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P H YSI CAL REVI EW VOI UME 131, NUMBER 5 1 SEPT EM B ER 1963

Broken Symmetries and Massless ar Ic es

IDNKY A. BLUDMAN AND ABRAHAM KLEINj'SIDNEY

ania Philadelphia, PennsylvaniaDePartment o ysi cs,f Ptt '
University of Pennsylvania, P i a e ia,

(Received 29 April 1963)

red b Goldstone is proven: In a theo yheor admitting an
'

d
'

d 'bl
The following generahzation o

p
e rou has the property that in the vacuum som z ~ oIth tD;(p), th Fo n t fo fth

of, ;,40 i o of h(The maximum number o p; is
massless particles depends on t edthfurther identification of the ghe sin ularities as po es an

it escri es
'

when the
ratus of quantum field theory.

it describes a boson excitation an w en eb d for the field p; when
d'"u"'d It"'" "tnl direct fermion-fermion coupling is i

h x anded in terms of the coup ing e wries ma be renormalizable w en expanteraction theories may e

) nd ona-Lasinio), whered h the following models: (A y, g g

'
e boson field.

e o
' ' au e group (Nambuan ona- a

'

seudoscalar meson is predicted; (B) isospin g p
h theorem is illustrate y

d. (C SU(3) o t t od l (B
~en& where the massless photon is pre icte .d ~ (D) Lorentz group (Bjor en w ermesons are predicte; or

of the theorem are also discussed.

J. INTRODUCTION

IDESPREAD feature of many-body systems Is
he existence of co ec ive mll t' modes of excitation for

~ ~

t eex'
gy

es constituting the on y ow-
th

'
i thtions. Well-know pn exam les are e

model fer ma

supe d 'and t e p onons
be exhibited by a supercon uc or in

d
b interactions. ' T e comm

systems is the appearance o a con e

b the U. S. Atomic Energy Commission.*Supported in part by t e . . o

'f ch'tz Statistical Pb ics,

Ph s Rev 110 82 "/ (1958) 112 1900
115 195 (1959)(1958); G. Ricltayzen, ibid. 1

tive henomenon; eth theoretical description t en re-
uire, f 'l't ted by the introductIon of a,

~ ~

uires, or atleastss ac& i a e
e or s mmetry-breaking ground state.

Thus in ferromagnetism, w ere e
s the round state assnvariannt under spatial rotations, e g

rosco ic spin proportional to the siz'e of the

is then not rotationally invariant. h e. In this sense, e
is nons metric or degenerate; the spin

ome direction which, because o ep
f the Hamiltonian, is arbitrary. ac par ico e

es a, re resentation oo spin if direction however dehne p
lo al the other possi ethe Hilbert space inequivalent to all t e

choices.
t 4 ca,n be formu-The BCS model of superconductivi y

oo er, and J. R. SchrieGer, Phys. Rev.
iubov Zh. Fksperim. i Teor. Fiz.108t 1175 (1957}.N. N. Bogoliubov, . sp

34, 58, t3 (1958) Ltranslation: Soviet Phys. —
(1958)j.



BROKEN SYM METRI ES AND MASSLESS PARTI CLES 2365

lated analogously. ' Here Nambu views the conserva-
tion of charge or of fermion number as the invariance of
the Hamiltonian under rotations about the 3 axis of a
fictitious isospin space. The ground state is, however,
characterized by a nonvanishing value of the isospin
density in the 1,2 plane; this nonvanishing expectation
value determines the energy gap. The invariance under
rotations about the 3 axis is reflected by the arbitrariness
in the choice of direction in the 1,2 plane for this non-
vanishing component. The ground state is again de-
generate and the symmetry broken in a sense precisely
analogous to that explained for the ferromagnet. The
superQuid boson system can be described similarly.

Nambu and Jona-Lasinio' have tried to extend these
concepts to Lorentz covariant 6eld theories and to
found a theory of strong interactions on the assumption
that the nucleon mass arises in analogy with the energy
gap of superconductivity, the associated low-energy
collective excitations being identified with the pion.
In correspondence with the nonrelativistic examples,
Nambu and Jona-Lasinio find that the pion energy
should vanish with the momentum, i.e., that the pions
should be massless.

The models of Nambu and Jona-Lasinio involve basic
four-fermion interactions. The boson excitations then
appear as collective modes of the fermion system.
Goldstone has, on the other hand, examined theories
involving bosons as elementary fields. These elementary
bosons transform by an irreducible representation of a
continuous transformation group leaving the Lagrangian
invariant. From these models, Goldstone conjectures
that whenever the Lagrangian admits a continuous sym-
metry group, but the vacuum expectation value of some
boson field is nonvanishing, some zero-mass boson states
must exist. Goldstone, Salam, and steinberg and, in-

dependently, Taylor, ' then presented several proofs of
Goldstone's conjecture.

The primary purpose of this note is to prove a version
of Goldstone's theorem generalized to Lagrangians ad-
mitting any continuous symmetry group and contain-
ing or not containing elementary boson fields. A second-
ary purpose is to apply the theorem, not only to the
cases already cited, but also to more recent work' "ex-
tending Nambu and Jona-La, sinio's program of broken

' Y. Nambn, Phys. Rev. 117, 648 (1960).
' Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);

124, 246 (1961).See also V. G. Vaks and A. I.Larkin, Proceedings
of the 1960 lnternationat Conference on High Energy Physics at
Rocheste~, edited by E. C. G. Sudarshan, J. H. Tinlot, and A. C.
Melissions, (Interscience Publishers, Inc. , New York, 1960),
p. 871.

' J. Goldstone, Nuovo Cimento 19, 154 (1961).
J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,

965 (1962). J. C. Taylor, Proceedings of the 196Z Internationat
Conference on High-energy Physics at CERE (CERN, Geneva,
1962), p. 670.

' M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962).
"S.L. Giashow, Phys. Rev. 130, 2132 (1963).
"J.D. Bjorken, (unpublished); I.Bialynicki-Birula, Phys. Rev.

130, 465 (1963).

symmetries. Our method. is closest in spirit to that of
Bjorken"

In Sec. II, we prove the generalized Goldstone
theorem, defining the conditions under which zero-mass
excitations are predicted and relating the number of
independent zero-mass excitations to the structure of
the symmetry group. In Sec. III we apply the theorem
to a number of models chosen to illustrate its wide
scope. Most of these models have already been discussed
in the literature. ' "A brief discussion of the limitations
of our derivation of the theorem and of the theorem's
physical implications concludes the paper.

II. FORMULATION AND PROOF OF THEOREM

A. Preliminaries

Ke consider a theory, defined by a set of field equa-
tions (or by a Lagrangian) and by an appropriate opera-
tor algebra, invariant under some continuous group of
transformations. Let the set of operators p, transform
according to an irreducible representation of the group
and be described by an equation of the form

Do (2.1)

where j; is a current, constructed from the fundamental
operators and transforming as P,.

For example, g, might be a fundamental spinless bose
field of "bare mass" po,

D —r g2+~ o (2.2)

or designating the Fourier transform of Do ' by Do ',

Do '(p)= p'+t o' (2 3)

We shall also be concerned with examples where g,
represents a Dirac particle or a vector boson and the
Do are the associated well-known operators.

On the other hand, g; might not be an elementary
field, but a synthetic object formed from other fields.
For example, our theorem includes four-fermion theories
of the Heisenberg" type. In this case Do ——Ii is simply a
Fermi coupling constant with dimensions (mass) '. Our
aim in every case is to define as field" that object which
classically describes the transmission of forces and
quantum mechanically the propagation of particles.

We now assume that in the ground state (vacuum) of
the system some components i =i' of p, have nonvanish-
ing expectation values,

4')«.
From Eq. (2.1) we have the conditions

~.—(0)(~;)=&1,),

(2.4)

(2.5)

to be fulfilled nontrivially. We refer to Eqs. (2.5) as the
generalized Hartree conditions. These conditions bring
new physical parameters, the (P;), into the theory and

n W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957),
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distinguish theories of this kind from more conventional
field theories.

It would appear at first sight that v e must exclude
the case Do '(0)=0. If, however, (j,)=0 but Q,) re-
mains finite, the reasoning given below will remain
valid providing the limit Do '(0) —+0 is sufficiently
regular. We shall return to a discussion of this problem
at th'e end of Sec. III.

Our approach is to calculate the Green's functions
defined by the response of the quantum system to ex-
ternal sources J;. We therefore modify Eq. (2.1) to

Do '0 =j'+&;. (2.6)

where
[Do '(p) —~(p) j'~D~i(p) = ~'i (2.8)

~,g(p) =

In the limit p=o, this simplifies to

(2.10)

where we have defined Q&,)—= &p.;. For this case, we thus
have

[D- (o)j,=[D; (o)—-(o)],,
= [Do '(0)j'.—~&j')/~v 'I ~-o (2 11)

The theorem can finally be stated as an assertion
about D '(0). Let the representation p, be of dimension
V and let there be lV' nonvanishing Hartree conditions,
Then we shall prove that D;, '(0)=0 for some i or
j4i'. (The Hartree conditions define an X'-dimensional
subspace in the Ã-dimensional representation space.
The maximum value X',„,-—= v that X' may have de-

pends on the group representation. Until subsection 3
we will suppose ~V'=E'„„.Of course, how large E' is,
i.e., how much the symmetry is broken in the vacuum,
depends upon the dynamics. )

The propagator D,;(0) is singular for some M' direc-
tions in the subspace normal to the X'-dimensional
space defined above. Thus, the number of massless
mesons M'+Ã —Ã' depends on both the group repre-

This formalism is particularly suggestive here where we

think of the vacuum as the ground state of a system
(like a ferromagnet) which, because of some kind of
dynamical instability, remains unsymmetric even in

the limit of vanishing J;. We know that, whether ob-

tained by a summation of perturbation theory or directly
from the action principle, these Green's functions are
functionally related through the Dyson-Sch winger

equations.
The theorem will be a statement about the propagator

D;,(x y) defined—as the functional derivative

D,, (~—y) =~(e'(&))/~J (y)l ~=o (2.7)

For its Fourier transform, we obtain from (2.6) the well-

known form

sentation and the dynamics. The proof itself will pro-
vide the means for counting M' in individual cases.

B. Proof

The Hartree conditions (2.5) represent a, set of
numerical relations covariant under the group repre-
sentation. Ke consider the eHect of an infinitesimal
transformation

6y, =X,j X (p, ,

where the set &p, is the solution of (2.5) in a given co-
ordinate system and the P infinitesimal parameters of
the group. From (2.5) we derive

([Do-'(0)1, -~(j,)/4') 4.=0, (2.13)

where the use of the symbol 8 for differentiation of

(j,) (not to be confused with functional derivative)
serves to remind the reader that this is the special
value of the derivative for those changes which are
group transformations. We refer to this derivative as
the kinematical derivative.

We note that the quantity in curly brackets in (2.13)
bears a strong resemblance to [Do '(0)g, i, Eq. (2.11).
Ke have to examine the conditions under which the
two expressions are indeed identical.

1. 2 Simp/e &~amp/e

Ke start with an example that serves to illustrate
the type of result obtainable, by considering p; to
transform under the fundamental representation of
0(X), the real orthogonal group in X dimensions. The
general form for (j,) in Eq. (2.5) is then simply

(2.14)

with O~ an invariant function of p'= y;p;, and the
Hartree condition reduces to a single equation

(2.15)

assuming that p; has at least one nonvanishing com-
ponent. Without loss of generality, we can adapt the
coordinate system so that pi/0 and q;=0, i&1. From
(2.14) we have immediately for the kinematical
derivative,

~(j,)/~&( i= &,i,O, (2.16)

because of the invariance of 0~.

To compare this with the dynamical derivative in
(2.11) we note that, in the presence of a uniform ex-
ternal source J,, the form (2.14) is still correct; we thus
obtain

8(j )/cjoy»=6 aO+2q p&0'', 0''=80'/Bp2 (2.17)

Setting J,=o, which is the same as setting pA,.
——0,

k/1, tells us that

&&j,)/&q i= ~&fj;)/&q iI,r=o=&,~O, i ke1, (2.18)
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whereas for i =1

Bg,/Bq, l g p
——O~+2qPO~' (2.19)

which is satisfied by bp& ——0, bp.& arbitrary, k41. For
the group chosen, no new restrictions on the by~ emerge
from (2.12), since the number of parameters is, in O($)
for E)2, greater than or equal to the number of non-
vanishing hqti„once (2.20) is satisfied.

From (2.13) and (2.18), we thus conclude that

bears no simple relation to the kinematical derivative.
We note further that the 6q q in (2.13) are only re-

stricted by the condition of invariance for p',

(2.20)

a single additional property of the invariants: These
invariants are adapted to a choice of canonical basis
such that when any one of the indices of [ii i~j is
outside the canonical subspace and the remaining in-
dices are inside, the symbol vanishes.

Returning to the proof, the Hartree condition is now
equivalent to at most v coupled equations for the v in-

variants /. , I„+&, or equivalently v equations for a,

vector p, in its canonical coordinate system where

p, &v, i=1 v. Ke suppose a nontrivial solution to
exist. Replacing Eq. (2.14), we have the form

(j,)= q(i)O, +[ii,i,)q (i,) q (i2)02+
+[ii, . i„jq(i,) q (i„)O„, (2.24)

where
D,; '(0)=0 (no sum on i), i=2, 3 .,V. (2.21) O,= O, (Ig, I„+i) . (2.25)

Z. Generatisation to More Comph cated'
Group Representati ons

The defining representation of O($) is especially
simple in that the Hartree condition defines a direction,
which by operations of the group can be made to point
along the 1 axis. In general, however, a group representa-
tion can, by operations of the group, only be brought to
a canonical form in which v of the (p,) are nonvanishing.
This number v, the minimum number of components
necessary to specify an iV representation after suitable
orientation of axes, which is also .V',„, , the maximum
number of independent Hartree conditions that can be
imposed, will be called the canonical number. The basis
in which the E representation achieves "principal-axis
form" will be called the canonical basis.

That generally v) 1 can be pictured by regarding the
iV representation of the group in question as constrained
to transform as some subgroup of 0(iV) considered
above. Equivalently, from an arbitrary vector q (i), we
can construct v independent algebraic invariants. These
are of the form

I~= [iii~lq (ii) q (i~),
I3= [iii2i3j q ('i) q ('2) q (ia),

I„+, [i, i„+,$q (i,) q (i„—+—,),

(2.22)

where [i&i2j=8(i&i&) and [i& i~j is a symmetric in-
variant numerical tensor under the group. For instance,
for the adjoint or regular representation of SU(n),
v=g —1 a,nd the invariants have been constructed ex-
plicitly. "Associated with each invariant J„is a. vector

V.(&)=[i~: i.jq (i2) . . q(i.) (2.23)

The canonical number v is, thus, the number of a,lge-
braically independent invariants that can be constructed
from the .V representation.

In addition to their form and number, we require but
» L. C. Biedenharn, Phys. Letters 3, 69 (1962); A. Kleini J.

Math. Phys. (to be published).

The properties of the numerical tensors [ ] now yield,
from (2.24), upon varying about the canonical coordi-
na, te system. ,

i.e., the kinematical and dynamical derivatives are
again equal in the subspace orthogonal to the first v

components, i.e., to the canonical subspa, ce. Since these
derivatives are also symmetric in their two indices, they
can be taken as diagonal.

If the 8q q, t't= v+1 !'iT can be chosen independently
and nonzero, we shall then have proven that

D,; '(0)=0, i= v+1, Ã. (2.27)

This will certainly be the case when X—v is less than or
equal to the number 1V& of parameters X of Eq. (2.12),
since then the only condition on by, that it be orthogonal
to the vectors V~ of Eq. (2.23) [as follows from (2.22)]
is precisely satisfied by choosing 8qi, /0, k= v+1, X.
These restrictions are satisfmd by all the examples of
Sec. III and in particular by the adjoint representa, tion
of SU(n).

The maximum number of mesons M', = V—v never
exceeds X)„the number of parameters. This is obviously
so when E does not exceed )V)„ i.e., for the most interest-
ing representations of small dimensionality. When
E)E&, we have precisely E—v =Xz and our proof still
applies. This is true because by definition X—v is the
number of components of y; that can be chosen with-
out loss of generality to vanish. But given q, , in an
arbitrary coordinate system, we can determine a canoni-
cal coordinate system by fixing Ãz of the components
in the new coordinate system to vanish, thus fixing the
Ã~ parameters. This statement is simply a generaliza-
tion of the familiar idea that in the higher representa-
tions of the rotation group, three components of an
arbitrary tensor tra, nsforming under the representation
serve merely to orient the geometrical form associated
with the tensor with respect to an arbitrary (space-
fixed) coordinate system.
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3. Less than Maxirnurn Breaking of Symmetry

The theorem as proved above depends on the assurnp-
tion that the symmetry is broken maximally. This is
because from the structure of the group and the mean-
ing of canonical basis, if p, /0, j=1, v, then from
(2.12) there exist X„and X,, such that 8oo, /0,
j=v+1, tV. If one or more of the y;=0 so that some
of the symmetry is preserved, the number of conditions
(2.27) will be reduced, either because some of the 8p;
are now necessarily zero or because there are linear re-
lations among them. Whereas the first possibility can be
deduced from study of (2.12), the second comes about
because the vectors V„are no longer all linearly
independent.

C. Physical Picture

A simple physical picture, extending that of Gold-
stone, ' may be applied to the results of this section.
Given a symmetric theory in the ground state of which,
however, a constant field q points in a certain direction,
consider infinitesimal oscillations 8q = P —

q about q

which alter its direction but not its magnitude, i.e.,
such that by ~

q =0. (Such occur, of course, only if the

symmetry is that of a continuous group. ) The infinite
wavelength (p =0) oscillations are then constant over-
all rotations of the system which, precisely because of
the symmetry, do not alter the energy. Thus, the sig-
nificance of the "massless bosons" is the vanishing of
the excitation energies for p=0 for the modes of oscilla-
tion perpendicular to q. Whether such modes occur or
not is a question of whether or not the system supports,
in its state of minimum energy, a nonvanishing field
expectation value.

The above picture also applies when the iV representa-
tion oo, is not simply an 1V vector in 0()V), i.e., when
there are other invariants besides y . The results are
modified in detail only because not all directions are
equivalent.

III. SPECIFIC EXAMPLES

In this section we illustrate the theorem proven by
considering four examples of broken symmetries: (A) an
elementary bose field transforming under the real
orthogonal group 0(1V).This is the case which suggested
the general occurrence of massless bosons when the
ground state is asymmetric. 7 (B) A Heisenberg-type
theory invariant under SU(n). The definition of the
boson field operator when no boson occurs in the
original Lagrangian is discussed. (C) The broken sym-
metry is that of space-time, and a massless photon is
produced. (D) Finally we give a concise derivation, of
the origin of massless phonons in a superconductor with
short-range interactions, and discuss the reason for
the breakdown of the theorem in the presence of
Coulomb interactions.

The cases (A)—(C) have been discussed in the
literature. ' " Our . contribution is to give a uni6ed

treatment speci6cally relating the number of massless
particles predicted to the extent by which the symmetry
is broken. We also discuss the question of renormaliza-
bility in a new light.

Q,&~0, (3.1)

the Fourier transform of (T(P, (x)P;(y))& (no sum on i)
is singular at p'=0 for i=2 n. This covers all the
applications considered in detail by Goldstone' and by
Goldstone et at. '

B. Heisenberg-Type Theories

7. Definition of Boson Field Variables

We now consider the case where p, is coupled to a,

fermion current density j,, and P, and j;each transform
as an 1V-dimensional representation of SU(n). If p, were
an elementary 6eld, the situation would be essentially
that considered in the previous illustration. Instead we
shall consider the case

fy, (x) =Fj,(x), (3 2)

where F is a dimensional coupling constant and f is a
dimensionless number. Under these circumstances,
where no boson appears in the original Lagrangian,
how should the effective boson field be understood'

Suppose the Lagrangian is

Z(x) = —g(x) (y~a„+nto)P(x)
+-',Fj,(x)j,(x)+Fj,(x)J,(x), (3.3)

where mo is a possible bare fermion mass,

j'(x) = os(x) T'4(x) j (3.4)

is (with T, the coupling matrices in the iV representa-
tion) the unitary current density, and J;(x) is an ex-
ternal source which is ultimately allowed to vanish.

With the conventional definition of the Green's
function,

G(x,x') = i(T(P(xg (x') )), (3.5)

and with the help of the formula, valid for an arbitrary
operator (0) and for the Lagrangian (3.3),

&F(j,( )&
—b/»'(*)}(0&=F(T(j'(*)0)), (36)

we 6nd the equation

(7"8„+rno FDj;(x))+J;(x)jT—;+iT,(b(»;(x))}
&&G(x,x')=5(x—x'). (3.7)

The form of (3.7) suggests the definition of an effective
meson field oo, (x)

f~'(x) =FR j'(x))+J'(x)3. (3.8)

A. A Real Boson Field O(n)

Consider a theory containing an elementary Her-
mitian, field operator P,. Since the defining representa-
tion has a unique invariant Q,Q;, the theorem asserts
that if
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Rewriting Eq. (3.7) in the matrix form That (j) has this direction is purely a matter of con-
vention. Goldstone's theorem then shows that the
propagator

D» '(p') = (f'l~) ~—55(p') (3.18)

d'p T;(()[fq,(p) i(8/—oJ,(]))] G=1, (3.9) has a zero at p'=0. These excitations of the Fermi
system are identi6ed as massless pseudoscalar neutral
ITle SOIlS.

we can, by introducing the vertex operator

r, (~) = —SG-'1 Sf&,(~),

and the boson propagator

(3.10) 3. Broker's Isospiys Symmetry

We consider the Lagrangian

recast (3.9) into the form

(3.11)
where

4(V"~—.+mo)4+iI'j. i,

i=k[A~4]

(3.19)

(3.20)

The P are two-component isospinors, transforming as

d ~d'~ T, (q)D,, (~,~')Gr, G= l. (3.12)

$~P'=exp(in ~)P,

P ~P'=f exp( —in ~),
(3.21)

This is completely reminiscent of the equation for the
Green's function in a theory with Yukawa coupling
and suggests that some Fermi theories may be renor-
malizable when expanded in terms of the effective boson
propagator D rather than in terms of the Fermi coupling
constant. "This is the meaning we assign to the kind of
excitations under consideration.

4v"~A+2Fj—i (3.13)

where/ is an ordinary four-component (massless) spinor
field and

(3.14-)

is a vector in a two-dimensional "parity space. "Because
of the masslessness of the spinor field, this Lagrangian is
invariant under the p~ gauge transformation

0'= exp(kins. -)4,
4' ~ 4' = 4' exp(liny")

(3.15)

which rotates the vector j

Z. iVambN's Origieat Mode/: Broker U(1) Symmetry.

Nambu and Jona-Lasinio' consider the Heisenberg-
type Lagrangian

so that j transforms as an isovector and Z is isospin in-
variant. The bare mass mo need not vanish. )We could
consider symmetry under the direct product of these
isospin rotations and the parity rotations (3.15); a
Lagrangian' invariant under this group would need to
have wp= 0. Such a model, which is reducible from the
group theoretical point of view, will not be considered
here. )

Assume that the isospin symmetry is broken because
there exists a self-consistent solution in which j has non-
vanishing vacuum expectation value along a direction.
called the 3-axis in isospin space

(3.22)

Goldstone's theorem shows that D,, '(p') vanishes at
P'=0 for i and j=1 or 2. This asserts the presence of
massless scalar mesons positively and negatively
charged.

It was Baker and Glashow' who pointed out that a
neutron-proton mass difference could originate in such
a spontaneous breakdown of isospin symmetry because
of some kind of dynamical instability. We would empha-
size, however, that this may happen whether or not al/

of the nucleon mass is of dynamical origin.

4. Broken Octet Symmetry

1O ~ 10 = Cosn1O+Sllln1~»

j.- —+ j& ——sinn jo+cosn j.;, (3.16)
Consider now the Lagrangian

2=20+-',Fj ], (3.23)

keeping j - j invariant.
Suppose now that the y~ gauge symmetry is broken

because there exists a self-consistent solution in which

j has a nonvanishing vacuum expectation value along
some direction in the parity space. Choose a basis so
that this direction is the 0 direction,

P —+ exp(in A)P, .
P —+P exp( —in A.),

(3.24)

where Zp is the free-particle Lagrangian including the
mass mo, and P is an eight, -component unitary vector
transforming according to

(3.17) where the X (a= 1 8) are the infinitesimal generators
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of SU(3) in the 8 representation and

j.=2', le@3.
where ii'=—(f'/F),

(3.25)
and

(3.30)

(Ordinary spin indices on 1t and the additional covari-
ants this leads to will be suppressed here. )

We wish to study the consequences of assuming that
(PIP)40. Two of the X, conventionally taken to be X3

and ~8 and linearly related to a charge and hypercharge,
are simultaneously diagonalizable. The eight basis vec-
tors P are distinguished, besides by the eigenvalues of
X& and Xs, by an additional label conventionally identi-
fied with the isotopic spin. Using this basis, the Inost
general way of breaking the symmetry is to allow solu-
tions for which

(pX3f) WOW /ABER) . (3.26)

Our theorem now asserts that six massless bosons ensue,
interpretable as m+, m, E+, K", E, g', associated con-
ventionally with the 1, 2, 4, 5, 6, 7 axes.

The solution (3.26) breaks the isospin symmetry. To
preserve the latter we consider a solution in which only
(js)&0. Examination of the infinitesimal transforma-
tions of the 8 representation, in this case a table of
structure constants of SU(3),i4 shows that in this case
we are left with four massless mesons (K+,K",K,K').
This is in accord with the geometric interpretation of
the theorem, since in the 8 representation, a vector
originally pointing in the 8 direction can be acquired by
infinitesimal transformations of the group components
along the axes 4, 5, 6, 7 but not along the 1, 2, 3 axes.

2~(x)=kil O'VA'j (3.27)

with itself. The equations for the one-fermion Green's
function and associated functions are Eq. (3.8)—(3.12)
with T, —+ iy„and generally the index i —+ p.

We introduce an external current J„(x),which is also
assumed to be conserved

a~j„(x)= B~J„(x)=0. (3.28)

As a consequence only J„~, the transverse part of J„,is
coupled to j„.

For the "photon" propagator we obtain from Eq.
(3.8) ancl (3.11)

p'D, „(x y) = d4s~„&, (x s)D)„(r, —y)— —

+b„„rb(x—y), (3.29)

M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

C. The Lorentz Group: Quantum
Electrodynamics

Following Bjorken" and Bialynicki-Birula, "we begin
with a Heisenberg model containing the interaction of
the conserved current

i 'D"(p) =~.~(p)».(p)+4.'(p),
we may write

vr„„(p)=3„, (p)vr(p'), p'-AO,

and similarly

D"(p) = ~"'(p) D(p'), p'&0

(3.32)

(3.33)

(3.34)

We assume that j„~, the time-like component of j„,
has a nonvanishing vacuum expectation value.

f..'=F(j.')~0 (3.35)

For p'=0, 8„„"(0)is defined by

3„„'r(0)=6„,—g„'rl„~, (3.36)

where g„~ is a unit vector in the direction of (j„~).Fol-
lowing the reasoning of Sec. II, we find

oi

If we write

p'b„„r(0)=7r„„r(0)=S„,r(0)7r(0)

ii'= ~(0) .

f(p') —~(0)—= —p'~i(p'),

(3.37)

(3.38)

(3.39)

Eq. (3.32) becomes

~. '(p) p'~i(p') D(p') = ~..'(p), (3.40)

exhibiting the singularity at p'=0 for the transverse
excitations orthogonal to the direction of the vacuum
expectation value y„~.The latter plays a role analogous
to that of a constant vector potential in conventional
quantum electrodynamics.

Bjorken goes on to establish the full equivalence of
this Heisenberg-type theory to conventional quantum
electrodynamics. In our formulation the proof consists
of several observations. (1) The Dyson-Schwinger
equations obtained are formally the same as in quantum
electrodynamics, except that the Green's function D„„
is defined as above. This is equally true of the equations
after renormalization. (2) For Eq. (3.40), renormaliza-
tion consists in the replacement

D(p') ~D.(p')/~i(0) (3 41)

One then verifies that ~i(p')/7ri(0) is the same renor-
malized "sum of bubbles" as found in the conventional
theory. In other words, the Heisenberg theory differs
from the conventional electrodynamics only in the
"values" of the renormalization constants.

D. Model for Superconductivity

It is worth remarking finally that our theorem pro-
vides a concise new proof of zero-mass excitations for a

(3.31)

From its definition II„„is divergenceless. In momentum
space, where Eq. (3.29) res, ds
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Fermi system with short-range attractive interactions.
As a Lagrangian we choose in analogy with the work of
Nambu'

Z(x) =+t(x)t i(8/8t)+rg(p'/2m)+(x)
+ V0%'t (x)r gI (x)%'t (x)7 a@(x)+const, (3.42)

where, if iPi i(x) are the two spin components of the
usual electron operator,

themselves to Heisenberg-type theories and used the
Hartree approximation in which the momentum de-
pendence of the fermion mass opera, tor is neglected.
The Hartree conditions can then be solved to obtain
the fermion masses. We wish to emphasize that our
proof of the existence of the boson singularity at p'=0
depends only on the (rigorous) existence of the general-
ized Ha, rtree conditions, and not on any such Hartree
approximation.

Although well de6ned in the nonre1ativistic situation,
(3 43) the Q&;) are in relativistic models the most divergent

quantities in the theory. Though we have maniuplated

The theory is invariant under rotations about the third
axis in the isospace defined by (3.54), where

4'-+ exp(irwin)@, 4't —+0' exp( —irwin). (3.44)

For t/'0&0, corresponding to an attractive interac-
tion, we expect a solution (occurrence of an energy gap)
such that (j&(0))=(+t(0)ri+(0))WO. The theorem of
Sec.II then assures us that the propagator (r(j2 (x)j&(y)))
has a singular Fourier transform when p=pa ——0, cor-
responding to the onset of a phonon spectrum.

It has frequently been observed that the phonons do
not occur when the long-range interaction between
charged particles is included. . This result is only
apparently in conAict with Goldstone's theorem. We
have assumed throughout that the various matrix ele-
ments such as (j,), are continuous, differentiable func-
tionals of the collective fields y, . In the case of a,

Coulomb field, for i = 3, the appropriate definition of q ~

is
(3.45)

By a,dding a; uniform background of positive charge,
p;&(p) is defined to vanish for p=0, but becomes quite
singular for small p. Since (ji,2(p)) are functionals of
p3(p), we encounter a situation where the limit of the
functions as p —+ 0 is not their value at the limit. Thus,
the theorem predicting zero-mass particles does not
apply. We are unable to say whether it is possible to
construct a relativistic model with analogous properties.

IV. CONCLUDING DISCUSSION

In this section we wish to discuss the significance of
the generalized Hartree conditions (2.5), the lacunae in
the derivation of the Goldstone theorem from these
conditions, and the physical implications of the theorem.

A. Asymmetric Vacuum

Theories of the kind we have been discussing are dis-
tinguished from conventional field theories by the
presence of generalized Hartree conditions (2.5), which
introduce into the theory new physical parameters, the
Q,). Together with the Dyson-Schwinger equations,
these conditions contain information on the nonvanish-
ing particle masses. Nambu and Jona-Lasinio' and then
Baker and Glashow'" have, for example, restricted

them formally, the Q,) are well-defined only after a
cutoff is introduced.

The signi6cance of these Hartree conditions or of
condition (2.4) is that in the physical vacuum some
"direction" or subspace in the symmetry space is pre-
ferred. Because of the initial symmetry in the Lagra, ng-
ian, which particular subspace is taken is conventional
and serves to establish a labeling of one-particle states.
Now consider the components i/i' for which

The meaning of this equation is that (t, operates on a
vacuum state ~0) to produce an orthogonal state
(t;~ 0) that, since it is equivalent to ~0) is degenerate
with ~0) in energy. The different vacuum states are
distinguished by the presence of different numbers of
massless low-energy bosons created by (t,(i/i').

It is worth emphasizing that the vacuum is degenerate
only in a description in which the particle number, or
other conserved quantity, is not a good quantum num-
ber. In the conventional treatment of superconduc-
tivity, for example, the particle number is not definite.
In a system of 6nite volume V, however, the supercon-
ducting ground state is not, strictly speaking, degener-
ate, but is one of a large number of equiva, lent states
separated by an energy V '. Likewise, in Xambu's
theory of elementary particles, a cutoff A is introduced.
For any finite value of the cutoff, the ground state is
nondegenerate but separated from many other equiva-
lent states by an energy difference A '.

Any state of definite particle number (or charge,
etc.) is built on a particular one of these equivalent
vacua. The degenerate and orthogonal vacua are dis-
tinguished by the presence of different numbers of par-
ticles of zero four-momentum.

Once this formal nature of the degenerate vacuum
treatment is recognized, "this kind of degeneracy would
appear to o6er no obstacle to the derivation of axiomatic
field theory results such as the spin-statistics theorem.

3. Limitations of Our Proof

Whereas the degenerate vacuum by itself offers no
genuine conceptual di%culties, the theorem issuing from

"R.Haag, Nuovo Cimeuto 25, 287 (1962).
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this source of symmetry breakdown appears to demand
the existence of certain collective states of zero energy
momentum.

We should emphasize, however, that the formal
group-theoretical argument has shown only that cer-
tain D@(p) are singular at p'=0. In fact it is not cer-
tain that D;, (p) exists for p'40. Only if De '(p) is
analytic near p'=0 is the singularity obtained that of a
massless particle. To establish such analyticity prop-
erties requires more than broken symmetry alone.

Of course, when the singularity obtained is precisely
at p'=0, questions of asymptotic condition and particle
interpretation arise. Nevertheless, when dealing with a
theory that is renormalizeable in the conventional per-
turbative sense, the singularity we have found estab-
lishes a "particle" of zero mass in the same sense that,
in conventional field theory, the massless photon is a

"particle. "
We have also emphasized, at the end of Sec. III, that

our treatment may be inapplicable when zero-mass
fields are originally prese~t in the Lagrangian, We have
in mind nonrelativistic situations where gauge in-
variance calls forth the existence of massless phonons,
but the long-range Coulomb interactions turn these
into massive plasmon modes. "For the relativistic case,
however, the value of the bare mass of a particle may be
irrelevant. The question deserves further study.

C. Massless Particles

The main eRect of the generalized Hartree conditions
in an originally symmetric system has been (subject to
the above qualifications) to give a dynamical reason for
the existence of some zero-mass particles. In the case of
the photon (and possibly of the neutrino) this result
may be welcome. In the domain of strong interactions
for which the Heisenberg and Nambu theories were
originally proposed, however, no massless particles are
known. Before concluding that this invalidates the
original program of spontaneous breakdown of strong-
interaction symmetries, we should observe

(1) Extended gauge invariance also seems to demand
the existence of massless gauge particles but does not
dictate the renormalized coupling strength with which
these particles must be coupled. The coupling strength
of the massless bosons predicted by the Goldstone
theorem is likewise not dictated by the theorem.

It is true that in any actual calculation like Nambu's
or Bjorken's that produces a propagator with a singu-

"P.W. Anderson, Phys. Rev. 1M, 439 (1962),

larity at. p'=0, this singularity has a residue of order of
magnitude unity. The value of the residue calculated is,
however, cutoff-dependent and decreases to zero
(logarithmica, lly slowly) with increasing cuto8.

Massless bosons also may, precisely because of their
long-range interaction, more or less completely screen
away their renormalized coupling to their sources.

(2) If the currents involved in weak decays are the
same as those involved in strong interactions, then this
boson strong-coupling constant is inversely proportional
to the observed boson decay rate and therefore can
certainly not vanish. Indeed, this Goldberger-Treiman
proportionality was the original reason Xambu" and
Gell-Mann and collaborators" had for considering
asymptotically conserved currents. In these situations,
precisely because the current is only asymptotically
conserved, the invoked symmetry is only approximate.
Thus, the pion decay amplitude is proportional, not
only to the reciprocal of the pion coupling constant,
but also to the pion mass.

From a puristic point of view this might appear to be
an argument against introducing symmetries which are,
to begin with, actually approximate. Remarkably
enough, however, Nambu and Jona-I. asinios showed
that only a small breaking of y5 invariance was necessary
to give the observed pion mass. The broken-symmetry
mechanism then serves to introduce bosons with the
requisite quantum numbers even though their massless-
ness is not taken seriously.

The currents involved in weak-decay processes may,
on the other hand, rot be directly related to the observed
strong-interaction currents. Despite the success of the
Goldberger-Treiman equality in predicting the pion
decay rate, this may be the implication to be drawn
from the low rate observed for strangeness-changing P
and ii decays and from the appearance of DQ= —i15
processes.

The lesson that we would draw is that the Goldstone
theorem shows how short-range interactions can lead to
long-range effects. (This relationship is reciprocal.
Long-range interactions, if sufficiently strong, may
screen themselves out into short-range interactions. )
When perturbation theory is inapplicable, it is simply
not manifest whether a given Lagrangian will lead to a
symmetric or asymmetric ground state and to short-
range or long-range interactions.

'7 Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
"M, Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);

J. Bernstein, M. Gell-Mann, and L. Michel, ibid 16, 560 (1960).;
J. Bernstein, S. Fubini, M, Gell-Mann, and W. Thirring, Rid'.
17, 757 (19(i0),


