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The double phase representation is discussed for the elastic scattering amplitude A (s,t, u) as a function of
the covariant Mandelstam variables s, t, and u. This representation is written as A (s,t,u) =P Pi( st, u) /
Ps(s, t,u) )Q( st, u), where P&(s,t,u) and Ps(s, t,u) are both finite polynomials in s, t, and u, and Q(s, t,u) has no
zeros or poles except at infinity and is expressed in terms of the phase of A(s, f,N) along the cuts. Thus,

P&(s, t, u) and Ps(s, t,u) account for all the zeros and poles of A(s, t,u), respectively, except for a zero or a pole
at infinity. The conditions for the above double phase representation to exist are, besides the usual Mandel-
starn assumption, that a finite polynomial P&(s,t, u) accounts for all the zeros oi A (s,t,u) except for the one
at infinity and no others, and that A (s,t,u) has even or odd crossing symmetry with respect to the interchange
of some pair of s, t, and u. These conditions imply that the phase of A (s,t,u) has no extra branch points in the
momentum-transfer plane other than those which belong to A(s, t,u) and remains finite in the physical
regions even in the limit of infinite energy. The asymptotic forms of this double phase representation when
some of s, t, and u become infinite are derived in the case when the phase approaches the limit at infinity not
too slowly. This is the case when the elastic scattering amplitude exhibits asymptotically a power behavior
in energy (usually called the Regge behavior). In particular, the case when the forward peak of high-energy
elastic scattering does not shrink is examined closely. The case of no shrinkage is found to be the case when
the phase in the crossed channel does not diverge logarithmically at infinity in its momentum-transfer plane.
If the forward peak shrinks, the above phase diverges logarithmically at infinity. In the case of no shrinkage,
the asymptotic shape of the forward peak is determined solely by the phase in the crossed channel. Further-
more, the above shape assumes a pure exponential function of the covariant momentum-transfer squared
when momentum transfer is small, and approaches a power-law behavior in the same variable for large
momentum transfer. In the case of the m'+m" —+ ~"+9' amplitude, high symmetry available in this amplitude
enables one to determine almost uniquely the polynomials in the double phase representation. In particular,
the only possibility in the case oi no shrinkage is P&(s,t,u)/Ps(s, t,u) =ce+cs(s'+t'+u'), where ce and cs are
real constants. No shrinkage also implies that the S-wave scattering length must not be negative for the
++~'~ ~ +~' amplitude. Some of the specific predictions of the phase representation approach to high-
energy elastic scattering are listed at the end of the 1ast section.

i. INTRODUCTION Ps(s) accommoda. te all the zeros and poles of A(s), re-
spectively, except for the one at infinity. The conditions
under which (1) is valid are that (a) A(s) is analytic
everywhere in s except for cuts on the real axis and a
finite number of poles; (b) A(s) is real in the sense that
A*(s) = A(s*); (c)A (s) is bounded by a finite polynomial
at infinity, and either (d) 3(s) has finite limits 3 (Woo)
as s ~ & ao, or (d') A(s) has a finite number of zeros.
The dispersion relation exists for A(s) under the condi-
tions (a), (b), and (c). Therefore, the condition (d) or
(d') is the extra condition for (1) to exist. .

The purpose of the present paper is to generalize the
phase representation (1) when the analytic function has
two independent variables. We consider in particular
the representation of the elastic scattering amplitude
A(s, t,u) as a function of covariant variables s, t, and u.
In terms of the c.m. momentum q and the c.m. scatter-
ing angle 0, these variables are given by

HE analytic function A(s) has under the condi-
tions given below the phase representation'

Pi(s) s 3(s')ds'
A (s) = exp —.

Ps(s) sr, „t,s'(s' —s)

where Pi(s) and P&(s) are finite polynomials and 3(s) is
the (real) phase of A(s) along the cuts which are as-
sumed to occur on the real axis. Thus, 8(s) is given by

A(s+ie) =+ (A(s+ie)
~

e"&'&,

where s is real and e is an in6nitesimal positive number.
The representation (1) is valid independently of the
specific normalization of 3(s). However, it appears most
convenient to require that 3(s) vanishes on the real axis
where no cuts occur and the discontinuities in fi(s) are
smaller than x in magnitude. With this normalization
the exponential factor in (1) has no zeros or poles
except at infinity. Therefore, the polynomials Pi(s) and

s= (Ei+Es)' t= —2q'(1 —cos8) )I

st = —2q'(1+ cos8)+ (Ei—Es) ',
s+t+u=2m '+2trt"—= a*Work supported by the National Science Foundation and by

the U. S. Atomic Energy Commission.
r M. Sugawara and A. Tubis, Phys. Rev. Letters, 9, 3SS (1962)

For the details, see M. Sugawara and A. Tubis, Phys. Rev. 13
2&27 (t96S).

where E~ and E2 are the c.m. energies of two colliding
particles with masses, nz& and m2, respectively.
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The representation to be discussed in this paper is
written as

A(s, t,u) = LPi(s, t,zz)/Pz(s, t,zz))Q(s, t,zz), (4)

where P&(s, t,zz) and P&(s, t,N) are finite polynomials in
s, t, and I and Q(s, t,zz) has no zeros or poles except at
infinity and is expressed in terms of the phase of A(s, t,N)

along the cuts. The explicit expressions for Q(s, t,zz) are
given by (14), (15), and (16) of Sec. 3, all of which are
equivalent to each other. We call this representation (4)
the double phase representation.

The conditions for this double phase representation
to be valid are as follows:

(i) A(s, t,zz) is analytic with respect to two independ-
ent variables everywhere except for three cuts given by
ao Qs+sp ~ p$+3p and ~ &N&up, and a finite number
of poles at s=s~, .

3=/AD
~ . and N=N~, , where

all these constants sp si ~ ~, etc., are real and positive.
(ii) A (s,t,zz) is real in the sense that A*(s,t,l)

=A (s*,P,zz*).

(iii) A(s, t,g) is bounded by finite polynomials in
s, t, and I at inhnity.

(iv) The zeros of A(s, t,u) occur in such a way that a
finite polynomial Pi(s, t,zz) accommodates all of them
except for the one at infinity and no others.

(v) A(s, f,zz) has crossing symmetry, either even or
odd. For example, A(s, t,zz) = &A(zz, t,s).

The conditions (i), (ii), and (iii) are what one calls
the Mandelstam assumption. Condition (i) implies that
there is a finite, real polynomial Pz(s, t,m) which accom-
modates all the poles of A(s, t,zz) except for the one at
infinity and no others. Condition (iv) prescribes similar
situation regarding the zeros of A(s, t,zz). Condition (v)
can always be satisfied by any elastic scattering ampli-
tude. Therefore, the only extra condition for the double
phase representation to exist is condition (iv). The
reality of Pi(s, t,zz) follows from the other conditions
listed above.

We assume this extra condition (iv) for the following
reasons. First, without condition (iv), the double phase
representation becomes much more complicated than
(4) and is likely to be no longer useful. Secondly, condi-
tion (iv) may very well be satisfied because the zeros of
the amplitude could have some direct physical signifi-
cance just as the poles do. In fact, we see, throughout
the analysis of this paper, no indication that the double
phase representation (4) may be too restrictive.

Aside from formal interest, the double phase repre-
sentation (4) has practical usefulness. The usefulness
of the phase representation in discussing high-energy
behavior of elastic scattering was already pointed out. '
In the previous work, ' however, one could not discuss
the question of whether or not the forward peak of high-
energy elastic scattering shrinks. ' This is because only

' What we mean by the shrinking peak is explained at the be-
ginning of Sec. 5. The possibility of no shrinkage was emphasized
by the present authors, Y. Nambu and M. Sugawara, in Phys.

the analyticity in energy can be exploited when the
(single) phase representation (1) is used. In order to
discuss the question of shrinkage, one must use the
double phase representation (4). In fact, we show in this
paper that the double phase representation (4) provides
a straightforward explanation for no-shrinkage.

We start our analysis by discussing in Sec. 2 the
analyticity and symmetry of the phase of A (s,t,zz) when
this amplitude satisfies the conditions listed above. Be-
cause of condition (iv), the phase has no extra branch
points in the momentum-transfer plane other than those
which belong to A(s, t,N). When there is crossing sym-
metry, A(s, t,zz) = &A(N, t,s), the phase become the same
in the s- and u-physical regions.

We then derive in Sec. 3 explicit representations (14),
(15), and (16) of Q(s, t,zz) in (4) in terms of the phase
discussed in Sec. 2. The condition (v) is shown to be
necessary in order for these representations of Q(s, t,u)
to be bounded by finite polynomials at infinity. This
boundedness of Q(s, t,zz) also implies that the phase
remains finite in the physical regions even in the limit
of infinite energy. It is shown in the Appendix that the
above boundedness of the physical phase and condition
(v) are, in fact, sufficient for the boundedness of Q(s, t, zz)

by finite polynomials.
We derive in Sec. 4 the asymptotic forms of the

double phase representation (4) when some of the
variables become infinite. We assume here that the
amplitude exhibits asymptotically a power-law behavior
in energy (usually called the Regge behavior).

We then examine in Sec. 5 the case when the forward
peak of high-energy elastic scattering does not shrink. '
It is shown that this case actually materializes when the
phase in the crossed channel no longer diverges loga-
rithmically at infinity in its momentum-transfer plane.

We summarize our analyses in Sec. 6. Besides, we
discuss previous theoretical work concerning the ques-
tion of shrinkage. We also list some of the specific pre-
dictions of our phase representation approach to high-
energy elastic scattering.

2. PHASE OF SCATTERING AMPLITUDE

We discuss in this section the analyticity and sym-
metry of the phase of the scattering amplitude A(s, t,N)
when A(s, t,g) satisfies conditions (i), (ii), (iii), (iv), and
(v) listed in the previous section. We observe for this
purpose that conditions (i) and (iv) imply that A(s, t,zz)

is written in the form of (4) in which Q(s, f,zz) has no
zeros or poles except at infinity.

The s-phase 5(s,t) [or b(s, zz)] of A(s, t, zz) is defined in
the s-physical region, where s is energy and t (or zz) is
momentum transfer, by

A(s+zc, 3) = &
i A(s+ze, t) i

"' '& (5)

This definition is the same as (2). We require that

Rev. Letters 10, 304 (1963).See also the new Brookhaven data of
K. J. Foley et al. , Phys. Rev. Letters 10, 543 (1963).
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t'z(s, t) vanishes at s=ss and is continuous in s.' This
definition of 5(s,t) can be stated also as

1 -A (s+is, t) 1 Q(s+is, t)
t'z(s, t) = l—n — =—ln-

2i A(s i—e, t) 2i Q(s i—e, t)

~

~
1)—~[lnQ(s+ie, t) —lnQ(s —ie, t)7, (6)
2ii

because the polynomials in (4) cancel each other in the
above ratio and Q(s, t, zs) has no zeros or poles except
at infinity.
ia" 'Analyticity of zl(s, t) in t is now seen directly from (6).
Since Q(s, t,l) has no zeros or poles except at infinity,
8(s,t) is analytic in t everywhere except for the t and the
I cut which belong to A(s, t,st). The assumption that
A(s, t, N) has no essentially singular points implies that
li(s, t) has no poles. The divergence of lz(s, t) at infinity
is at most logarithmic since A (s,t,l) is bounded by finite
polynomials at infinity. The reality in the sense that
zz*(s, t) = zz(s, t*) follows from the reality of A(s, t,l).

The significance of condition (iv) is to be mentioned.
Without condition (iv) we hardly see how all the zeros
of A(s, t,u) could cancel in the ratio of A(s, t,l)'s in (6).
If there are any zeros which do not cancel in this ratio,
these zeros become the extra branch points of Ii(s, t) in t.

The above analyticity of t'z(s, t) implies that li(s, t)
satisfies the once-subtracted dsipersion relation

t "p(s, t')dt' t "p(s, sz')du'
zz(s, t)=i)(s, t=0)+- ' +-, (7)

z, t'(t' —t) zr ., t'(I' —I)
where I,'= u —s—I' in the last integral and the imaginary
parts are given by

p(s, t) =
~

—
~
[zz(s, t+ie) b(s, t ie)—7—

&2iJ

[lnQ(s+ie, t+ie) lnQ(s+—ie, t—ie)
(»)'

lnQ(s —i», t+i—e)+lnQ(s —ie, t —ie)7, etc. (8)

Hy definition, the p's are real and nonzero only when
s+$0 and t+/0 etc. In fact, these inequalities give the
exact domains in which the p's are nonzero. We remark
that the double spectral functions in the'Mandelstam
representation are nonzero only in regions which are
smaller than those defined by the above inequalities.

There is always a finite gap between two cuts in (7).
The entire physical region in t appears on this gap.
Therefore, the phase iz(s, t) remains real and finite in the
physical region, even if the phase may diverge loga-
rithmically at infinity. However, as s —+ ~, the I cut
goes away to —~ in the t plane and the physical region

' In this paper we assume no discontinuities in b(s, t) since this is
the phase of the scattering amplitude. The discontinuities cause
simply technical complications, which are discussed in the second
paper quoted in Ref. 1.

.(,t)=.(t, ), .(t, )=.(,t),
p(u, s) =p(s,l),

(10)

where we mean that these pairs of functions are the
same functions of respective variables, but do not mean
that they are symmetric under the interchanges of re-
spective variables. The three b's are, however, inde-
pendent of each other. For example, b(s, t) and tz(t, s)
are entirely diferent functions. '

4 These arguments are based upon the theorem concerning the
limit of the analytic function at infinity proved by M. Sugawara
and A. Kanazawa, Phys. Rev. 123, 1895 (1961), and also in the
second paper quoted in Ref. 1.' See, for example, the first paper quoted in Ref. 1,

To avoid possible confusion, one may introduce subscripts I,
II, and III to 8's and p's in order to indicate in which physical
regions these 6's and p's are originally defined. If I, II, and III
refer to the s-, t , and I-physica-l regions, respectively, Eq. (10)
now reads as pz (s,t) =

pzz (t,s), etc. The remarks after Eq. (10) imply
that pq(s, t) Wpz(t, s), etc. and bz(s, t) Wbzz(t, s), etc. In terms of the
above notation, Eq. (12) reads as bz(s, t) =bzzz(s, t), and bzz(t, s)
=biz(t, N) when s=l. Equation {1d& then becomes pz(s, t) =zuzz(s, t)
and pz(s, zz) =uz(zz, s).

in t also extends to —eo. If the phase 8(s,t) remains
finite in the physical region even in the limit of s —+ ~,
then B(s= ao, t) satisfies the unsubtracted dispersion
relation

1 "p(s= oo, t')dt'
tI(s= oo, t) = g(s= eo, t = oo )+—

)p

where 6(s= ao, t= oo) is a finite, real number. ' It is
shown in Sec. 3 that the phase must, in fact, be finite in
the physical region in the limit of infinite energy in
order for Q(s, t,N) in (4) to be bounded by finite poly-
nomials at infinity. In other words, the boundedness of
the physical phase in the limit of infinite energy is a
consequence of all the conditions listed in Sec. 1.

We add a few remarks. First, we do not continue
t'z(s, t) with respect to s. Throughout this paper, the
first variable in the phase b(s, t) is real and s& sp, tllollgll
the second variable is allowed to be complex. Secondly,
i)(s, t=0) in (7) is the phase of the forward amplitude.
If there is an optical theorem, the s dependence of
I)(s, t= 0) is fairly simple. ' Thirdly, if one uses st, instead
of t, as the momentum-transfer variable, the s phase is
written as 8(s,zt). Since ii(s, t) and lz(s, u) are the same
phase expressed in terms of different variables, 8(s,u)
satisfies the dispersion relation of the form of (7) with
the same imaginary parts as those in (7). However,
8(s= oo, t) and 8(s= ~, I) are diferent functions. For
example, I is —ao in zz(s= co, t) while I is finite in
8(s= eo, u). Also, Iz(s= ~, I) has only the I cut, while
8(s= oo, t) has only the t cut.

The t phase, b(t, s) or 5(t,N) and the zt phase, 8(tt,s)
or zz(u, t), are defined exactly the same way in the t and-
I-physical regions, respectively. The corresponding
imaginary parts are p(t, s), p(t, l) and p(u, s), p(sz, t), re-
spectively. All the previous analyses and remarks apply
to these 8's and p's. Among six p's thus defined, only
three are independent. This is because the definition
(g) implies that
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g e now discuss sp mmetry which 8's and p's may
have when A($, t,u) has crossing symmetry. For t e
sake of de6niteness, we assume that

A ($)t,u) = &A (u)t, $) ) ,it)
we mean that A ($,t,u) at most changes sign under

u. One then derives directlythe interchange of s and u. ne en
from the definition (6) that

when $=u&$0 ——uo, (12)b($,t) =8(u, t) for all t, when $=

8(t,$) =8(t,u) for all $=u, when t&to.

l that when there is crossing sym-These relations imp y a, '
s m-

metry between the s and u channe, hels the san up ase
are the same an t e p asd he t' hase is symmetric in the mo-

f r lane. There is, however, no crossing
.etr in 8($,u) with respect to tne interc an e

iven in Ref. 6. This means simply that the s an
s are the same an mus no

crossing symmetry in 8($,u) un er e in
s and u.

Concerning e p s,th ' one obtains the following relations
directly from the definition (8),

13p($,t)=p u, t oi ap, = (, ) f 11 t&t when $=u&$p ——uo, ( )
0

p $)u 1S S'symmetric under the s, u interchange.

3. DOUBLE PHASE REPRESENTATlON
4

We derive in this section the explicit expres~ion or

e t for the three cuts of 2 ($,t,u),analytic everywhere excep o
h o zeros or poles except at y,infinit and is oun e
b nite polynomials at infinity. T us, ln stu isaso

where exce t for these three cuts and is
bounded by logarithmic functions at in ni y. e

d double dispersion relation for
h' h subtraction is known and spec ra

'
» r 8's in the single integrals because ofunctions are eit er s in e

6 or p's in the double integrals because o
ion re resents the explicit ex-

ression for Q($,t,u) in terms of the phase o $, ,u .
Q th double dispersion relation forIf one writes own e o

JnQ($, t,u)/$u, one obtains

Q($, t.,u) =exp—
$ - "b(s', u=O)d$'

$'($' —$)

"8(t', u=O)dt' u-
+-

. „(a—t')(t' —t) m

"8(u', $=0)du'

tp u R —N

= S(t', $=O)dt'

, (0 t')(t' t)— —

p(u', t') du'dt'
-+

$'u'(u' —u) (t' —t)

p($', u') d$'du'

$'u. '($' —$)(u' —u)

p($', t') d$'dt
-+

$'u'($' —$) (t' —t)
&toto

su

2

spto

necessar to make the contribution from in nity vanis .which is normalized as Q($= u=
s (14) except for the interchange o corr pd f su one obtains the same asIf one uses st or tu instea~ o su,

All these expressions a e eq iv e
The expression (14) can be expressed in terms o $,

$ " 8(s', t)d$' u " h(u', t)du'
$tu =exp — +—

(

(t—a) "

beau

t u(
' )du' (t—u) " b(t', $=0)dt' (t—a) "b(u', $=0 du'

eter. In orderntation, 1, in which t is regarded as a parameter.
'

ncorres o o g p ep
writes down the dispersion relations for B($,t u an"e in e

'
f the single integrals involving 8($,t an u,then expresses the douu e in eg

'
e

ions ~12~ to obtain ~1& .needs the crossing relations ( )
Expression ~ g can a~14g lso be expressed in terms o s,

s
Q($,t,u) =exp—

"b($', u)d$'
+—

, $'($' —$) 7r

"b(t',u)dt
l

, t'(t'- t)

(u- u)
gexp---

b(t', u)dt'

, t'(t'+u —a)

—o a&'u " 8(u', $=0)du' u " 8(t', $=0)dt

u'(u' —u) 7r i, (t' —a)(t' —a+u)Mp

e . . that lven ln the 61st papel cited ln, e'The derivation is simi1ar to that, given in e
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This expression is the single phase representation in
which u is regarded as a parameter. One derives (16)
from (14) using only the dispersion relations for b(s,u)/u
and b(t, u)/su. No crossing relations are necessary.

The single phase representation in which s is regarded
as a parameter is the same as (16) with s and u inter-
changed. The expression (16) is different from (15) with
t and u interchanged, only by a constant factor. This
difference is merely due to the fact that the expression
(15) assumes a normalization Q(s=u=0)=1 which is
not invariant under the interchange of t and u.

The expressions (14), (15), and (16) all satisfy the
requirement that Q(s, t,u) is analytic except for the three
cuts of A(s, t,u) and has no zeros or poles except at
in6nity. Besides, these expressions are real in the sense
that Q*(s,t,u)=Q(s*, ta, u*) and also symmetric under
the interchange of s and u because of (12) and (13) when
there is crossing symmetry (11). Therefore, the poly-
nomial Pi(s, t,u) in (4) must be real in the same sense
and crossing symmetry (11) of A(s, t,u) must be taken
over by P,(s,t,u)/Ps(s, t,u) in (4).

However, it is not immediately clear if these expres-
sions (14), (15), and (16) are bounded by finite poly-
nomials at infinity. One can show that this is actually
the case when there is crossing symmetry (11) and the
phases b(s, t), etc. , remain finite in the physical regions
even in the limit of infinite energy. The last condition
implies essentially that

b(s= ~, t), b(s= ~, u), b(t = ~, s), b(t = ~, u),
(17)

b(u= ~, s), and b(u= ~, t) are all finite.

In order to see that the condition (17) is necessary,
one examines (15) in the limit when s —+ po and t re-
mains finite. The s-dependent integrals in (15) are
split as

s "b(s', t)ds' b(s= ~, t) sp
ln

7{ 80 S S S 7l S() S

s " b(s', t) —b(s= ~, t)
ds', (18)

s'(s' —s)

etc., where the second terms diverge as s —+ only less
strongly than logarithmically. ' Therefore, it is necessary
for b(s= po, t) and b(u= po, t) to be finite in order for
(15) to be bounded in the above sense. ' One obtains
other conditions in (17) similarly from (16) and its
s, u interchanged.

To see that crossing symmetry (11) is necessary, one
recalls that (15) does not follow from (14) without the
crossing relations (12). Without (12), one must replace

8 The argument is given in the first paper quoted in Ref. 1.' It may appear offhand that only h(s= oc,t)+h(a= ~,t) need
be finite. However, if 8(s = ~,t) is infinite, the separation in (18) is
no longer correct and we do not know how to prove the bounded-
ness of (15). This is why we assume that both B(s= ~,t) and
bc'u= ~,t) are finite.

the exponent of the second exponential factor in (15) by

s " b(s', t)ds' s "b(t', u=0)dt'

., s'(a —s' t) —pr, (a—t')(t' —t)

s "b(s', u=0)ds'
+{s,u interchanged) . (19)

s'(a —s' —t)

Evidently these terms diverge linearly in s when s ~ ~
and t remains finite. This means that, without crossing
symmetry (11),the expression (14) is no longer bounded

by finite polynomials when s —+ ~ and t remains finite.
It is shown in Appendix that crossing symmetry (11)

and the condition (17) are, in fact, sufhcient for the
expression (14) to be bounded by finite polynomials at
inhnity.

When crossing svmmetrv is, for example, A(s, t, u)
= &A (t,s,u) instead of (11), one writes down the
double dispersion relation for lnQ(s, t,u)/st instead of
1nQ(s, t,u)/su, to obtain the double phase representation.
Then all the preceding arguments hold without any
change. In particular, the expressions (15) and (16) are
correct regardless of which channels crossing symmetry
of A(s, t,u) applies to.

As a summary, conditions (i), (ii), (iii), and (iv) listed
in Sec. 1 become consistent with each other and one
expects the double phase representations (14), (15), (16),
etc. , as long as there is crossing symmetry of the type of
(11) with respect to the interchange of some pair of
variables and also the phase remains finite in the
physical regions even in the limit of infinite energy. The
last condition can also be stated as (41) in the Appendix.

The polynomials P,(s,t,u) and P&(s, t,u) in (4) can be
made explicit when information is available concerning
the zeros and poles of A (s,t,u). As the simplest, yet very
important example, we discuss here the polynomials af
the pr'+s' ~ srP+wP amplitude. According to the
Mandelstam assumption, this amplitude has no poles
and is symmetric with respect to the interchange of all
pairs of variables. Thus, Ps(s, t,u) can be chosen as
unity and Pi(s, t,u) becomes fully symmetric and real in
the sense of (ii) in Sec. 1. It was found that this ampli-
tude has, in the s plane with I=O, either two zeros if
ap+2as&0 or no zero if ap+2as&0, where ap and as are
the S-wave scattering lengths in the channels with the
total isospin 0 and 2, respectively. First, the above
full symmetry requires that Pi(s, t,u) is a linear
combination of s"+t"+u" with m=0, 2, 3, 4, Then
the above numbers of zeros in the s plane with t=0
imply that m can at most be 0, 2, and 3. One thus finds
that Pi(s, t,u) = cp if ap+2as& 0 and Pi(s, t,u) = cp

+cs(s'+t'+u')+cs(s'+ t'+u') if ap+2as& 0, where the
constants co, c&, and ce are all real because of the reality
of Pi(s, t,u).

4. ASYMPTOTIC BEHAVIOR

It was shown' that the phase representation (1) has
a simple asymptotic behavior when s —+ ~. In particu-
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So far, one has rewritten only the expression (15).
However, since no crossing relations are needed in all
the preceding derivations, the expression (16) can also
be written as

Q(s, t,u) =Q'P(u)y(s, u)

ssp tp

(30)
sp —s- tp —t

where P(u) and y(s, u) are the same as (22), (23), and
(26), respectively, except for the interchange of t and u.
A real, positive constant Q' in (30) is not quite the
t, u interchanged of (2'/), simply because (16) is not
quite the t, u interchanged of (15) due to the normaliza-
tion Q(s=u=0)=1 assumed in (15). Similarly one
obtains the s, u interchanged of (30).

We summarize the asymptotic forms of the amplitude
A(s, t,u). In the forward direction where t is finite, one
obtains from (21) that

t' s) ~in
A (s,t,u) -~ P(t) ~

—
~

e"&' "'I=
&s,)

n(t) =u —
I b(s = ~, t)+ b(u = m, t)1/w,

where an integer e is the difference between the total
numbers of zeros and poles of A(s, t,u) in the s plane
when t is fixed. In the backward direction where n is
finite, one obtains from (30) that

s) I&"&

A(s, t,u) —:~P(u) —
~

e"i'=" "',
g ~00 soi

e(u) =re $b(s= ~, u)—+b(t= ~, u) j/n. ,

where an integer m is the difference between the total
numbers of zeros and poles of A(s, t,u) in the s plane
when u is fixed. The results (31) and (32) are correct as
long as the phase satisfy the condition (20). The n's in
(31) and (32) are both real and analytic except for a
single cut which corresponds to the respective variable.
The P's in (31) and (32) are the same as the tI's in (25)
and (30), respectively, except for real, finite polynomials
in t and u, respectively. These polynomials are the
polynomials which remain in the asymptotic forms of
Pi(s, t,u)/P2(s, t,u) in (4) when s —+ ~ with t and u fixed,
respectively. Thus, the P's in (31) and (32) are both
real and analytic except for a finite number of poles and
a single cut which corresponds to the respective variable.

are convergent, b(t) can be identified as

p(s= ~, t) so
8(t) = lim 8(t,s)— ln

sp —s

p(u= ~, t) uo
ln . (29)

In the case of the m'+z'-+ m'+z' amplitude discussed
at the end of the previous section, the P's in (31) and
(32) are exactly the same as those in (25) and (30),
respectively. The asymptotic forms (31) and (32) are
usually called the Regge behavior.

p(s= ~, t)=p(u= ~, t)=0 (33)

for all t&to. Conversely, there is no shrinkage if (33)
is the case.

One can show that the condition (33) implies that
the t phase does not diverge logarithmically at infinity
in its momentum-transfer plane, and vice versa. If (33)
is the case, the expression (28) of the dispersion relation
for 8(t,s) indicates that the t phase no longer diverges
logarithmically at infinity. Conversely, if the t phase is
required to have no logarithmic divergence at infinity,
the expression (28) implies either (33) or p(s= ~, t)
= —p(u= ~, t) for all t)to. The latter possibility is,
however, extremely unlikely because these p's are the
same if there is crossing symmetry (11) and are other-
wise independent of each other. One thus sees that the
case of no shrinkage corresponds to the case when the
phase of the crossed channel becomes the least divergent
at infinity in its momentum-transfer plane.

The remaining divergence in the t phase at infinity is
due to the fourth and fifth terms in (28). These do not
diverge if the integrals in (23) converge individually.
This last condition is not only sufficiently weak in
itself, but is very similar to the condition (20) which is
assumed already in the power behavior (31).Therefore,
it is likely that the t phase is bounded everywhere in its
momentum-transfer plane in the case of no shrinkage.
For the sake of simplicity, we assume for the rest of this
section that the integrals in (23) converge individually
and therefore the t phase is bounded everywhere in its
momentum-transfer plane.

5. CASE OF NO SHRINKAGE, ,

If n(t) in (31) does not vary with t in some region
near t= 0, the shape of the forward peak of high-energy
elastic scattering depends only on t, and vice versa. One
usually describes this situation by stating that the
forward peak does not shrink. ' Because of the analy-
ticity of n(t), no shrinkage in this sense means that n(t)
is constant not only in the above region of t but every-
where in the t plane. We discuss in this section some of
the consequences of the requirement that n(t) is
constant.

According to (31), n(t) consists of two phases. How-
ever, it is extremely unlikely for these phases to cancel
exactly for all t&tp, because these phases become the
same if there is crossing symmetry (11) and are other-
wise independent of each other. Thus, no shrinkage
means that the two phases in (31) are individually
constant in t. The dispersion relation (9) then implies
that
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It then follows from (29) that

a(t) =S(t, s= ~), (34)

in the case of no shrinkage, as

A (s,t,u) =
t cp+cp(s'+t'+u'))Q(s, t,u), (38)

meaning that 8(t) is the real, finite limit of the t phase
at infinity in its momentum-transfer plane. The asymp-
totic form (31) can be written in this special case as

A(s, t,u) .- ~is/(t), (35)

where P(t) is given aside from real, finite polynomials by

t "b(t', s= ~)C«'
P(t) =exp—

«'(t'-t)

In (35), one has required that the total cross section
approaches as s —+ ~ a 6nite, nonzero limit and that the
forward amplitude becomes pure imaginary in the
limit of s —+ ~.

According to (35), the shape of the forward peak of
high-energy elastic scattering is determined by P(t). The
expression (36) implies that this shape is of a pure
exponential form of t in a region near t=0, but ap-
proaches a power form of t as momentum transfer in-
creases. One sees this most clearly if one applies the
separation of the type of (18) to the integral in (36),
to rewrite (36) as

—b(t~, s oo)/~
tp

tp —t

t "8(t', s= pp) 5(t= pp, s=—pp)
t

&& p — dt'i . (37)
gp

t'(t'- t)

The exponential factor in (37) approaches a finite limit
as t -+ pp if the t phase also satisfies the condition (20).
Moreover, 8(t= pp, s= po) in (37) is equal to the forward
phase 8(t= pp, s=0) if the t phase in the limit of infinite
energy is also independent of the momentum-transfer
variable.

If one considers the prp+7rp —+ irp+7rp amplitude, one
can obtain more consequences of no shrinkage because
of high symmetry available in this amplitude. The
optical theorem also applies to this a,mplitude, which
implies' that 8(s= pp, t=0)=7r/2 if ap+2ap&0, and
b(s= ~, t=0) = —~/2 if ap+2ap(0.

One can then argue that the case of ap+2ap(0 is
excluded. For this, one notices that 6(t= pp, s= ~) in
(37) is equal to 8(s= ~, «=0) = &z/2 because of sym-
metry. One also recalls that the asymptotic form (35)
with P(t) given by (36) is exact for this amplitude. Then
8(s= pp, t=0) = —pr/2 implies that the asymptotic form
(35) behaves as s for small [t

~
and as [ t [

"'s for large
~
t

~
.

This behavior is, however, not permissible physically.
Quite similarly, one can argue also that the cubic term
in Pi(s, t,u) in the case of ap+2ap) 0 must be excluded.

Thus, the ~P+~P ~ ~P+irP amplitude must be written,

where cp and cp are real constants and Q(s, t,u) is given
by (14), (15) and (16). In. this case, one must have
ap+2a2) 0 aild h(s= pp, t= 0) =m/2. This sign of ap+ 2am

is consistent with the prevailing evidences. We remark.
that 8(s= ~, «=0) =m/2 implies that the fonvard peak
of high-energy elastic scattering /proportional to P'(t)]
approaches a simple inverse power behavior of t for
large momentum transfer. This could easily be checked
experimentally.

e. SUMMARY AND CONCLUSION

Ke have shown in the previous sections how one
finds and uses the double phase representation (4) for
the elastic amplitude A(s, t,u) This r. epresentation (4)
is a generalization of the (single) phase representation
(1). Similarity is obvious not only between the expres-
sions (4) and (1) but also the assumptions underlying
these representations which are listed in Sec. 1. In both
representations, the phase defined by (2) and (5) must
be finite in the physical regions even in the limit of
infinite energy. The double phase representation (4)
requires, in addition, crossing symmetry and an extra
assumption concerning the zeros of A (s,t,u). Therefore,
the double phase representation (4) is considerably more
restrictive than the single representation (1).

This extra assumption concerning the zeros makes the
phase of A (s,t,u) analytic everywhere in the momentum-
transfer plane except for the branch cuts which belong
to A (s,t,u). Without this assumption, not only does the
double phase representation become much more com-
plicated than (4), but most of the analysis done in this
paper becomes impossible to carry out. This is because
the analysis consists of using the dispersion relation for
the phase which otherwise involves unknown integrals
corresponding to the extra branch points. If there is no
crossing symmetry in A(s, t,u), the double phase repre-
sentation (4) with Q(s, t,u) given by (14) diverges ex-
ponentially at infinity in the s or I plane with t fixed.
Therefore, crossing symmetry is assumed throughout
the analysis of this paper. The analysis is valid as long
as A(s, t,u) has either even or odd crossing symmetry
with respect to the interchange of some pair of s, t, and N.

AVe add an additional remark in connection with the
last statement. The double phase representation (4) is
more restrictive than the Mandelstam representation
in the sense that the former requires the extra assump-
tion concerning the zeros. However, as was just stated,
the double phase representation (4) does not necessarily
require the boundedness of A(s, t,u) by finite poly-
nomials at infinity. On the other hand, the Mandelstam
respresentation breaks down as soon as A(s, t,u) is no
longer bounded by finite polynomials at infinity. There-
fore, the double phase representation (4) is more general
in this sense than the latter.
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It was shown previously' that the phase representa-
tion is very useful in discussing high-energy behavior
of elastic scattering. In fact, we have derived in this
paper the asymptotic forms of the amplitude which are
simple power forms of energy, assuming the double
phase representation (4) and also that the phase
approaches the limit at in6nite energy not too slowly.
This last condition is expressed by (20). In the forward
direction where t is finite, the amplitude approaches the
expression (31). The expression (32) is the asymptotic
form in the backward direction where u is 6nite. In these
asymptotic forms, the tr's and P's are both real and
analytic everywhere except for a single cut (either the
t or the I cut) and a finite number of poles which the
P's may have. These n's and P's are all written in terms
of the phase and the zeros and poles of the amplitude.
The significance of this derivation of high-energy be-
havior is that the power behavior in energy is merely a
consequence of the usual analyticity assumption.

We have discussed in particular the case when n(t) in
(31) is constant. This is the case when the forward peak
of high-energy elastic scattering does not shrink. ' We
found that the case of no shrinkage is the case when the
crossed channel no longer diverges logarithmically at
infinity in the momentum-transfer plane. The very
simple analyticity of the phase in the momentum-
transfer plane is already implied by assuming the double
phase representation (4) (see the second paragraph of
this section). Therefore, no shrinkage is actually the
simplest situation one can expect from the point of view
of the behavior of the phase of the amplitude in the
momentum-transfer plane.

According to some of the previous works, however, no
shrinkage is not consistent with analyticity and uni-
tarity. Gribov" pointed out that the asymptotic form
(35) cannot be consistent with the analyticity of A (s,t,u)
and the unitarity condition valid in the purely elastic
region. He assumes that there is a purely elastic region
in the t-physical region. This is correct in the case of
pion-pion scattering. He then continues analytically
this elastic unitarity condition with respect to the
angular variables involved in the unitarity condition. He
obtains this way the continued unitarity condition
which depends essentially on the amplitude at infinite
energy. He then shows that this continued unitarity
condition contradicts the asymptotic form (35). The
major difhculty in this proof lies in justifying the
above continued unitarity condition. This continuation
consists necessarily of using the Cauchy contour
theorem with respect to the variable to be continued
analytically. This means that the validity of this con-
tinued unitarity condition depend. ds upon the divergence
of the amplitude at infinity. Assuming that the ampli-
tude is suKciently well-behaved at infinity, one obtains
the above continued unitarity condition. However, in
'the case when the amplitude behaves like (35), i.e., has

"V.N. Gribov, Nucl. Phys. 22, 249 (1961).

a linear divergence in s at in6nity, one cannot justify
the above continued unitarity condition. Therefore, his
proof breaks down in the case of actual interest, though
it is valid, for example, in the case of usual potential
scattering.

The conventional approach to high-energy scattering
is to make use of analyticity in the angular-momentum
plane of the partial-wave amplitude de6ned in the
t-physical region. According to this approach, the
asymptotic form (35) can most easily be realized by
assuming a fixed pole in the angular-momentum plane,
assuming also that the Sommerfeld-Watson transforma-
tion is valid. Recently, Oehme" has shown that the
unitarity condition in the purely elastic region is in-
compatible with the existence of such 6xed poles in the
analytically continuable partial-wave amplitude. Be-
cause of the fact that Oehme works directly with the
partial-wave amplitude, the continuation of the elastic
unitarity condition is exact in his case. Therefore, one
may regard the above Oehme's proof as a revision of the
proof by Gribov. ' However, it is assumed in this
Oehme's proof that the asymptotic form (35) of the full
amplitude A(s, t,N) actually implies a fixed pole of the
partial-wave amplitude in the angular-momentum
plane. In fact, one cannot find any complete argument
which justifies the above assumption. Therefore,
Oehme's proof does not exclude the asymptotic form
(35) either.

It is interesting to consider in this connection what
kind of analyticity in the angular-momentum plane
could possibly be the simplest consistent with the
asymptotic form (35) and the elastic unitarity condition
in the t-physical region. According to our preliminary
work, essential singularity in the angular-momentum
plane, for example, may be the case, though this ques-
tion needs further study.

%'e have not discussed in this paper the possible
limitations due to the unitarity condition valid in the
purely elastic region which may exist in some of the
physical regions involved. This is primarily because we
do not know how to use rigorously the unitarity condi-
tion for the purpose of discussing high-energy behavior
of elastic scattering. Even if we do not foresee any
serious limitation, we may be overlooking some interest-
ing consequences of the unitarity condition. The use of
the unitarity condition in general is likely to be more
complicated in the case of the phase representation than
in the case of the usual dispersion relation. This may be
one of the main disadvantages of the phase representa-
tions (1) and (4).

In view of the fact that the case of no shrinkage is of
great current interest, ' we finally list below a few of the
predictions of our phase representation approach to
high-energy elastic scattering. For the sake of simplicity,
we assume in the following predictions that all the
phases become constant with respect to momentum

"R, Oehme, Phys. Rev. Letters 9, 358 (1962),
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where one has used (42). Because of (41), all the integrals in (43) diverge at most logarithmically. The same
separation makes the second integral in (40) split as

7r2
s0tP

1 1 p(s', t')ds'dt' s " ds' " (1 1

t' I' s'(s' —s) 7r' ., s'(s' —s) „&t' a s' t—'—
"p(s',t') p(s= —~, t')

dt'
t'

( so 1 "p(s= oo, t')dt' s " ds' "p(s', t')dt'
=~ ln — +—

sp s sl g& „s(s—s) ~, a—s —t

where one has used (41). Because of (41), the integrals in the last expression in (44) also diverge at most
logarithmically.
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Convenient rules are given for the general term in the time-independent perturbation-theory expansion
for the self-energy operator of quantum statistical mechanics. The rules are derived by starting from the
usual formalism involving time-dependent Green's functions.

I. INTRODUCTION

PERTURBATION theory for quantum sta-
tistical mechanics was developed by Peierls' in

1933. However, the general term in this theory was
hard to characterize; furthermore, spurious terms,
which are now known to cancel out, seemed to appear
in the expression for the total number of particles.
In 1958, Montroll and Ward' gave a perturbation
theory in which the spurious terms were absent and the
general term was described, but their formalism, in-
volving an unnecessary expansion in powers of the
fugacity, was exceedingly complicated. In recent years
any number of formalisms have been proposed. ' These
are all essentially equivalent, varying only in details.
The procedure of Glassgold, Heckrotte, and Watson

*Work done under the auspices of the V. S. Atomic Energy
Commission.' R. E. Peierls, Z. Physik 80, 763 (1933).

s E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).' C. Bloch and C. de Dorninicis, Nucl. Phys. 7, 459 (1958);
A. E. Glassgold, Warren Heckrotte, and Kenneth M. Watson,
Phys. Rev. 115, 1374 (1959); J. H. Luttinger and J. C. Ward,
Phys. Rev. 118, 1417 (1960); A, A. Abrikosov, L. P. Gor'kov,
and I.E. Dzyaloshinskii, Zh. Eksperim. i Teor. Fiz. 36, 900 (1959)
/translation: Soviet Phys. —JETP 9, 636 (1959)];P. C. Martin
and J. Schwinger, Phys. Rev. 115, 1342 (1959); T. Matsubara,
Progr. Theoret. Phys. (Kyoto) 14, 351 (1955);T. D. Lee and C. N.
Yang, Phys. Rev. 117, 22 (1960).

involves a contour integration, that of Bloch and de
Dominicis multiple temperature integrations, that of
I.uttinger and Ward infinite sums. Thouless, 4 however,
has given a very convenient expression for the logarithm
of the partition function.

To propose still another formalism would appear to
be both inconsiderate and imprudent. Our motivation
is that the rules we describe here are considerably
simpler than any other prescription previously pro-
posed. The rules are closely related to those given by
Thouless, 4 but we shall work with the self-energy
operator in terms of which one can 6nd not only the
partition function but also the single-particle excita-
tions. Furthermore, it should be observed that the
derivation of the rules is not restricted to the single-
particle self-energy operator but, rather, is quite
general. Thus, for example, one can easily use the
method described here to obtain explicit time-inde-
pendent rules for the space-time correlation function
of any two physical observables.

The rules for calculating are given in Sec. II. These
rules were erst obtained intuitively' by the following

' D. J. Thouless, The Qnantnm Mechanics of Many Body-
Systems (Academic Press Inc. , New York. , 1961).

~A. M. Sessler, "Theory of Liquid Helium-Three, " Varenna
Summer School on Liquid Helium, 1961. Suppl. Nuovo Cimento
(to be published).


