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where one has used (42). Because of (41), all the integrals in (43) diverge at most logarithmically. The same
separation makes the second integral in (40) split as

7r2
s0tP

1 1 p(s', t')ds'dt' s " ds' " (1 1

t' I' s'(s' —s) 7r' ., s'(s' —s) „&t' a s' t—'—
"p(s',t') p(s= —~, t')

dt'
t'

( so 1 "p(s= oo, t')dt' s " ds' "p(s', t')dt'
=~ ln — +—

sp s sl g& „s(s—s) ~, a—s —t

where one has used (41). Because of (41), the integrals in the last expression in (44) also diverge at most
logarithmically.
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Convenient rules are given for the general term in the time-independent perturbation-theory expansion
for the self-energy operator of quantum statistical mechanics. The rules are derived by starting from the
usual formalism involving time-dependent Green's functions.

I. INTRODUCTION

PERTURBATION theory for quantum sta-
tistical mechanics was developed by Peierls' in

1933. However, the general term in this theory was
hard to characterize; furthermore, spurious terms,
which are now known to cancel out, seemed to appear
in the expression for the total number of particles.
In 1958, Montroll and Ward' gave a perturbation
theory in which the spurious terms were absent and the
general term was described, but their formalism, in-
volving an unnecessary expansion in powers of the
fugacity, was exceedingly complicated. In recent years
any number of formalisms have been proposed. ' These
are all essentially equivalent, varying only in details.
The procedure of Glassgold, Heckrotte, and Watson

*Work done under the auspices of the V. S. Atomic Energy
Commission.' R. E. Peierls, Z. Physik 80, 763 (1933).

s E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).' C. Bloch and C. de Dorninicis, Nucl. Phys. 7, 459 (1958);
A. E. Glassgold, Warren Heckrotte, and Kenneth M. Watson,
Phys. Rev. 115, 1374 (1959); J. H. Luttinger and J. C. Ward,
Phys. Rev. 118, 1417 (1960); A, A. Abrikosov, L. P. Gor'kov,
and I.E. Dzyaloshinskii, Zh. Eksperim. i Teor. Fiz. 36, 900 (1959)
/translation: Soviet Phys. —JETP 9, 636 (1959)];P. C. Martin
and J. Schwinger, Phys. Rev. 115, 1342 (1959); T. Matsubara,
Progr. Theoret. Phys. (Kyoto) 14, 351 (1955);T. D. Lee and C. N.
Yang, Phys. Rev. 117, 22 (1960).

involves a contour integration, that of Bloch and de
Dominicis multiple temperature integrations, that of
I.uttinger and Ward infinite sums. Thouless, 4 however,
has given a very convenient expression for the logarithm
of the partition function.

To propose still another formalism would appear to
be both inconsiderate and imprudent. Our motivation
is that the rules we describe here are considerably
simpler than any other prescription previously pro-
posed. The rules are closely related to those given by
Thouless, 4 but we shall work with the self-energy
operator in terms of which one can 6nd not only the
partition function but also the single-particle excita-
tions. Furthermore, it should be observed that the
derivation of the rules is not restricted to the single-
particle self-energy operator but, rather, is quite
general. Thus, for example, one can easily use the
method described here to obtain explicit time-inde-
pendent rules for the space-time correlation function
of any two physical observables.

The rules for calculating are given in Sec. II. These
rules were erst obtained intuitively' by the following

' D. J. Thouless, The Qnantnm Mechanics of Many Body-
Systems (Academic Press Inc. , New York. , 1961).

~A. M. Sessler, "Theory of Liquid Helium-Three, " Varenna
Summer School on Liquid Helium, 1961. Suppl. Nuovo Cimento
(to be published).
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reasoning: In quantum statistical mechanics one com-
putes the equilibrium properties of a given system by
constructing an ensemble of similar systems, then
computing quantum mechanically the properties of
each system in the ensemble, and finally averaging over
the ensemble. We know from the work of Darwin and
Fowler that the average over the ensemble is strongly
peaked in the neighborhood of the most probable
system in the ensemble. This suggests interchanging
the order of (i) the averaging procedure and (ii) the
quantum-mechanical calculation of the properties of
one system. Thus, one is led to consider the quantum
mechanics of a system in a state that is the most
probable in the ensemble, and consequently one expects
that the usual rules for ground-state perturbation
theory' will be modified only by replacing the step
functions associated with particle and hole lines with
single-particle statistical-distribution factors of the most
pl 0 arobable state. In Sec. III we derive this result, starting
from the time-dependent formalism for perturbation
theory. '

Dzyaloshinskii has recently published a set of rules
equivalent to those of Sec. II, but without an explicit
derivation of the general term. ' (Pote added in proof.
It has been brought to our attention that the rules given
here have been previously established by R. Balian and
C. De Dominicis, Nucl. Phys. 16, 502 (1960).j

S=hps(an/ap) „, (2.2)

One can compute 0, in addition to calculating it directly
from its definition (2.1), by an integration over tem-
perature of K(P,p), the ensemble average of BC:

fl(P u) =&(,~)+- ~P'L&(P', ~)—&(,~)] (2.&)

An alternative and more common method is to find 0 in
terms of an integration of the potential energy over the
coupling constant.

6 J, Goldstone Proc R,oy Soe. I'j.ondvn) A239, 267 (1957).' L. P, Kadanoff and G. Baym, QeueAnn Statistical Mechuesk. s
(V7, A, Benjamin, Nerv York, 1962).

SI. E. Dzyaloshinskii, Zh. Eksperim. i Teor. Fiz. 42, 1126
(1962) [translation: Soviet Phys. —JETP 15, 778 (1962)].

II. RULES

A. Formalism

The thermodynamic properties of a system can all
be deduced from the grand potential 0, defined by

f1= —(1/0) l T L p(—P&)3, (21)

where K=H—pF with H and X the Hamiltonian and
number operators. The pressure I', the number of
particles E, and the entropy, S are given by

I'= —(aQ/av) p

iv= —(aQ/ap) p, y,

2 J(

(b)

I'rG. 1. Two third-
order diagrams that
contribute to the
self-energy operator.

The quantity R'.(P,p) we express in the form

~(c,~) =-
2

where

d'p "
Cko p'—~+ —~ ~~(p,~)f(~),

(2~)s „2m 2ns )
(2.4)

(a}

l'Io. 2, The lo%eyt
order diagrams that
coa tribute to the
self-energy operator,

f( )=L""~1~-' (2.5)

(The ~ refers to bosons and fermions, respective y.)l .
The spectral function A (p, to) is a function of p and p,
and is given in terms of the Fourier transform of the
single-particle Green's function G(p, te) by

2 (p,ce) = —2ImG(p, &o+is), (2.6)

where co is real. The Green's function 6, as a function
of a complex variable, s, is related to the free-particle
Green's function Ge and the self-energy operator Z(p, s)
via the Dyson equation:

G(p )=G (p )r1+&(p )G(p, )], (2 &)

where

Gs(P s)=L»—(p'/2ns)+I j ' (2 8)

All of the above is well known and can be found
derived, for example, in Ref. 7.

The calculation of thermodynamic properties is thus
reduced to a calculation of the self-energy operator
Z( s). The rules for calculating Z in perturbationyP)S .
theory follow. To find the mth-order contribution to
&(p,s):

1. Construct a graph by drawing n horizontal dashed
lines at different levels representing the potential and
by joining their 2e ends with solid lines representing
particles or holes, and having arrows to indicate direc-
t' n in such a way that one directed line enters and

~ ~

one leaves each end of a dashed line (e.g., Fig.
Have one solid line leave the graph going up and one
solid line enter the graph from the downward direction
(the "external lines" )—all other solid lines must con-
nect ends of dashed lines. In particular, it is acceptable
to connect an end of a dashed line to itself Le.g.,
Fig. 2(a)$, or one end of a dashed line to its opposite
end Le.g., Fig. 2(b)j.Draw only graphs in which there
are no unlinked parts and only graphs that cannot be
disconnected into two pieces by cutting one solid line,
but draw all graphs consistent v ith these rules. In nth
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order, each topographically distinct diagram for Z will

yield n! diferent diagrams corresponding to the e!
possible orderings of the vertices from top to bottom.
Assign a distinct momentum p;, to each soli.~ l.ine an6
momentum p to the external lines.

2. To comjute lhe corstribuiiors of the graph, associate
with each line of momentum p, directed upward a factor
(1~f[(p42/2rw) —p]},and with each line of momentum

py directed downward a factor ~f[(p 2/2m) p].—Do
not assign such factors to the external lines. A line
joining a dashed line to itself is considered as directed
downward. With each dashed line, associate a factor
V(p, ,p;, pq, ys), where p; and p; are the momenta of the
directed lines leaving the vertex on the left and right,
respectively, and pl, and p» are the momenta of the
d.irected lines entering the vertex on the left and right,
respectively. The factor V(p, ,p, ,p&, p&) is just the
matrix element of the two-body potential. Each of the
(n 1) i—ntervals between vertices contributes a factor
that is the inverse of the sum of (a) p;2/2233 for each
downward-going line of momentum p, crossing the
intervals; (b) —pp/2233 for each upward-going line of
momentum y; crossing the interval; (c) z if both ex-
ternal lines do not cross the interval; (d) —z if both

external hnes cross the interval; or (e) 0 if only one
crosses.

Multiply all the above factors together along with
an additional (—1)'+', where i is the number of closed
loops formed by solid lines representing fermions.
Finally, integrate over all y; with a factor (23r) ' for
each three-dimensional momentum integration.

The potential V(p, ,p;, ps, yl) is simply expressed in
terms of the Fourier transform of a local two-body
spin-independent potential v(r) by

V(y', P,y.,yl) = (2~)'&(P +P —y.—Pl)»(y' —y.), (2.9)
where

v(p) = »
—'-:&'ll(r)dr. (2.10)

For particles with spin, one must include the spin
dependence of V and also sum over spins of internal
lines —exactly as one does in ground-state perturbation
theory.

B. Example
As an illustration of the rules, we evaluate the con-

tribution for fermions of the two third-order diagrams
of Fig. 1:

~"(y, ») = ([1—fl][1—fs]f5[1—fs][1—f4](—1)sdyi4fyslipsdp«ps»(pi —p)»(ps —pi)»(p —ys)

and

X (23r)'&(Pl+ Ps —P—Ps) &(Ps+ P4 Pl Ps) '~(y+Ps Ps P4) }
X[(»—s,—53+55)(»—52—54+55)(22r)"] '

(2.11)

&'"(p,z) = ([1—fl][1—fs]fsfsf4( —1)'lEPAys~ysliysdys&(yl —P)&(ys —Pl)&(y —Ps)

X (23r) 5(Pl+Ps P ys) &(ps+ P4 Pl P3) ~(P+Ps P2 P4)}

X[(z—sl 63+ ss) (52+ 54 sl —63) (22r)—"]

where f; represents f[(P42/23m) —p].

C. Generalization

We can sum a large class of diagrams, namely those
corresponding to the replacement of Go by G in all
internal lines, by rules that are essentially the same
as those given in Sec. II.1: (a) Construct only irre-
ducible graphs and, (b) calculate the contribution
of an upward-directed line p; by assigning the factor
A(p;, &0;)[1&f(4s,)] and for a downward-directed line
the factor ~A(p;, ar;) f(cu,) For the ener.gy denominator
the upward lines contribute —(o&~+@,) and the down-
ward lines (53;+p). Proceed as in Sec. II.1, and finally
also integrate over all co; as well as p;.

These rules are greatly more complicated, since A

must be obtained self-consistently, but one diagram
now includes an infinite class of the old diagrams.

IIL PROOF OF RULES

The starting point from which we shall demonstrate
the rules given in Sec. II.1 is the time-dependent form
of the perturbation expansion for Z. This expansion is
described in detail in the Appendix to Ref. 7. Briefly,
to calculate any order of perturbation theory in the
time-dependent formalism, one writes down all topo-
logically distinct connected diagrams of that order and
evaluates the diagrams by writing a Go for each line,
and a V for each vertex as in time-dependent ground-
state perturbation theory. The time integrations must
be between k= 0 and t= iP in order to includ—e correctly
the periodicity boundary condition obeyed by the
thermodynamic Green's functions. In listing all the
distinct diagrams no attention is paid to diferent time
orderings. The momentum parts and the numerical
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factors are the same as in ground-state theory, One
hrst calculates the Fourier coefficient of Z

Z(p, s,)= J/ e' v( —'
g(p b P)

where

and v is an even integer for bosons, or an odd integer
for fermions. Then the Fourier coeKcient is continued
from the s„ to all complex z.

Each nth-order diagram in this perturbation theory
corresponds to n '. of the "ordered" diagrams one writes
down according to the rules of Sec. II.1. In order to
demonstrate the equivalence of those rules to the time-
dependent perturbation theory, we must show how the
contribution of the eth-order diagram evaluated by the
time-dependent theory splits into n '. distinct contribu-
tions, each equal to the contribution from one ordered
diagram evaluated by the rules of Sec. II.1.

Consider a diagram of nth order in V. The n vertices
are labeled with n diGerent times; to evaluate the
diagram, one of these times is set equal to zero, and the
remaining n —1 times are integrated from t= 0 to
t= —ip. These 23 1 time integr—ations can be split into
(zz —1) !different integrations corresponding to different
orders of the zz —1 times along the line from 0 to —iP.
There are only (zz —1)! terms rather than zz! terms,
since one time has been arbitrarily chosen to be zero.
We shall show that each of the (tz—1) !terms equals the
contribution, evaluated by the rules of Sec. II.1, of
n "ordered" diagrams that differ only by a cyclic
permutation of the vertices.

Since in the (tz 1)! terms in—the time-dependent
perturbation theory the integration times are ordered,
one can always replace the G()(y, t;,3;) that occur in
the integral by

p2
G (p /I ~.) —e ztzt(tz tt)/2zzz 1~—f —

+ (3 1)
Z 25$

if t;&t, , or by
1 p'

G (1) f ] ) ~ e ztz(2 ittt')/2zzzf
/3

~

(3 2)
25$

if t;&t;. Thus, to each G0 &, or forward-going line, there
corresponds a factor 1&f; and to each backward-
going line, or Gt),&, a factor &f Th.ere is an over-all
factor of (—1)'" '. At each vertex (tt), one will have a
factor t,"~"' where

(3.3)

where y and y~ are the momenta of the lines leaving
the vertex, and y, and y~ are the momenta of the lines
entering the vertex. For the external lines, the factor
p2/22)z is replaced by s„. One must therefore calculate
the integral

ei tna'n

tn t3

1 e t zlrzzzz —I. . . d)2 ei ttzzt (3 4)

The results of the t2 integral can be written as

t3 z( 1)»e't»3~2
(I/ ezttzzt

X2=0, 1

(3.5)

and it is clear that one can write I as

where
i=2 ~i=0 1

z" 'ee"- e—xp(zrz Q X;)

F2F3 F„ lF„
(3.6)

1 k trk+4 —lf k—1

= 0 k+Xk 1/&k 1+~k—2(t—rk—2+—~1—3(tk—3+ ' ' ' )] ~ (3 7)

The sum now contains 2" ' distinct terms, and we must
rearrange it into n, different groups of terms so that all
terms in each group have a common value of exp (PI' ).
This is done by rewriting the sum as

k=1
I

s=2 Xi=0,1

z" 'e~'"r exp(zrz p X;)
J t=2

r2F3 r„ lF„ r (Xzz =i, 'An 1=i, ~ ~, Xgg+1=i, Xgg =0)
(3.8)

where the k= 1 term corresponds to taking all ),= l.
Thus,

n

Z
—1( 1)zz—k eXpLP Q g ~j

n j=A+i a

I(e—1

exp(zrz g X;)
j=2

(3 9)
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Call the summation in the braces Sk. Then

S1=1,
(3.10)

and in general

Sz——P
kz=O, 1 (gz+) g,)g2

0'3 0'3 0 2

Sk tgk(gk+gk —1) (&k+&k—1+&k—2) ' ' ' (gk+&k —1+ ' '+&8)(gk+gk —1+ ' ' '+gz+g2) j (3.11)

This latter result follows from a simple induction argument. Assuming the result to be true for any arbitrary set
of F; for i= 2, 3, , k —1, we can write

X =0,1 02 =3 ) '=0, 1

exp(zrz P g, )
2=3

(3.12)

But the term in brackets is such a sum of "order" k —1 involving g 2= gz+4g2, and hence, by the inductive hy-

pothesis we have

(3.13)
X2=0,1 f72 f7k Ok &k 1 ' ' ' &k Ok—1 &4 gk Ok—1 f74 03

Computation of the X2 summation then produces the general formula (3.11) for Sk.
The integral I has thus been reduced to

z" '(—j.)" keg(~~+" +~k+2)

(&n+&n 1+ +—g k+1) (g n—1+ ' ' '+g k+1) ' ' gk+1&k(&k+&k —1) ' ' (gk+ ' '+g2)
(3.14)

These n terms correspond to just e cyclic permutations of a given diagram. Let k=e. Then the summand is

Zn —1

(3.15)
&n &n tTn —1

'' &n ' &3 &n &n—1 ' &2

When s„ is replaced by z, the denominators clearly are
the energy denominators one writes down by following
the rules in Sec. II for the original diagram. The
k=e —1 term

On —1 &n—1 &n—2 &n—1 ' ' ' &2 &n

(3.16)

differs from the k= e term by a factor et' ", and further-
more the O.„has become —o.„and each factor has been
reduced by cr„. Note that e~'" is just &1. Thus, the
k =m —1 term corresponds to the time-ordered diagram
formed by moving the latest vertex e to the earliest
time (a cyclic permutation). All energy denominators

will clearly be reduced by —0.„,and the last denominator

(g„) will change sign when it becomes the first de-

nominator; the e& " will change the particles into holes
and vice versa at the zzth vertex, since e~ f(o)) = 1&f(oo).

Thus, I corresponds to the sum of all diagrams of eth
order that are just cyclic permutations of a single

diagram of eth order. Thus we have exhibited the
correspondence between the time-dependent perturba-
tion diagrams and the ordered diagrams as well as
derived the rules of Sec. II.i. We leave it to the reader
to check that the detailed numerical factors are equiva-
lent as well as to generalize the derivation to cover the
situation of Sec. II.3.


