) = e "opto'(x y) t &0 (3.2)

+pI. ot=M-'A—F+M-'B $Fot —(Fot)j
-to

ling Bg
~ ~ (3.4)
BR BR

where we have kept the symbol p' for the time-
independent distribution. It follows from the definition
of f and ot that f will have the same time dependence
as p, ', and ot will be time-independent. Equations (2.10')
and (2.20) would then become for t&0,

(3.3)

1
P(tp) =— e "'oto(-t)dt= pp+P'(tp),

to o

(3.7)

and define the function g by the relation

where
(3.8)

1

to o

e tltoy(t)gt— (3.9)

The functions P and ot then obey the set of Eqs. (3.3)
and (3.4) with ( )-+( ~ ), Lsee (3.12)j, and we

may drop the bars and tildes. It is seen now that the
neglect of the term P/tp on the left side of (3.3), for
tp))t„ is equivalent to saying that for such values of
tp the right side of (3.9) is equal to the final stationary
value of |t, which is what we want. We also see that
we will get the same value for ot if we replace ot/tp in
(3.4) by Dot/Bt, solve for ot as a function of t with the
initial condition g=0 at t=0, and then take its Laplace
average, treating f as a time-independent function
throughout. Equations (3.3) and (3.4) now become

—PE Vpp ———M-'(8/BV) Q(Frt). ),
8'g

+oT.rt=M 'A—FjM 'B PFot (Frt).]-
Bt

(3.10)

where

O'Q

~ ~ (3.11)
BR 8R

other hand, we may not, for reasons discussed above,
let tp go to infinity in Eq. (3.4), Rather we must have,
as we shall see later, to small compared to the time t,
which it takes a particle to cross the whole container,
t, O'Io; we solve for ot, substitute ot in (rtF), then first
let Ã and 0 —+ ~, and then let to~ ~.

An alternative formulation of the problem (see Ref.
6, Appendix 3) is to consider the system to be in
equilibrium at t=0 when the full electric field E is
turned on. We now consider the Laplace average of the
distribution p, (t),

where I. is the Hermitian operator,

I-(" )=((" ) &) (3.5)

00

~ ~ ~

to o

1
e '" dt

to 0

e ' "( )dt, (3.12)

~ ~ ~ ~

8
ln—

7

BV pp

8 f 8
ln —+ ( ).

BV pp BV

(3.6)

Now if to is chosen so as to be large compared to the
relaxation time of the 8-particle t„ then tP/tp is very
small compared to the right side of (3.3); the term
P/t p may then be neglected and P treated as a function
independent of tp where it appears in (3.4). On the

and the initial condition is q=0 at t=0. Equations
(3.10)—(3.11) are then essentially equivalent to Eqs.
(2.17) and (2.10 ) if the time variation of f is neglected
there on the basis that for t))t„,f has already achieved
its stationary value. For the quantities whose average
we will be interested in, it will be possible in (3.12) to
go to the limit of an infinite system, with to 6xed, thee
for to&&t„ the averages will be independent of to and we
can go to the limit tp o pp making ( . ), =( ).

All our considerations so far have been completely
general, assuming only the existence of a stationary f.
In principle, we could now solve (3.11) for rt, which
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)=(a/a ) V()(F». )E vpp v
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where

(3.14)
1

(3.15) (F», = —y

t

Ct s-«'0 dt, (FF(—ti))

iven to lowestvalue (F» will be givenThe expectation value
order'" in y, for tp ~ ~,

—v —v, (3.16)LFl (F»~ '

R
'

R

3/2 —)Pv&po(v) = (2w/t3) "s "" . (3.17)
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Ap"& = (ni&'&+np&'&v')v,

A &'i =ni&'~vv+ (np"'v'+np"') 1'i

Ap&'&=n $&Xvj„
A p

&4i ——n4(S X5j, .

(4.16)

Here the n's are constants independent of v, 6 is the
unit tensor of rank two, the cross indicates the direct
product, and the subscript s indicates that the tensor
be symmetrized in all indices. The numerical values of
the n's and P's are linear combinations of the time
integrals of the expectation values of F times the tensors
a, b, c and d appearing in (4.12). Thus,

The velocity dependence of the A's which is of O(v')
may be written out inunediately in terms of the various
tensor invariants since the only vestor available is v:

8f(v, t)/Bt= y(—a/av) (f(F()), (5 1)

the uniform case, these corrections will start as y',
while in the quasistationary state they may be neglected
to lowest order in the density gradient. In addition to
these changes in bf, it is clear from the above discussion
that for t&r there will be no bf which can represent
the eRect of the fluid in terms of f, since for such times
the Quid distribution will depend on its initial value at
t=0, which is independent of f

Let us consider first the spatially uniform case in the
absence of an external held, where p is only a function
of R; and r;; and f is thus independent of R, f= f(V,t).
The ensemble density ti(x,y, t) will satisfy Eq. (2.2)
with E=0. Defining the conditional distribution
P= Pp(1+$) as in (2.12), we find the following coupled
equations for f and f:

|
1 ~—Q4= llm

4 f t0—+co

t

dte '" dt3 dt2 dt~
(8&/&lt)+iL)=yA F +pl'$ (8 ln—f/Bt)$. (5.2)

0 0 0 0 0 I., A, and I' are the functions defined in Sec. III except
that f and fp replace f and pp there.

Proceeding as before with an expansion of $ and
(P*( tp)P*( tp))(Pw( ti)Pp) j i (4 17) 8f/Bt in powers of y, we obtain to lowest order in y,

where x, y stand for components of the vector (which &if(v, t)
are riot slrwmed oner), xWy.

Bt

V. TIME-DEPENDENT DISTRIBUTIONS

We now come to a discussion of the effect of the
fluid on the time evolution of f(R,V,t). In the absence
of time-dependent forces, we expect that starting from
an arbitrary initial state f(R,V,O), collisions with fiuid
particles will cause f(t) to approach, as t~ ~, a
stationary value. There will be some changes, however,
in the form of the collision term bf, when f is a function
of t; therefore, it differs from that arrived at in the last
section for a stationary f This will co.rne from the fact
that, as f keeps changing with time, the distribution
of the Quid is not able to adjust itself to the instan-
taneous f(t), as it does when f is stationary, but
depends on the value of f(t') over a time interval r,
the liquid relaxation time, prior to t. It is only when 7-

is small on the time scale in which f changes appreciably
that a Markofhan transport equation in which the
&tf(t)/Bt depends only on f(t) itself is possible. In our
case v. is essentially the time interval over which
(FF(t)) is significantly diRerent from zero, while

(8 lnf/Bt) ' will be of order t,=f ' y 'r for a uniform

system, f(R,V,t)=f(V, t), inwhich V y. When f hasa
slowly varying spatial dependence it is possible for the
system to come to a "quasistationary" state in which

f(t) will be a "normal distribution" whose rate of change
will be determined by the hydrodynamic equations and
may be made very small. ' ' In either case, there will be
corrections to the collision term bf appropriate for a
stationary distribution of order fr(8 lnf/Bt)jbf. For

8 t

+p'— f, dt, (FF(—t,))
Bv

8 f(t ti))
~ —

~
. (5.4)

Bv fp

&tf(v t) 8 — 8 f-=y'P:—f ln ——+O(e '~')
&it Bv Bv fp

=y'b f+O(e "') (5.5)

LThe transition from (5.4) to (5.5) can also be accom-
plished by introducing formally the variable s=p 't,
then going to the limit y —+ 0, s remaining fixed. ' "j

To obtain further terms in bf we will have to take
into account terms coming from the expansion of
f(t—ti) in (5.4) in addition to the terms obtained

We shall assume that $(x,y,0) is a function only of the
r,; and R; and that its dependence on R; is significant
only for R; in the range of F, i.e., the fluid is homo-
geneous away from the 8 particle. Thus, when t))7
the first term will be (presumably) exponentially small
and the integration in the second term may be extended
to infinity with an error of order exp) t/rj. Also-
f(t—ti) may be expanded in a Taylor series about t.
This yields again to lowest order in y the Fokker-
Planck equation
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previously for the stationary state. Thus, to order p4,

Bf(v,t)
-v'B).f+Wof

Bt

B B B )(' B ff
&fo —fo '~

I fo—I—
Bv Bv Bv ( Bvkf, i

+o( -"') (5.6)

where bof is given by (4.15), with f replacing f and
(for normalization) fp replacing pp. The last term is the
new one and 8 is defined as

s(FF(—s))ds= (1/3) (F F(—s))(b S. (5.7)

The integration in (5.7) has been extended to infinity
on the assumption that this, like the transition from
(5.4) to (5.5), produces an error of order e '~'. We must
remember, however, that if we want to integrate equa-
tion (5.6) to obtain f(t), for times of order t,
starting from some initial f(v,0), then the terms which
are of order e ' ' will also make contributions of order y.
Hence, if the collision terms are taken to order y' we
must not neglect these terms either. The evaluation of
these terms though unfortunately requires a knowledge
of $ at t=O. Thus, unless f is known at some time t, t))r,
i.e., at a time when the Quid distribution has already
had a chance to adjust itself to f, the transport equation
giving the eGect of the Quid in terms of a time-inde-
pendent collision operator Bf is only useful to lowest
order in y.

When the distribution of 8 particles is not restricted
to be uniform and we allow also the possibility that
there is an external force X acting on them, the equation
for f(R,V,t) will have the form

be the equilibrium state,

lim f(R,V,t)- fp-Ce —e ( 'pp(v) (5.10)

f f(o)+f—(&)+. . . (5.11)

The lowest order term in this solution is

f'=e(R, t)p, (v), (5.12)

while f") will be proportional to the jth power of the
density gradient (again X is treated as of the same order
as Be/BR) If we. are interested in f"', to all orders in y,
then f(t—t() in (5.9) may be replaced by f(t) and, in
general, Bf will have the same form as it has for the
stationary state discussed in Sec. IV.'

VI. DISCUSS?0Ã

Ke have shown in this paper that the eGect of the
Quid on the distribution function of heavy particles,
of mass M, and small velocities, U M '", may be
described to lowest order in M ', by a Fokker-Planck
type collision term with a friction constant f defined
in terms of molecular variables,

where C is a normalization constant. (The requirement
X= —BC/BR excludes constant fields in a periodic box.)
Now since the collision term does not affect the density
m (R,t) at all, there will be a new time scale T, for changes
in n, determined by the density gradient and X (which
we shall treat as quantities of the same order). When
T))t, there will develop for t))t„a hydrodynamic
domain in which f is a function of e, i.e., f will be a
normal distribution f(R,V, t) =f(V,e(R,t)).' ' The solu-
tion for f will then have the form of the Enskog solu-
tions to the Boltzmann equation (though here n is the
only conserved quantity),

Bf Bf Bf B
+ X —=„—(f(F~))

8t BR Bv Bv
(5.8) l.=M-'Ps (F F(—t))Ct. (6.1)

and the equation for $ will remain the same as (5.2).
An expansion in y will yield to lowest order,

Bf Bf Bf B—+vv +vX.—= —v—(fA(*,y-, O)))
Bt BR Bv Bv

8 B ~f(t t,) ——
+v'—fo ~4 (FF(—ti)) —

I (5.9)
8v p Bv( fp

When the dependence of $(z,y,O) on R; is limited to the
vicinity of the 8 particle, R& 0, the first term will
again vanish for t))r. Similarly, the integration can be
extended to infinity for t))r and the integrand expanded
about t to yield Eq. (1.1) to lowest order in y.

When X is derivable from an external potential
C (R), X= —BC/BR, then the final stationary state will

$=3II '67r)to', (6.2)

where p is the viscosity of the Quid. For the hydro-
dynamic expression to be valid 0 has to be much greater
than the mean free path of the Quid particles (it is
thus not valid for the Rayleigh model in which a
sphere moves through a gas of noninteracting
particles'4).

'3 See Ref. 1, note 6.
'4 J. L. Lebowitz, Phys. Rev. 114, 1192 (1959), and references

cited there.

In order for this to exist we must go to the limit X—+ ~,
0 —+ ~, E/0 constant, before extending the integration
to in6nity. This expression is to be compared, when
applicable, with the hydrodynamic expression for the
friction coefBcient of a sphere of radius 0-, Stokes' law, "
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In order to coxnpare (6.1) with (6.2), it is convenient
to define a relaxation time r by the relation

(F F(—t))dt=r(F F). (6.3)

After some manipulation the average value of (F') may
be put in the form

(F )=4srp p G(R)p'n U(R) jR dR, (6.4)

where p is the density of fiuid particles and G(R) is the
radial distribution function between the B particle
and a fiuid particle, i.e., pG(R) is the density of iiuid
particles a distance R from the B particle.

The "size" 0 of the Bparticle enters into our analysis
through the dependence of U(R;) on o.. If we assume
that U(R;,o) = U(R;/o) (an unlikely situation for true
Brownian particles), then (6.4) becomes

D 8
F-(p) =——L&(p) —&s(p)j- —p

k Bp -av
(6.8)

where p=3IIV is the xnoxnentum of the 8 particle and

S(p) = —h inf(p, R) (6 9)

rapidly in6nite for negative values of R;—0- and zero
for positive values of R;—0. In the limit in which U
becomes a step function at R,=~, i.e., the B particle
is a hard sphere of radius o-, it might be possible to use
quasihydrodynamic methods, i.e., a Quctuating pressure
tensor, "to evaluate (6.1).We are currently considering
this as well as "many-body" diagram techniques for
the evaluation of the force auto-correlation function.
(Its evaluation in a one-dixnensional crystal is presented
in Appendix E.)

We may note here that the expression for the average
force acting on the 8 particle, F, =(F&), which is
central in the derivation of the Fokker-Planck equation,
can be put in the interesting form Lcf. Eqs. (4.7) and
(5 4)l

(Fs) =4srp po' G(s,o) 7 U(»)» ds, (6.5) is a kind of entropy density in the phase space of the
B particle whose average value is the usual entropy.

where we have introduced the dimensionless variable
»=R/o. Comparison of (6.2) with (6.3) and (6.5) yields
for T~

ACKNOWLEDGMENTS

pG(s, o) xr's U(s) s'd»

We would like to thank E. Helfand, H. Frisch, J.
Percus, S. Nielsen, P. Resibois, A. Shimony, and F.

(6 6) Pollack for valuable discussions.

We generally expect G(s,o) to depend only weakly on
0. When p is small, i.e., in a gas, G e &~&'&, and

spCl, where C is the mean speed and l the mean
free path. '5 Thus, in this case,

APPENDIX A: FORMAL STRUCTURE
OF THE COLLISION TERM

According to the analysis of this paper, the effect of
the Quid on the distribution of B particles may be
represented in some cases to all orders in y, in the form

,-(9/4)Cl e
—&~i*&PU(s)s'ds

——1

e ~~V'Us'ds r„(6.7)

where r,=l/C is the mean time between collisions of
gas particles. The difference between r and 7, may
perhaps be understood by considering that the density
of gas particles and, hence, v, is changed in the vicinity
of the 8 particle and also that the correlation of F
persists for more than one mean collision time.

The scaling of the potential with o as U(R;/o) is
appropriate for an atom and might be useful for dis-
cussing the motion of a neon atom in helium for example
(though in this case Stokes' law would certainly not
apply). In a true Brownian particle (i.e., colloidial
particles of size 50tttt or larger' '), the potential U(R;)
is more likely to be of the form U(R;—o), becoming

"S.Chapman and T. G. Cowling, The 3fatheraatscat Theory of
Xoeuniform Gases, (Cambridge University Press, New York,
1958).

&f= Z V.'"'LA'"'(v)f j,
+~1

(A1)

hf= (E(v,v') f(v', R,t) —E(v', v) f(v, R,t))dv'. (A2)

The A&"' are related to E by the relations,

A&"&(v) = (—1)" E(v', v) (v' —v)"dv'

=. (—1)" E(z; v)z"ds,

'e L. D. Landau and E. M. Lifshitz, Ftgtd Mecharttcs (Pergamon
Press, Inc. , New York, 1959), Chap. 17.

'~ H. A. Kramers, Physica 7, 284 (1940); J. Keilson and J. E.
Storer, Quart. Appl. Math. 10, 243 (1932l.

where A&"& is an rtth rank tensor independent of f The.
right side of (A1) may be formally replaced by an
integral operator acting on f,'4"
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and we have set

E(v' 'v; v—)=E(v', v') . (A4)

whether there exists such an H theorem when the series
for bf is terminated at some higher power of y.'9

The function E is not uniquely determined by (A1)
or (A2). This corresponds to the fact that A&'& does
not appear in (Ai), or equivalently that we can modify
E(v', v) by adding to it an arbitrary function,

APPENDIX B: STATIONARY SOLUTION OF it&

In order to get the form of the steady state P to the
order in y that we have been considering in Sec. IV, we
write Eq. (3.14) in the form

E(v', v) =E(v',v)+g(v)3(v v'), — (AS) R—vpo(v) =v3ik+v'334+. (81)

without changing (A2). Choosing A &e& (v) arbitrarily
for the moment, we may write

E(v', v) = (2z-)
—' dk$e'~&" —

&]

(~ )"
X Q A &"& (v) . (A6)

n=o

and write P as an expansion in y,

4'=v 9t+vV3+ ].
When (82) is substituted into (81) and equal powers
of y are equated, we obtain

rl 8
Rgb&=—Z—Pi—ln — = —PE vpp(t&), (83)

BV BV po

Alternatively, we may first use the A'~', k~&e, to find

the value of the integral of the eth Hermite polynomial
B'"&, which is an eth rank tensor, "

8 lpga

336= —3ap3= —2—$3 ln ——
BV Bv po

(84)

8&"&= E(z:v)H&"& (z)dz. (A7)

The H&"& (s) are orthogonal with a weight factor pp(s),
po()=( ) '" ""

The solution of (83) is'

if&�(v)

=P K vpe(v),

or in terms of the velocity variable V:

(85)

&i(V) =l 'PE Vpe(I')+o(7), (86)

Hi'& (s)H " (s)pe(z)dz=n $„$.

We thus have
1

E(z; v) =Z—Bi"&(v)pe(z)H&"&(z),
k!

(AS)

(A9)

where f' is the friction constant $cf. Eq. (1.2)],
f=y'X)P '=t„'. In order to evaluate the term 83&&ti,

which is the inhomogeneous part of (84), it is most
convenient to look at (4.13) which already contains
all the velocity dependence of 33. When fi is substituted
into the curly bracket of (4.13) the term multiplying
a and c is seen to vanish and the rest becomes

with
s=a'"(v' —v) . (A10) p—'fb:E5+d:Evv].

The right side of (A2) has the structure of the usual
linear transport equation when E(v', v)dv' is the tran-
sition probability per unit time from v to dv'. That
such an interpretation of the E constructed here be
possible, it is necessary first, that the series (A6) or
(A9) converge, and, in addition, it is also necessary that
E be non-negative for all values of its agruments. This
requirement on E sets up conditions on our choice of
Al &(i&) which it may or may not be possible to meet.
The further requirement that E(v,v') not contain'
h(v —v') insures that the choice of A "&, if at all possible,
will be unique. If such a E can be found it will have
the features of a stochastic kernel representing the
effect of a heat bath, here the fluid, on the 8 particle. "
The distribution f will then satisfy some kind of H
theorem which would assure the approach of f to a
stationary state. As is well known, when 5f is taken to
lowest order in y, i.e., the Fokker-Planck term, then f
also satis6es an H theorem. We have not investigated

» H. Grad, Comm. Pure Appl. Math. 2, 325 (1949).

The collision term 53ll i can then be written in the form

33gt——veE vpe(v)+v&L-', Pt&' ——',]E vpp(v), (BS)

where vo and v& are two velocity-independent constants
which can be expressed in terms of the force correlation
functions. When (BS) is substituted in (84) we obtain

03(v) =P&-'L»+kP»(l" —l)]E vpo(~) . (89)

The mean velocity of the 8 particles is

(V)= Vlt(V)dV=l '/M(1+y've)+0(y')

=PP 'j(1+y've)+0(p'). (810)

APPENDIX C: QUASISTOCHASTIC MODEL
OF BROWNIAN MOTION

In this Appendix we shall consider a model which is
midway between the usual model of Brownian motion,
that of a stochastic force acting on the 8 particle, and

' A. Siegel, J. Math. Phys. 1, 378 (1960).
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the analysis in this paper, where the motion of the
8 particle and Quid are governed by a definite
Hamiltonian. We shall assume that the 8 particle
interacts via a definite potential with one fluid particle
but represent the eBect of the rest of the Quid on this
particle in a stochastic fashion. This model is of interest
to us because the distribution f(R,V,t) obeys equations
formally similar to those developed in this paper with
coefficients which may be evaluated explicitly in some
cases.

The Hamiltonian of the 8 particle and one Quid

particle, which together we shall call the system, has
the form

H = ,'MV'+ -', vis+ U-(R ri), — (C1)

go
P ————

0

fp
e t'~d~gdvg

Xexp( —PL-', VP+ scop'(R —ri)'j),

fp ——0-'pp(V).

(C6)

An alternative interpretation of our model is that
there is a probability per unit time, r, that the Quid
particle which interacts with the 8 particle is removed
and replaced by another particle from the Quid. The
probability distribution of this new particle is given by
Po.

Equation (C2) now assumes the form
where we have again set the mass of the Quid particle
equal to unity. The joint distribution of 8 particle and
Quid particle ti(R,V,r&,vi, t) will now obey a generalized
Iiouville equation which will take into account the
effect of the rest of the fluid, the "reservoir, " on the
system '4"

Bp Bf—+ (ti H)+M—'E.
Bt BV

BVy

where, as before,

=ft Pp Pj/r-
Ppfg/r—,

8p Bp 19p, Bp, Bp Qp,—+V +vi +M 'F —F +M—'E.
Bt BR Bri BV BV

(C7)

I E(ri,vi, ri', vi', R,V)ti(R, V,ri', vi', t)
F= —8U/BR= a,'(r,—R) =o&p'Ri. (C8)

—&(r&',vi', ri, vi, R,V)p(R, V,ri, vi, t))dri'dvi'. (C2)

In writing down the stochastic kernel E we have used
explicitly our assumption that the reservoir does not
act directly on the 8 particle but only on the Quid
particle interacting with it. The form of the potentials
U and of the kernel E are still at our disposal and we
shall choose these to be as simple as possible. For U
we will take a harmonic potential,

U(i R—rii) =-'pip'(R —ri)'=-'~pRi' (C3)

and E will be assumed to have a simple relaxational
form

X(r,,v, ,r', ,v', R,V) = r—'P, (R,V,r, ,vi) . (C4)

We shall now again consider the stationary distri-
bution to terms linear in E. It is not necessary to worry
here about the system size going to inanity since that
has already been accomplished by introducing the
time-independent stochastic kernel E."Consequently,
it is also not necessary to introduce to, it may be con-
sidered as infinite from the beginning. Introducing p,
1t, and i), as before, f and g will obey a set of coupled
equations similar to (3.14)—(3.15),

—Pyv Epp(v) = y(B/»—) ~ (P(v)(Fi))), (C9)

(Brt/Bt)+iLrt= yA(p) F+yI'rt rt/r . (C10—)

The symbols have the same meaning here as before
(though referring to one, rather than X Quid particles),

E tries to bring the conditional distribution of the
Quid particle relative to the 8 particle, characterized
by P, to its equilibrium value Po. It does this with a
characteristic time, the Quid relaxation time, v. The
quantities P, Pp, and $ are defined as before,

Bg
SLY)(vi)Ri)t):—vi' —(dp Ri'

BRi
(C11))

BVy

and we need the solution of (C10) for t= po. The
dissipative nature of the Quid is now lumped together
schematically in the term v p, i.e., it is the operator
(iL+r ') which "corresponds" to the operator iL used

(C5) previously. Expanding g as a power series in y, we
obtain as in (4.2), for t= ~,

pP= =Pp(1+$);—

f(R,V, t) = ti(R,V,ri, vi, t)dr, dvi,

ni= (~/») ln(4/t p)—ds e—'I'F(—s). (C12)~P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 5/8
(1955); J. L. Lebowitz and P. G. Bergmann, Ann. Phys. (N.Y.)
1, 1 (1957),J.L. Lebowitz and A. Shimony, Phys. Rev. 128, 1945
(1962). Due to the simplicity of the operator L we can find
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here F(—t) explicitly. Indeed,

e-'zt(r, —R)=ri(—t) —R~Ri(—t)
~Ri cospppt —vitpo sin(opt t (C13)

e-' 'v, =v, (—t) =vi compot+tpoRi sintdot.
222*= (1+y) ' (since m=1), (C22)

v'( —s) =v+ytt2*[(vi —yv) (1—cosmos)

—o)R; sin(os j, (C21)

where m~ is the reduced mass,

Thus,
TM pI

[Ri—rvif —In-
1+r 2tpo2 Bv po

~=~p(1+v')'"
(C14)

It can now be verified that

(C23)

(F»)=—rto 2P ' oj—ln —= —~In-
1+r pop Bv —pp- BV —po-

(C15)
p(v) = [yp]-'E. Vpo( v) =if, (v)

is a solution of Eqs. (C19)—(C20).

(C24)

(&l
~,p=z u—»I —

I
.

Bv — Bv 5 po)
(c16)

We can also work out for this model more explicitly
the form of tIf(v, t) for a uniform distribution in the
absence of an external field,

In a similar fashion we find

COO T

n2(t) =
(1+4top r ) (1+pop r )

X (r[vivi —opp'RiRi 1+viRi}:
I

. (C17)
lP t l9VBV pp

We see here that (Fttp) will vanish [cf. discussion
following Eq. (4.11)).The next order contribution to
the collision term will come from (F2tp) and will be

f r coo ) /1+3r tdo )
a y=

/ //
/(Ppr)-'

(1+rp„ppy (1+4r2„2j
g2 —

tl2

pp
~

— . (C18)
BVBV — BVBV ~po

We note here that the terms in (Frtp) corresponding to
h and d in Eq. (4.14) do not appear here because, as
seen from (C13), BF( t)/BR is —independent of R so
that (Fh) and (Fd) vanish. This means that in an
expansion of p in powers of y, according to the method
of Appendix 8, 82$, and thus tttp would be zero. The
same will be true for all other Pt, l)1. This can be
verified directly for we can solve Eq. (C7) for the
stationary state to terms linear in E, without any
expansion in y,

1 " —P(v'( —s))
t2 tto+tt —tto 1+ — ds e

p pp(v'( —s))

f(v, o)
P(t) = e 'l'P(vi( —t), Ri(—t), v, 0)

-f(v, t)—
—f — t

-f — 0

(C25)
~ f(t—t)

dtie- tl F( t ). +O(&2)
BV fp

and for tp)T, we find

Qf (2t t) —
(Pprp) —l(~ 2 2)2(1 2 2)

=v'oif+v' ttpf
Bt (1+~ 2r2)2

pI
— 8 (fi--

X—' fo fo~—fo—I

—
(

av av av av &f,)
+O(yo) (C26)

where lI&f and t'tpf are given by Eqs. (C16) and (C18).
The relaxation time t„which is the inverse of the
friction constant I, is given in terms of r and too,

7 T COO

1+r top
(C27)

e—tt r~
BV

Ftt(v, '(—t), R, '(—t), v'( —t), 0)

It is also possible for the model considered here, to
write out more explicitly the exact equation satisfied
by f(v, t), for an arbitrary F,

Bf(v,t) —y tt
ds e 'l' Pp(vi, Ri)F(R,)

Bt T BV

Xexp( —&["—v" (—s) j}f(v'(—s), t—s)dR dv

8

+yrPE v'( s), (C19—) —7
BV

XdRidvi, (C28)

[f(v'( s), t s)/— —
Is

lt'dv, dr, dR, (C20) fo(v'( s) jdR,dvi+fy—e "']

where v'( —s) has the same meaning as v( —s) except
that the motion now takes place under the influence
of the whole Hamiltonian H, not just H~, i.e., the
position of the 8 particle is not held Gxed. We Qnd

t9

X — Fttog(vi'( —t), Ri'( —t), v'( t),0)—
. BV

f(v'( t),0)—
X dmylvy

f, (v'( —t))
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where the definitions of v'i( —t) and R'i(—t) are similar
to that of v'( —t) given following Eq. (C19) and have
the value, for F given in (C8),

vi ( s) =vi —fs P(vi —'rv) (1—cos&0$)

—o&Ri sincos$, (C29)

Ri'(—s) =Ri cos&0s+(o 'Pyv —vi) sino)s. (C30)

We then have

8$+—iL$= y'g g+yI'$
Bt

(D7)

8 lnf
(D8)

When (C21), (C29), and (C30) are substituted in

(C28), there results an expression for Bf(v,t)/Bt whose

expansion in powers of y for t&)v we have obtained in
(C26).

APPENDIX D: COMPOSITE BROWNIAN PARTICLE

In this Appendix we shall consider the case in which
the 8 particles are not simply mass points, but have
some structure. For simplicity of notation we restrict
ourselves to 8 molecules composed of two equal simple
particles, "8 atoms, " having mass M, M&&no and
interacting via a potential C. The distribution of the
8 molecules, assumed independent of each other, will

be characterized by a distribution function f which is
a function of the coordinates and velocities of both
8 atoms and the time t,

f(& t) —f(R(i) R(2) V(i) V(2) t) (D1)

The Hamiltonian of the full system will have a form
similar to that given in Eq. (2.1),

We have dered here an effective 8-particle Hamil-
tonian Xi, and an effective force P,

Ki= H i2+4'(R"),

8= —(~/~~) LU —43.

(D9)

(D10)

where P(') is the six-dimensional tensor,

The "effective" force (six-dimensional), P, acting on
the 8 molecule is the direct product of the effective
forces Qi and gm acting on the P atoms Pro. ceeding
now according to our method in Sec. V we obtain, to
lowest order in y, a generalized Fokker-Planck equa-
tion for f,

Bf &) &t f)—+ (f3e,) =y'P(') —f ln ——~, (D11)
Bt Bv &tv fpf

H= Him+Hi++ (N(R )+N(R 2)i, (D2)

""(M(—t))«. (D12)

where Hi is the same as in (2.1) and

Hi2 ——-', MV("'+ 2%V(') '+C) (R&2),

R; =r,—R n=1, 2. (D3)

The joint distribution p, will obey Eq. (2.2) (with
E=O). The conditional distribution P is again defined

by (2.12). However, unlike (2.13), Po will now depend,
on E",

In writing down the equation for f we have neglected
the term coming from the initial value of ] as we have
done previously in going from (5.4) to (5.5). We are
therefore assuming here, and this assumption is also
made in treating v as being of order unity, that f
changes on a time scale which is long compared to the
Quid relaxation time, This may become unrealistic in
cases where the internal velocities of the molecule are
comparable to those of the Quid particles.

The tensor P(') will generally be of the form

where

Po——exp( p&&H&+ U %(R—")$), —

~-P%' — ~
—P tII )+U]dy

(D4)

(D5)

(2
k12 Z 11

where 2) s is the three-dimensional tensor

(D13)

It is seen from (D5) that 4'+C is equal to

(—p
—') Inm2 (R")+constant, (8-(—t)$~)«

where F20 is the equilibrium value of the configurational
distribution of the 8 particle. The equation for $ and

f may be written in a form analogous to (5.2) and (5.8)
by letting% and v stand for the six-dimensional position
and reduced velocity vector of the 8 particle,

=A s(R")5+8 p(R")LR"R"—-'(R")'6)

n, P= 1, 2. (D14)

(%; v) = (Ri,R2,. v&'), v&'-) ),
v (~) =p

—i/2V (a)

Here A and 8 are scalar functions of R".
It is possible now to introduce four relaxation times

(D6) r; in analogy with the r defined in Eq. (6.3). We define
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the diagonal relaxation times v» and v 2 by the relations,

(St(—t) Si)«

= 3&»»' »

nisi'(R', R', r,)dri
V'u(R ')

nin'(~")

APPENDIX E: BROWNIAN MOTION
IN A CRYSTAL

We shall discuss here the motion of a heavy particle
in a crystalline lattice. This problem was investigated
and solved in a very interesting series of papers by
Rubin. "Rubin considers an m-dimensional cubic crystal
with nearest neighbor harmonic forces in which one
particle has a mass M, which is larger than the masses
of the other particles m, m=1. The forces between the
8 particle and the other particles is assumed to be the
same as the force between two crystalline particles.
Since this system has purely harmonic forces, the
equations of motion can be solved exactly and one can

"T.Bak and J. L. Lebowitz, Discussions Faraday Soc. 33, 189
(1962); Phys. Rev. 131, 1138 (1963).

44 R. J. Rubin, J. Math. Phys. 2, 373 (1961).

—V&e(Z") (D13)

g„=g„=-,srs{Qi@s) Alt»):R"R"/(&")' (D16)

x2 can also be expressed in terms of e(3)'. Relaxation
times can also be assigned to the o8-diagonal elements
of+ s.

~le ~21 srs(Sl @s)= s(rs/—P)~'+, (D1&)

Bts=Bsi= zr4(pigs) —&tsl):R"R"/(R")'. (D1&)

Using this notation, the Fokker-Planck equation for fs
may be expressed in terms of the v s and the equilibrium
distributions e(3~' and e(~~'.

The system we are considering might correspond to
a dilute solution of heavy diatomic molecules, such as
I2, in a gas like helium. The equation we shall obtain
for f may then be suitable for discussing the dis-
sociation rate of such molecules. " Alternatively, we

may consider f to represent the pair distribution
function of Brownian particles in a Quid interacting
with each other via a pair potential C. The equation
obeyed by this f will be of the same form as in the first
case if the density of the 8 particles is suKciently low.
Finally, in the Kirkwood theory, f would be the two-

particle distribution in a liquid, the "host Quid" repre-
senting the inQuence of the other particles. Kirkwood
made the further approximation of setting g3——g4 ——0
and ri= re= r, r being defined by (6.3).

Gnd the 8-particle distribution for the case where the
remainder of the lattice is initially in equilibrium.
Rubin Gnds that in one and three dimensions the 8-
particle distribution f obeys a Fokker-Planck equation.
In one dimension the equation is that appropriate to a
free particle and in three dimensions that appropriate
to a harmonically bound particle. The one-dimensional
result was also obtained by Hemmer. 23 In two dimen-
sions the situation is more complicated and somewhat
paradoxicaP4 and leads to the result that the 8-particle
distribution f does not obey a Fokker-Planck equation.

We will show first how the method developed in this
paper for Quids can be generalized to include crystals.
The formal application of our method always yields a
Fokker-Planck equation for f to the lowest order in
y, y= M '".In one and two dimensions this will be the
equation appropriate for a free particle. In three
dimensions the equation will be that appropriate to a
harmonically bound particle with a restoring force
equal to that found by Rubin. We shall also evaluate
the friction constant in one dimension and show that
it agrees with that obtained by Hemmer and Rubin.
The failure of our expansion in two dimensions is not
too surprising since in order to make our proofs rigorous,
we would need (see Sec. V), the existence of an expo-
nential relaxation for the light particles. This is believed
correct for Quids, while for the simple crystals considered
here the correlation functions decay essentially as
a(t)t—~i', where a(t) is an oscillatory function of the
time (with a characteristic frequency of the crystal)
and m is the dimensionality of the system. 25 We are
currently carrying through the detailed computations
for two- and three-dimensional lattices.

The main difference between the treatment of a
Quid and a crystal is that in the latter there is an
underlying lattice. The potential energy of the system
is a function of the displacements r; of each particle
from its own lattice point and of the displacement R of
the 8 particle from its lattice point which is not sym-
metric in the indexes i. Also the equilibrium distribution
of the 8 particle fs(R,V) is no longer independent of R
even in the absence of an external Geld. This latter
situation is similar to that encountered in Appendix D
and the modification in the general treatment of Secs.
II and VI will be similar to that done in Appendix D.

We write the Hamiltonian of the whole system in a
form analogous to (D2),

=Ht+H, +U. (F.1)

The equilibrium distributions of the whole system p, p,
of the 8-particle fs, and the conditional distribution

IP. C. Hemmer, Det. Fysiske Seminar i Trondheim 2, (1959).
24 See Sec. VC in Ref. 22.
44 P. Mazur and K. W. Montroil, J. Math. Phys. 1, 70 (1960).
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I'p are written as

g—1~—PH (E2)

fo= Ij„odr&' ' dr~dv&' ' ' dvtlt'

=Z ' exp( —/[Hi+4'(R)]}, (E3)

I'p=»/f p= exp( P[—H+U +]—}
= exp( —P[Hs —+]}. (E4)

Proceeding now as in Appendix D we obtain, to lowest
order in y, a Fokker-Planck (F.P.) equation for
f(R,V,t),

8 (RVt) ct 8
+V +M 'F'.

ctt ctR ctR

8 8 (f=M ' f lnl —,(E5)
ctV ctV 5 fp

where
F'(R) = —ct@(R)/ctR=P —'8 info/BR (E6)

is the average force acting on the 8 particle, at R, in
equilibrium and P is given as in (D12) by

boundary conditions to be such that the end particles
are fixed, xp —xs~s —0. (This avoids the problem of the
motion of the lattice as a whole which has to be taken
account of in a rather cumbersome way when periodic
boundary conditions are used. ) Thus, N=2L, and H
is given by

2L+1

2I+1
+sk 2 (xi+i—x)' (E9)

where k is the force constant and

Xp= X2L+2= 0) (E10)

xL+&, ~L+& being the position and velocity of the 8-
particle X, V. It will be shown that

(2 ) c+1)"'
o
——

I

—
l

~Pl 2kM

2k
&& exp ——,'P MU'+ X', (E11)

(L+1)
so that

X)—= lim
$0—too

(E7)
8+/ ctX= —2k X/ (L+1) (E12)

with

g= —(a/BR)[U(R, ri, . rto) —e(R)]. (Es)
Q=k((xzps —X)+(xr,—X)+2X/(I+1)}.(E13)

Q(t) is to be computed as before from the evolution of
the crystal under the inAuence of the Hamiltonian
Hs H,+U with ——R kept as a fixed parameter. P can
thus depend on R.

It is seen from (E5) that when F' vanishes, i.e., fp
is independent of R, the evolution of f(t) is determined

by a F.P. equation appropriate for a free particle while

if fp is a Gaussian in R, f obeys a F.P. equation appro-
priate for a harmonically bound particle. Now it has
been shown by Peierls" and MontrolP' that in the
limit of the crystal becoming large, i.e., N —& ~ (the
limit in which we are interested), fp will be independent
of R in one and two dimensions and will be Gaussian
in three dimensions. Equation (E5) thus agrees with
the results of Rubin in one and three dimensions. [The
value of the force F' given by (E6) is correct in all cases
where the F.P. equation is valid since it is determined

by the requirement that f(t) approach fp as t —+ oe.]
We shall now evaluate '2 for a one-dimensional

lattice with nearest neighbor forces. The displacement
of the particles from their equilibrium positions will be
denoted by x, ; i=0, , 2L+2, and with xr+i=X,
the displacement of the 8 particle. We shall choose the

26 R. Peierls, Suppl. Helv. Phys. Acta 2, 81 (1936).
'E. W. Montroll, in Proceedhngs of the Third Berkeley Sympo-

sinrn on 3fatbematicat Statistics and Probability (Uiiiversity of
California Press, Berkeley, 1956), Vol. 3, p. 209.

We have to find P(t) when X is kept fixed. It is clear
that keeping xL+&

——X fixed separates the lattice into
two parts of L particles each with fixed ends. Intro-
ducing the variables I; and y;,

I;=x;+(L+g)—X 1—
L 1

y;=x;—X
L+1

j=0, , L+1, (E14)

we may write H2, the Hamiltonian of the lattice with
xL+g= X,

Hs=(s 2 is'+ok Z (st+i —St)'}
2=1

+(-', g u +-', k Q (I;~i—tt )'}

+kX'/(L+1), (E15)

with the boundary conditions

yp= yL+y~ gp~ Nz+y= 0.

Equation (E11) fol fp follows immediately from (E15).
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The force 6 will now be

6=k(li+yz, )
and

(E16)

I;=P iI, sin(irjs/L+1), (E18)

(6(t)6)=k'(Ll (t)+r (t)3[I +r 3)
= 2k'(N, (t)li). (E17)

The second equality follows from the fact that the y's
and I's are independent of each other. The evolution
of Ni(t) proceeds according to the Hamiltonian in the
second curly bracket on the right-hand side of (E15).

We can evaluate (E17) by introducing the normal
coordinates' g„

This yields, using the independence of the g„

2P ' r ms )cos~ t
(Ni(t)Qi) = Q Siii

(L+1) -i L+1)

coal

|' s.s )since, t
+sin(

EL+1) (o,2

cos' (i2C )[cos[2+k+sin (-,'C)]
+

sin[2+k+sin(~i@�))
jdC,

E=2p-'gk

(E2O)

(E21)

which satisfy the equations

( ms

7j,= —4k sin'~
kL+1 (E22)P

—1/2

which agrees with the result of Hemmer and Rubin.
We note that the relaxation time r defined in (6.3) is

(E19) given here by


