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High-Energy Behavior of Feynman Amplitudes. II. Nonplanar Graphs*f
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A method previously developed by the author for obtaining the asymptotic behavior of Feynman integrals
associated with planar graphs in the Xp' theory is extended for the study of nonplanar graphs. The results
are discussed in connection with the high-energy behavior of amplitudes and the associated properties in the
complex angular momentum plane.

I. INTRODUCTION tude are seriously complicated by the existence of the
third' spectral function.

In the present paper the method of $1j is extended
for the study of the asymptotic properties of nonplanar
graphs. Explicit formulas based on the topology are
derived in the case of graphs whose asymptotic behavior
is not weaker than s ' where s is the large variable.

In Sec. II we briefly review our previous results, give
definitions, and establish the notation used in the sub-

sequent discussion.
In Sec. III we discuss the asymptotic properties of

nonplanar graphs and derive formulas for the contribu-
tions of various parts of the integration domain of the
Feynman integral.

In Sec. IV we discuss the obtained results in co.~nec-

tion with analyticity properties in the angular momen-

tum plane. A certain set of nonplanar graphs exhibiting
the exchange of a Regge pole is examined.

In Appendix A we derive the asymptotic form of
certain types of integrals used in the text. In Appendix 8
it is shown that a graph is (essentially) planar if and

only if the polynomial coefficient of the variable s in the
Chisholm form of the Feynman integral is definite (i.e. ,

all its terms appear with the same sign).

' 'N a previous publication' (which will be denoted by
~ ~ LI]) the author has studied the high-energy behavior
of Feynman integrals motivated by recent interest in the
high-energy properties of reaction amplitudes. ' In the
framework of the algebraically simple XP' interaction a
method was developed for obtaining the asymptotic
form of the Feynman integral associated with a general
nth order graph with two, three, or four external lines.
Explicit formulas and a rule were given for reading off
this form from the topology of a given graph. In the
case of graphs with four external lines the method was
restricted to p/anar graphs and it was realized that non-

planar graphs could behave asymptotically in an ex-
ceptional way.

The remarkable feature of planar graphs is that, if
one assumes the validity of the double dispersion rela-
tions for the associated integrals, they can have owly ore
nonvanishing spectral function. Similar analytic prop-
erties are exhibited in potential scattering (exchange
terms correspond to "crossed" planar graphs). It is
therefore reasonable to expect that the asymptotic
properties of planar graphs are consistent with a pertur-
bative expansion of a Regge formula. This point of view
is supported by various field-theoretic approximations. ' '
A summation of the leading asymptotic contributions
from the series of simple ladder graphs was shown by
Polkinghorne' to lead to a Regge asymptotic form.

Nonplanar graphs, having a nonvanishing third' spec-
tral function, are specific for relativistic field theories
and therefore an investigation of their asymptotic prop-
erties is of particular interest. Indeed, it is already
known' that the ) -plane properties of an analytic ampli-

* Part of a thesis submitted to the Department of Physics, the
University of Chicago, in partial fulfillment of the requirements
for the Ph.D. degree.

t Work supported in part: by the U. S. Atomic Fnergy
Commission.

f. William Rainey Harper Fellow.
' G. Tiktopoulos, Phys, Rev. 131, 480 (1963).' Certain classes of Feynman graphs have been studied by J. C.
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II. DEFINITIONS AND PREVIOUS RESULTS

Although we will be explicitly concerned with the
XQ' theory, most of our formulas and results can be easily
rewritten for those graphs of the XQ'+gP' theory in

which no divergences appear.
Apart from unimportant numerical factors the Feyn-

man integral for a strongly connected convergent graph
for the process p+0 ~ p'+tt, ' with /-independent loops
and I=3l+1 internal hnes can be written in the Chis-
holm~ form,

t [C(x)]/.—i

I&'(s, t) = — tt'(P x, —1)dxi dxr, (1)
tt (L)(s,1,x)]'+'

where XI, X2, , X~ are the Feynman parameterS
associated with the internal lines, s= —(p+k)' and
(= —(p —p)' are the invariant kinematical variables,
and C(x) and D(s, (,x) the familiar discriminants of

the graph.
' R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952).
' For a detailed study of the properties of the discriminants and

related quantities, see R. J. Eden, Phys. Rev. 119, 1763 (1960)
and Brandeis Summer Institute lectures (1961).
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FIG. 1. (a) A planar graph. (b) A nonplanar graph which can be
made planar by interchanging the p and k external lines. (c) A
"crossed" planar graph. The reason for this nonsymmetric treat-
ment of graphs (b) and (c) is that we have in mind s as the large
variable and f,= f„, whe—reas ft, =f g, —

tained by shrinking all vertex parts to points and re-
placing all self energy parts by single lines) is planar or
nonplanar, respectively.

A straightforward corollary is that for graphs with
t,wo or three external lines the function f(x) (i.e., the
coe%cient of s in the Chisholm denominator of the Feyn-
man integral) is always definite. This was first shown
by Nambu '"

In LIj we have obtained the asymptotic form of
definite graphs. For such graphs f(x) vanishes only if
all its monomial terms vanish individually. Thus, the
hypersurface f(x)=0 consists of several branches of
the form

We have D(s, t,x)= j(x)s+g(x)t+h(x), where f, g,
and h are (t+1)th degree homogeneous polynomials in
the x variables. f and g are linear in each x;.

It is known' that if t is real and in the interval
(—4m', 4rrr') and ImsWO the integral (1) is nonsingular
and well defined without any deformation of the real
integration contours. Accordingly, in our discussion we
keep the contours real and obtain the asymptotic form
of F(s,t) as s —+ ~ under those conditions. It is reason-
able to expect that the so obtained asymptotic form,
having explicit analytic properties in t will also be valid
for values of t to which it can be analytically continued.

Clearly, the contribution to F (s,t) from the region in
(real) x space where

~ f(x)
~
)e, where e is some small

positivenumber, behaveslikes ' 'atlargevaluesof ~s~.
It follows that the leading asymptotic contribution
comes from an arbitrarily small neighborhood of the
hypersurface defined by f(x) =0.

We shall need the following definitions:
Definition 1. We shall say that the polynomial f(x) is

defirrite, if all its monomial terms are of the same sign.
Also a graph with a definite f(x) will be called definite.

Definitiorr Z. A graph is ptae gr if it can be drawn on a
plane so that. no internal or external lines cross (without;
meeting), the latter being attached around the graph in
the cyclic order p, k, k', p'.

The graph of Fig. 1(a) is an example of a planar graph.
The graph of Fig. 1(b) is not planar although it would
become one if we interchanged the p and k external lines.

In LI] we called "crossed" planar the graphs obtained
from planar ones by interchanging the p and p' external
lines. An example is given in Fig. 1(c).It is easily seen
that crossing the lines p and p' just changes the over-all
sign of f(x) and so does not affect the hypersurface
f(x) =0. We shall not refer to these "crossed" graphs
explicitly in what follows.

In PI] we have shown that f(x) is definite for planar
graphs. In Appendix 8 of the present paper this is
extended as follows: "f(x) is definite if and only if the
graph is essentially ptanar. "

Definition3. We sha, ll call essentially planar or es-
sentially nonplanar the graphs whose "skeleton" (ob-

' T. T. Wu, Phys. Rev. 123, 678 (1961).
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Fro. 2. This graph
illustrates the t paths
delned in text. For
example (4,5,6),
(1,2,3), (7,10,11,12),
and (7,8,9) are
paths. There are only
three t paths: (4,5,6),
(1,2,3), and (7,8,9).

' V. Nambu, Nuovo Cimento 6, 1064 (1957)."In a recent paper by I. G. Halliday, University of Cambridge
(unpublished), the case of planar graphs with nonoverlapping t
paths is considered.

Except for the case when certain singular subgraphs
are present within the given graph, it was shown that
the asymptotic behavior is determined by those
branches of f(x) =0 which are of highest dimensionality
(i.e., of minimum c) and for which the corresponding set.
of lines does not contain a complete loop of the graph.
Such a set of lines we called a t path. It can be topo-
logically characterized as follows.

Defieitioe 4. A t path is a minimal (i.e., none of its
subsets is a t path) connected set of lines which, if short-
circuited, splits the entire graph in two parts having no
common line and only one common vertex (to which the
entire t path has been reduced), the p and p' external
lines being attached to one part. and the k and k' ones
to the other. A t pa/h is a t path of minimum "length, "
i.e., number of lines.

For example, in the graph of Fig. 2 the lines tt, 10,
11, 12 form a t path. There are three t paths: (4, 5, 6),
(1, 2, 3), and (7, 8, 9).

The asymptotic behavior of definite" graphs was
shown in LI ] to be given essentially by the following
rule:

"Atlargevaluesof ~s~ F(s,t) behaveslikes &(1ns)~ ',
where p the (common) length of the t paths of the graph
and M is the maximum number of t paths one can take
in a sequence Pi, Ps, ', Psr so that (i) no loop is
formed by lines belonging to P,, Ps, , Psr, (ii) the
lines of I', are not atl included in P;+~, I';+g,

This rule is slightly complicated by the presence of
certain "singular" subgraphs within the given graph.
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For the detailed rule and examples of its application the
reader is referred to LI].

In our discussion we shall also make use of the follow-
ing two "operations" on a graph G and the associated
polynomial f(x): (i) By removing a line with parameter
x, we obtain a graph (denoted by G—x,) whose f poly-
nomial is 8f/rlx, 12 W. e shall say that G x, i—s a deriva-
tive graph of G. (ii) By shortcircuiting a line with
parameter x, we obtain a graph whose f polynomial
is f(x) ~.,.=s.

III. ASYMPTOTIC BEHAVIOR OF ESSENTIALLY
NONPLANAR GRAPHS

In Appendix 8 we show that for graphs with four
external lines definiteness is equivalent to essential
planarity. We also know that all graphs with two or
three external lines are definite. Therefore, the rule
given in $1] and outlined a.t the end of the previous
section applies to all essentially planar graphs with four
external lines and to all graphs with two or three
external lines.

We now turn to the case of essentially nonplanar
graphs with four external lines. For these graphs f(x)
contains terms of both signs and, thus, can vanish with-
out all its monomial terms vanishing. Ke shall now dis-
cuss the asymptotic contributions from the various
parts of the (I 1) dimensiona—l hypersurface f(x) =0 in
the I-dimensional cube (0&x, &1;j=1, 2, , l).

FIG. 3. A graph reducible into the component subgraphs G1, G2,
~ 5,, connected by pairs of lines in the t channel.

Jacobian is
J= 1+0(&),

so that we have the contribution

[C(x)j'—'bL f(x')]J
-8(g x,—1)d&dxi'. dxr'.

$P(1+)B)s+gt+h j1+'

Since B is bounded, taking ~," ~

(e(
~
supB

~

guarantees that 1+)B does not vanish. Therefore, the
same behavior v ill be exhibited by the integral

LC(')j'-'~(f( ))

, L&s+g(x)t+h(x) j'+'

I
)&t)(Q x)—1)d)dxr . dxr,

whose asymptotic form at large values of
~
s~ is simply

(A) Regular Part of f(x) =0 in the
Interior of the Cube

S.—I,—1 1 1d(—— L~'(')3'-'~(f( ))

The regular points of f(x) =0 are those a.t. which at
least one of the first derivatives of f(x) does not vanish.
In the neighborhood of regular points we can introduce
the distance f from the hypersurface as a new variable.
It is convenient to first introduce a dummy variable s

dxidx2 . dxr = 5(s)dsdxrdx2 dxr

and make the change of variables

s) xl) x2) ' ' ') xr ~ $) xl) x2) ' ' ') xr

I
X~(P x,—1)dx," dx„

where the $-integration is done around the pole at /= 0.
This contribution is of the same order as the one coming
from the region

~ f(x)
~
)e and cannot compete with that

of the boundary of the cube which is at least as strong
as given by the rule for planar graphs.

(B) (I—2)-Dimensional Singular Manifold off(x) =0
in the Interior of the Cube

according to the equations

s= f(x').

AVe expand

f(x) =f(*')+P(x,—x,')—

~ ~ ~

= f(x')+ 5+PB(6,~'),

In other words all first derivatives of f(x) vanish on
an (7—2)-dimensional submanifold of f(x)=0. It is
easy to see that this is the case, where f(x) = f1(x)fs(x),

. where fi and f2 are both nondefinite.
In order to treat. this case we first decompose f(x)

into factors completely:

f(x) flf2' ' ' faxlx2' ' ' xbfa+b+1' ' ' fa) i o) 1

Where fi, f2, , f, are nOndefinite and f +a+bfi~
definite (irreducible) polynomials. Topologically this
means that the given graph consists of a chain" of sub-

where B(),x) is bounded. It is also easy to see that the

This result is due to I~. J. Eden (Ref, 8).

'3This can be shown by a simple induction argument. The
converse statement, i.e., that such a chain of subgraphs has an
t(x) polynomial equal to the product of those of the subgraphs
csn he ohtsined hy rnesns of the theorem given in t I].
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graphs GI, . , G., SI Sb G +b+I, 'G connected b$
pairs oairs of lines as shown in Fig. 3. f(x) is just the product
of the polynomials associated with these subgraphs.
G~ . G are essentially nonplanar, SI, .

, Sb are&)

2nd order parts whose lines are labeled by x~, x2, . , xb,

respectively, and G +b+I, ~, G . are essentially planar.
The particular order in which they are connected does
not aGect our argument.

Introducing a ( variable for each nondefinite factor as
above we have

LC(*)]'-'ll. b(f, (*))b(Z.",—1)««.
dxy' ' 'dYI

(&)t o &„x~ xbf.+.b+) f„s+gt+h)'+'

whose asymptotic form at large values of Is I is (see Appendtx A)

(lns) +' ' 2 ' ' [Co(x)]' '$$g 8(f,(x))
&27/ ZS b(Q x, —1)dxb+g dxl

(a+b —2) ' l o f +b+I f-(got+ho)'
(2)

for Ims~~o. The subscript zero denotes evaluation at

xg —xp — —xb —0.
The introduction of the $; variables is strictly possible

only at regular points of the surfaces f, (x) = 0. However,
it can be verified that the singular parts of these surfaces
cannot produce a stronger behavior, because they are
of a dimension lower than I 2(f, are irr—educible
factors).

forms of f(x) is not. transparent and one is tempted to
think that they are not possible in actual Feynman
graphs. If they exist a,t all, they must be associated
with essentially nonplanar graphs of a fairly high order.
We hope to report on this problem in a future publication.

(D) Boundary of the Cube

An (I—d)-dimensional "side" of the cube is specified
by a, set of equations like

(C) Singular Manifolds of Dimension
Less than I—2 We write

xx= x2 ——. . ——xd ——0.

In Appendix A it is shown that as s —+ ~ the real
contours of the integral

dxydx2
)

[(axgxo+ bgxg+ boxo+ c)s+d]'"

are pinched by a pair of poles provided

ax,xo+bix4+boxo+c= a-'(axg+bo) (axo+b, ),
and each factor changes sign in the integration domain.
In any case we can replace the real contour by a complex
one plus the contribution of one of the poles which is

27ri gM—2

Ims~~ 0.
s (M—1)[(ac—bubo)s+ad]~ '

Writing f(x) =ax~xo+b~x~+boxo+c we see that the
contribution from the interior of the cube is weaker
than s ' unless ac—b&b&=0 (identically) namely f(x) is
factorizable into two nondefinite polynomial factors.
This is the previously considered case. It follows that
the singular parts of f(x) =0 of dimension I—3 or lower
will always have a contribution weaker than s '. For
example, if f(x) = oo~po+ pop4, where the q, 's are non-
definite, we could have an s ' contribution. "Another
example is f(x) = oo~yo+ oooooo+ oooo~ with a possibles '"
behavior. '4 However, the topological meaning of such

'4 Clearly, for such behavior, it is also necessary that

~(~I)~(~2) . &o

(a)

(b)

FIG. 4. In (a) the lines 1
and 2 form a t2 path. In (b)
these lines have been short-
circuited and the resulting
graph consists of two non-
planar subgraphs connected
through only two vertices.

f(x) = ~(x)+fo(x) f(*)= f(*)I.=* = "='.=o

fo is the polynomial associated wit. h the graph obtained
by shortcircuiting the lines 1, 2, , d. If fo 0, then the-—
lines, 1, 2, -, d form a t path and the corresponding
asymptotic contribution is obtained as described in [I].
We are here interested in the case where fop0 and is
nondefinite. The regula, r parts of the surface fo(x) =0
are again easily seen to give an s ' ' contribution. How-
ever, if by shortcircuiting the lines 1, 2, , d our graph
is split into two essentially nonplanar subgraphs joined
only through two vertices as shown in the example of
Fig. 4, then fo(x) is the product of the f's of these
two subgraphs

fo(*)= fo~(x) foo(x).

If that is the case we shall say that the lines 1, 2, , d
form a to path of length d.
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We introduce $ variables for fpi and fpp and apply a
'A transformation' on xi, xo, . , xq. We have (y= Zoo)

1 1 o ei sp LC(x))l—lg(f )$(f )gd—id/

L(Xop-!- ( ( )Sygt+h]'+'

&&dt,d~,S(P x,' —1)S(g x,—1)dx' dx

whose asymptotic form is (see Appendix A)

(d—1)!(l—d —1)!
&2xis " ' ~ ~ ~

lf 0

' LCo(x))' '~(foi)~(fop)

pop" (got+ho)' "

&& S(P x, '—1)S(P x,—1)dx' dx, (3)
1 d+1

for Ims~~0. The subscript zero denotes evaluation P =0.
From singular manifolds of fp (x)=0 of dimension

I—3 or lower we might have an s " ' contribution or
weaker. For example for fp(x)= yipp+yp&p4 with non-
definite q's we could'4 have an s "—' behavior.

We can summarize the results of this section as
follows: As far as its asymptotic behavior is concerned,
an essentially nonplanar graph G belongs to one of the
following two classes.

(1) G consists of a chain of subgraphs Gi, , G„
G,+&, , G +&, G,+&+&, ~ ~ ~, G connected by pairs of
lines as shown in Fig. 3. G~, G2, , G are essentially
nonplanar. G +~, . , G,+q are second-order parts. G +q+~,

, G are essentially planar of order &2.
If a) 2, the asymptotic behavior is s '(lns)~+~' as

given by formula (2).

k

(a)

(N) k

(b)

(N) k

If a=1, b&1 the asymptotic behavior is s '(1ns)~'
a.s given in LI J.

This rule is applied to some examples in Fig. 5.
(2) G is not reducible into subgraphs as above. Then

it is asymptotically weaker than s '. Although we have
sketched a method applicable to such cases, explicit
formulas were not given because of the possibility of
singular parts of f(x) =0 of dimension I 3or l—ower.
Nevertheless specific contributions from the boundary
of the integration cube were explicitly given and may
serve as lower bounds for the leading asymptotic
behavior.

which, of course, is also obvious from the formulas given
in LIj. We note that this behavior of the perturbation
amplitudes is compatible with the asymptotic form ob-
tained from Regge poles. "

An interesting problem is posed by formula (2) for
b =0. In that case the coefFicient of t in the denominator
is g(x) namely the same as in F(O, t) and one might
expect that the asymptotic form of F (s,t) and therefore
of A (s, t) for s —+ ~ has a left-hand cut in t. This would
disprove the Mandelstam represents, tion for F(s,t) ac-
cording to which

1 pi, (t', s) 1
A (s,t) =— — dt'+

t' —t

p.„,(n', s) —c&t
u' 4m'+s+t—

IV. DISCUSSION AND APPLICATIONS

I et us consider the case of a graph which is reducible
into essentially nonplanar subgraphs G&, G&, ~ as
shown in Fig. 3. The associated Feynman integral is a
real analytic function which for real values of s can be
written

F(s+i0) =D(s, t)&iA (s,t),
in terms of the "dispersive" and "absorptive" parts.
The leading contribution for s —+ ~ is given by formula
(2), so that the absorptive part. dominates, i.e. ,

lim D(s,t)/A(s, t) =0.
8-moo

In contrast. , planar graphs have no left-hand cut in s,
i.e., F(s+i0) =F(s iO) for —s real and negative, so that
as s ~ —~ along the real axis we obtain an explicitly
real asymptotic form. If this form is valid for all ways
of approaching infinity, we always have (for essentially
planar graphs)

lim A(s, t)/D(s, t) =0,

(c)

p (i) (N)

so that the left-hand cut starts at tp=4m' —u'(s) —s and
therefore recedes" to —~ as s —+ ~. However, the
delta function constraints require

FIG. 5. Examples of the determination of the asymptotic be-
havior of nonplanar graphs belonging to class 1 (see end of Sec.
III): (a) for 37&1 we have a=Ã&2 and b=0; the behavior is
S '(lns)+~ (b) for %=1 we have a=1, b=1 and the behavior is
S '; for E&1 we have a=%&2, b=Ã and the behavior is
S '(lns)2+ 2 (c) for E&1 we have u =X, 6 =0 so that the integral
behaves like S '(lns)~~.

fi(x) = fp(x) = =f.(x) =0,
"P. G. O. Freund and R. Oehme, Phys. Rev. Letters 10, 199

(1963).
"This is the reason for the absence of the left-hand branch

cuts in the Regge pole trajectories cx(s) and the associated residues
P(s) for an amplitude satisfying the Mandelstam representation.
R. Oehme and G. Tiktopoulos, Phys. Letters 2, 86 (1962).
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We first notice that the hypersurface f(x) =0 has no
irregular points in e inth 'nterior of the integration cube
siilce
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S bi

X
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X
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&&5(P x, —1)dx,dx2 . dy, dy,can be given a,se o

( ) o b=0 that t he
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in t-de endent)iC COllh h ld possibly give rise to moving — ep
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—+~ these two poles pinchClearly, as ~s~ —+ ~ es

x& contour if and only if

=—(0 and (a+bi)bi(0.—1(
a+bi bi

I (2)(s)
g ~(e

27ri 1
Ims ~~0.

s A

This condltloll ls equlva.ivalent to

x x2 b&x&+b~x2+c=a '(axi+b2)((ix2 bi,8

s chan e sign in the interior of the
integration square. l p a-

b a complex one crossing over o
plus the contribution oi t a p

s (Qc bib2)s+ od

(Pole contrib. to Gir(s))

s lV —2 times with respecect to dBy differentiating G~(s)i — i
we have

I„(ilI ) (s)
27ri

III1$~0.
s (M—1)A~ '

ula we haveBy means o t e rf h recursion formula

—[sIS(~)(s)j= &SING(~)(e3s)
Js

L'Hospital's rule gives

27ri 2

, (M ).=

2xi 2
I3"')(s) -~ a——lns-

g -+~

h res ect to A yieldsRepeate i . h res ec. d d fferentiation with respec

2%i Q M—2 nally obtainProcee ing y ib induction we 6n

s (M —1)[(ac b,b,)s+—a M—1 2mi(lns)" ' 2A 2

I (~)(s)
dXydX2 ' ' ' dXn

,„(xix2 . x„s+A)~

e asvm totic form of integrals(2) We shall obtain the asympto ic
of the form, bero e s i o.d'fferent from zero.

'=0 &1 ThI / I(c) e, W , e2 = e3'

pl11C ing. IProceeding as in (a), w

'&0. We have a recursion'on formulafoi MO1, e;+0, and&; . e

by writing

(lns) "—'
'"'""'=-" -) (M ).=

dx~

XI

s)=s '

whence,

&n—1 dXylx2 ' ' ' dx& pe
)

M,xixg x„ is+A—en's Xl 2

done Oroged the pole at
=0 above or below x~= or

There is no pine ing.(d) ei'AO, m=
we ha, ve

dxel X

I(s) =
(ir) —e 's)—s „)j— I (~)(e s)+e„I„,[sI„(~)(s)g=~„—„&

ds

We distinguish the following cases.

( ) = ' = = ' =0. Explicit integrat ion gives()(a) 6]

XM

w ere
'

is done above or below the polewhere the integration is one a
at x=0.

form of(3) Finally, we shall o tain „'form
the integral

Ii™(s)—+ 1/(M —1)A~ 's.
I(s) =

X' 'd)(d/id)2

and the L'Hospital rule we obtainUsing induction an t e

(lns)" '

e—1)!(M—1)A~—'

,. [()a+ ~,t,)s+Aj",J

the inch-ea, ,

'
contribution comes from p'

g

hi A di th o on-t the beginning of this ppen
'

given a
~ ~ ~

lIlg Popole contribution is

Th s obtain d also in [Ij.
ft.h A edi.in

'
d in the beginning o iintegral discusse in

2mi 1

s M —1

X" 'B

()(as+A)~ '



GEORGE TI KTOPOULOS

Hy differentiating
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(d—1) times with respect to a we obtain

27ri (d—1)!(M—d —2)!
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APPENDIX 3
We shall show that graphs with 4 external lines are

definite $i.e., have a definite f(x)] if and only if they
are essentially planar.

It is easy to see that essentially planar graphs are
definite. The nonvanishing ([—1)th derivatives of f(x)
correspond to graphs with one loop obtained by striking
out I—1 lines from the given graph. But all these one-

loop graphs are planar if our original graph is essentially
planar and so they have definite j's of the same (nega-
tive) sign. Therefore, f(x) must be definite.

It is interesting to realize that the same rather trivial
argument proves directly that all graphs with 3 or 2
external lines are definite simply because the one-loop
graphs with 3 or 2 external lines are planar.

We now turn to the converse. We shall need the
following lemma.

FxG. 7. A sche-
matic representation
of the skeleton graph
of the lemma.

Lemma. A skeleton graph always contains a line which
is rot one of the external lines of some subgraph with
4 external lines and nonzero number of loops.

Proof. The lemma is evidently true for skeleton graphs
with /= 1.We proceed by induction. We assume that the
lemma is true for skeleton graphs whose number of
loops is less than l. Let G be a skeleton graph with I
loops and x one of its lines such that G—x is not weakl~.

connected; in other words, x does not belong to any pair
of lines representing a two-particle intermediate state in
any channel. Of course G—x may not be a skeleton
graph. Let the maximal vertex parts in G—x be 5 and
5' as shown in Fig. 7. If both S and S' have zero number
of loops, then G—x is a skeleton graph and x is the re-
quired line. If this is not the case, the skeleton of G—x
is obtained by shrinking S and 5 to points. Since G—x
is not weakly connected, its skeleton must have at least
one loop and so it contains at least one line, y say, (not
coinciding with any of the external lines oi S or S') with

FIG. 8. A sche-
matic representation
of the skeleton graph
of the theorem. The
shaded part is strictly
planar.

(y)

f
l

(a) (b)

FIG. 9. Illustration of two steps of the proof of the theorem.

the required property. It is straightforward to verify
that y retains this property in G.

Theorem. Definite graphs are essentially planar.
Proof. It suKces to prove it for skeleton graphs. We

use induction again. The theorem is true for graphs with
one loop. We assume that it is true for graphs whose
number of loops is less than /. Let G be a definite skeleton
graph with / loops. Consider a line y with the property of
the lemma. G—y is definite and has l—1 loops; therefore,
it is essentially planar. Furthermore, because of our
choice of y, G—y must be strictly planar. Thus G is
obtained by adding a line to a strictly planar graph. If
G were nonplanar, it would be of the form shown in
Fig. 8, where the shaded part is strictly planar and y is
assumed to be drawn with the least number of crossings.
We distinguish two cases:

(i) The loop circumscribing the crossed lines includes
all four external vertices; clearly, by removing a number
of lines from such a graph we obtain a nondefinite graph.
Therefore, this case is excluded since G is definite.

(ii) One of the external vertices p' say does not lie
on the loop circumscribing the crossed lines. Let a and b

be the two internal lines meeting at that vertex and 5„
and S~ the maximal vertex parts in G—a and G—b, re-
spectively, LFig. 9(a)j. One can readily verify that S,
and S& are disjoint because G is a skeleton graph. Thus,

y must be disjoint from at least one of these vertex parts
S, say. In that case the skeleton of G—a (obtained by
removing a and replacing S, by a point vertex) is planar
only if y can be drawn as shown in Fig. 9 (b) by a dashed
line not crossing any line (a is removed). This means
that only ore line is crossed by y in G which is impossible
because then 5 would not be maximal. We conclude
that G is planar and the induction is completed.


