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The general expression for the dyadic Green s function in a radially inhomogeneous dielectric medium is
obtained. It is then applied to the problem of radiation from an electric dipole in such a medium. Possible
applications to electromagnetic scattering problems and to elementary particle scattering problems are
noted.

I. INTRODUCTION

' 'N a recent article by Wyatt, ' the problem of scatter-
s - ing of electromagnetic plane waves by an inhorno-
geneous spherically symmetric object was considered.
He formulated it as a boundary-value problem; i.e.,
appropriate expressions for the field components are
obtained for the region within the inhomogeneous
spherical particle and for the homogeneous region out-
side the particle. The expansion coefficients in the series
expansions of the interior and scattered fields are then
determined by satisfying the proper boundary condi-
tions at the interface of the two regions. However, it is
noted, ' that in many instances there may not be any
distinct boundary separating the inhomogeneous and
homogeneous regions. For example, we have the prob-
lems of the scattering of soft x rays and light by large
molecules and the scattering of microwaves by lenses
made of artificial dielectrics, and the analogous prob-
lems in elementary particle scattering theory in which
the potential is never discontinuous.

It is, therefore, the purpose of the present paper to
consider the problem of electromagnetic wave propaga-
tion in a continuously inhomogeneous spherically sym-
metric medium. The vector wave equations in the
radially stratified medium will be separated in spherical
coordinates by the method of Hansen and Stratton. '
The dyadic Green's function in such a medium will be
derived. The total field from a dipole source in this
medium is then obtained. In the conclusions, several
possible applications of the results are pointed out. It
may be interesting to mention that Schwinger4 and
Morse and Feshbach' advocate that the introduction
of a dyadic Green's function by means of which the
vector wave equation satisfied by E or H can be inte-
grated presents the most elegant way of dealing with

many electromagnetic problems.

* Supported by the Air Force Cambridge Research Laboratories,
' P. J. Wyatt, Phys. Rev. 127, 1837 (1962).
' L. I. SchiiI, J. Opt. Soc. Am. 52, 140 (1962).
'W. Vl. Hansen, Phys. Rev. 47, 139 (1935); J. A. Stratton,

Electromagnetic Theory (McGraw-Hill Book Company, Inc. ,
New York, 1941).

4 J. Schwinger, Comm. Pure Appl. Math. 3, 355 (1950).
' P. M. Morse and H. Feshbach, Methods of Theoretical I'hy~ics

(McGraw-Hill Book Company, Inc. , New York, 1953).

II. SOLUTIONS OF VECTOR WAVE EQUATIONS

Maxwell's equations in a radially stratified medium
take the form

&XH= J—it's(r)E,

V X K=telj.on.

K and 8 are electric and magnetic-field vectors, J is the
current density, e(r) is the inhomogeneous dielectric
constant and po is taken to be the free-space permea-
bility. A time dependence of e '"' is assumed. Combining
Eqs. (I) and (2) gives

V'X AXE &u'use(—r)E=irspsJ.

The dyadic Green's function I (r,r') sa. tisfies the
following equation:

V XVX I (r,r') —~'ipse(r)I (r,r')=15(r —r'), (4)

where I is the unit dyadic and 3(r—r') is a delta func-
tion. It can be shown with the help of the vector Green's
theorem that if I'(r, r') and J(r') are known, E(r) can
be found by the relation

where the integration is performed over the volume v'

containing the source currents. It is known' that
I'(r, r') may be expanded in terms of the eigenfunctions
of the following vector wave equations:

VXVX E—~'/ oe(r)E=0, (6)

TX Q XH —p7 e(r)/e(r)] X&XH —vspoe(r)H=0. (7)

Hence, the solutions for these equations will be our
concern in this section.

According to the vector wave-function method of
Hansen and Stratton, ' the above equations can be
reduced to two scalar wave equations by separating the
fields into two linearly independent fields; viz. , the
transverse electric (TE) and the transverse magnetic
(TM) fields. ' Since e(r) E and H are solenoidal vectors,
the field components can be derived from the scalar

See also C. T. Tai, Appl. Sci. Res. Sec. 8 7, 113 (1958).
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quantities C (r,g,et&) and 4'(r, g,(f)) as follows:

E(-&=V X(C (r,g,y)e„),

H'"'= (1/f &eo)V XV X(C'(r,8,4)e.)

for TE waves, and

H( &= Vx(4(r g,y)e, ),
E =(/ ())vxvx(~(. 8A), )

for TM waves. e„is the unit vector in the radial direction
and the superscripts (m) and (e) denote TE and TM
waves, respectively. The above formulation assures the
fulfillment of the divergence conditions in Maxwell's
equations. The solutions for C (r,g,&) or 4'(r, g, ()t)) can be
obtained, respectively, by substituting Eq. (8) into (6)
or (10) into (7), carrying out the vector opera, tions and
separating the variables. One has

4 (r,g,et)) =
U ("(r) P "'(cosg) sinmP

U ('& (r) Q„"(cos8) cos~
(12)

+(r,gA) =
V "' (r) P (cosg) sinmP

V ('& (r) Q (cosg) cos~
(13)

where P„(cosg) and Q (cosg) are the associated
I.egendre's polynomial and U "' "'(r) and V (" ("(r)

satisfy, respectively, the differential equations

d' t' I(re+ 1)—+I ~'„o,(,)- U "' "'(,)=0 (14)

and

d' 1 de(r) d

dr' e(r) dr dr

ee(re+1)
+( 'e,.(r) — V &'& &'&(r)=O. (&e)

r'

The solutions of these differential equations depend
upon the dielectric variation e(r). For instance, e(r) = e(),

a constant, the solutions are the spherical Bessel func-
tions multiplied by r. More will be said about these
equations in the conclusions.

III. DERIVATION OF THE DYADIC
GREE¹SFUNCTION

Returning now to the problem of deriving the proper
dyadic Green's function in a radially inhomogeneous
spherical medium, we note that the appropriate dyadic
Green's function must (a) be a solution of Eq. (4),
(b) satisfy Sommerfeld's radiation condition, and (c)
be finite in the source-free region. Conditions (b) and
(c) are satisfied if we expand the dyadic Green's func-
tion in terms of the eigenfunctions of the wave
equations, i.e.,

I"(r,r')=Q Q A, ,
„„„('"&E... „' &(e&(r,g, (()))E...„„(&("&(r',O', P')+A. .. „'&E... „('&(e&(r,g,(f))E... „'»" (r', 8',et&'), (16)

for the region r) r', and

I (r,r')=P Q A, , „' 'E, „„„('("(r,gg)E. .. "(' &(e()r', 8', ('t)+ A, ,, „('E...„„"("(rg((())E... „'&(e&(r',O', P') (17)

Ee, oo&r&
= V X (+e, oo&r& er) &

where

VXVX(+.,- '"'e) (p=1,3) (19)
(de(r)

cos
eT...„„')' = U„("'(r)P„"'(cosg) mp,

sin
(20)

for the region r(r'. The following abbreviations have
been used:

solution which corresponds to the spherical Bessel
function j„((e(pe())'('r) multiplied by r when the di-
electric variation e(r) becomes a constant e(), p=3
denotes the traveling wave solution which corresponds
to the spherical Hankel function h„("((e()((ep)'"r) multi-
plied by r when the dielectric variation e(r) becomes a
constant eo. A, ,

( ) and A, , ') are arbitrary con-
stants that are to be determined by satisfying Eq. (4).

Let us premultiply Eq. (4) by ee which is the unit
vector in the 0 direction, integra, te with respect to r
from r= r' 5 to r= r'+8 and make 8 —+—0. The result is

cos
O'. „.„'"'=- V. '"'(r)P, '

(cosg) m(t) r (p=1,3) (21)
siI1

U„(&)(r) and V„(e') (r) are solutions of Eqs. (14) and (15),
respectively. The superscript p indicates the nature of
the required solutions. p= 1 denotes the standing wave

——Lree I (r,r')j+—[e., I'(r, r')]
c)r Bg

r' sing
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16, and, 17) into (22) givesthe r direction Substituting Eqswheree„is the unit vector in t er ir

. E (m) (p) (r& g ~) !F (mt) (i) (ye g& y&)n [r e() ' Ee, omn e, omne, omn
m n ar

8—[r'«E. --'")")(r', eA) jE.,--(m) (3) / 0/
e

Br'

+&e, omn (e) /[ ' E, (r & 4)+ [ee'' e, omn y
q ~ e, omnL& eg e, omn ) )

88Br'

~(0—0')~(~—~')8
(e)(i) sr~ g ~)q E (e)(p) (ye tte ye)(r 0 g) j+ [ee' ' Eeomn , ),y ~, e, omnr e(&' e, omn ) 7

88I
(23)

rom 0'=0 to 0'=x'E „(m) ("(r',O',Q'), integrating over t& rom = os of the above equation by sin9' ...„r,
f t}1 th l't l t' 5and et from y = o' f y'=0 to P'=2~ and making use o t e or

("&( &(r'0' y') sinf&'dh'dy'=S. ..„S.„.(1+ .„,)(»)(u)(y&0&ye). F m p
1

2m+1 (e—m)!

2m'(0+1) (y(+no)! U„("'(r') Un«) (r')
X

~/
(24)

( "")(r'(&' P') E, , „' ' (r',O', P') sin8'd(&'dp'=0,
0

are the Kronecker deltas, and the %ronskian relationwhere 6 „,8„„,and 8, are e

(25)

where kp =Mpptp& one obtains
(2rs+1) (e—y)))!

2m (1+(&.„)e()i+1) (e+m)!

(P) (y') U o) (r') U (() (y') U (P) (r')—
dr'

(26)

(27)

2m, a

m (1+!),) 2e(n+1) (n+m)!
~mn'~nn'' '(r') (2yi+1) (e—yr&)!

e, omn

0 0

rom |)'=0 to 0'=7r and P' froms o . ( ' ', ('('&(r' 0',(t)'), integrating over t& rompb' g q (s of E (23) b7 sin(& e, omn r
'= 0 to '= nd making use of the ort ogona i y r

and the %ronskian relation

one obtains

d d
' '(')+ '"'( ) - ( )

r r

d 1 p(r')
(')(y') tr ( )(y') V ( )(y') V ( )(y')=

dr' dr'

(2yi+1) (e—m)! pp

2~(1+!).)n(v+1) (n+m)! pp

(28)

(29)

(30)

the as m totic representations for t ee radial functions,'g 8™g
as r —+ (x) has been use . u s i

diall stratified spherical medium.require ya icd d d' Green's function in a ra ia y s ra i



I) YAD I C Gl&I EN'S I'UNCTION 2353

IV. RADIATION FROM AND ELECTRIC DIPOLE

The field from an electric dipole located at (x',y', s') can now be found directly from the dyadic Green's function
through the relation

E(r)=~'l pr(r, r') p(r'), (31)

where p is the dipole moment. As a specific example, let us assume that the electric dipole, which has a dipole
moment p, is pointed. in the x direction and located at r'= a, g'=~, p'=0. The electromagnetic field due to the
dipole in this radially stratified medium is given by

skp'P, 2N+ 1 1 '1 ep d
P&= P (—1) — U &&)(g)P $ i»)(P)(rgb)y V o)(g) E i (t')(P)(r gy)

pep ~=pn(m+1) a pppp e(a) da

H~ = (1/ia&p, o) P' X E~

(32)

(33)

for r& a, and

skp'p. 2e+ 1 1 6p

( 1)n P isl (g) P i (m) (il(» g y)+ V' (3) (g) P (e) (1) (r g y)
4mep ~=i e(m+1) a pplip e(g) dg

H~=- (1/icppp)g X K~

(34)

(35)

for r&u, where

P,i„(~l(u) (r g y)
= P'X jU &&'(r)P„'(cosg) singe, 1, (36)

U'„"l (r) = V„"l(r)= kprj „(kpr),

U."'(r)= V.&'&(r) = kprk "'(kpr)

in a homogeneous medium.

(38)

(39)

V. CONCLUSIONS

The general expression for the dyadic Green's func-
tion in a radially continuously varying spherically sym-
metric dielectric medium is obtained. The result is
expressed in terms of the associated Legendre poly-
nomials, trigonometric functions, and the radial func-
tions which are the appropriate solutions of two
differential equations. These radial functions depend,
of course, on the specific dielectric variations. It should
be noted that the task of finding these proper radial
functions is by no means trivial. However, in some

p (el(pl(r g 9t,)
= (1/M e(r))V XV X L V &"' (r)&„'(cosg) cosine„],

(P=1,3) (37)

For the special case of e(r)= ep, Eqs. (32) through (37)
give (as they shouM) the correct expressions for the
electromagnetic fields of a dipole in the inhomogeneous
free-space. ' This is because

instances the solutions may be expressed in terms of
some well-investigated function, such as the hyper-
geometric functions or the confluent hypergeometric
functions. 7 For example, if e(r) = ep(1+nr ') where a is
a constant, the solutions of Eq. (14) are the well-known
Coulomb wave functions. '

In a recent paper by Schiff, ' he advocates that in
electromagnetic diffraction theory, much more attention
has been devoted in the past to scattering regions that
are piecewise homogeneous than to scatterers that have
continuously variable dielectric constant, conductivity,
etc. In order that one may consider successfully the
analog between elementary particle scattering theory
in which the potential is never discontinuous and the
electromagnetic problem, the problem of wave propaga-
tion in a continuously inhomogeneous medium must be
considered. ' ' It is hoped that the problem considered
here will provide a useful beginning for this very in-
volved problem.

Further applications of the dyadic Green's function
derived in this paper can be found in the scattering of
soft x rays from various macromolecules and viruses
which have characteristic diffuse surfaces, the scattering
of electromagnetic waves by a plasmoid, or the scatter-
ing of infrared radiation by small inhomogeneous
particles.

E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, 1948).' H. Uberall, Phys. Rev. 128, 2429 (1962);L. I. Schiff, ibNd 103, .
443 {1956).


