
X;*, q*, etc., are the values of L:, q, etc., evaluated for
8 =M*. %e use a I.orentz scalar product in which
x y=xsg —x y=xl"g„„y" and then define the Dirac
gamma mat:nces by

v"v"+v"v"= 2g""

The incident and Anal four-momenta of the pions
are pi, ps, respectively, and of the nucleons are ps, p4.

The scalar invariants are

s= (pi+p;)', t= (pi —ps)', n= (pi —p4)',

v hich satisfy

In the center-of-mass system,

t = —2q'(1 —cose),

te =Q —s+2q'(1 —cose),

4gs = s—Q+t3/s,
cose= 1=(s+I—P)/2q',

(JV&M)' —ts'
X%M=

2tV

Ke define the positive-energy Dirac spinors by

(y p—M)w(p)=0,

normalized so that em= 1, and set

1 3, )

75= iy&yuy&4.
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Kinetic Approach to Condensation
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A kinetic formalism including a Boltzmann-like equation is introduced to study classical condensation
phenomena in gases. Force .laws which include a repulsive core together with an r ~ attractive tail are
examined for all integral E greater than unity. The theory considers perturbations whose wavelengths are
large compared to the diameter of the core. The results fall into two categories depending on whether X&3
or E)4, respectively. For the first class of long-range forces, there are no stable thermodynamic states.
For the second class of short-range forces, phase-equilibrium curves are found which are in accord, qualita-
tively, with classical results. In the limit as E—+~, all states are stable. A discussion of the effects of
random collisions is included.

I. INTRODUCTION AND SUMMARY OF RESULTS

'HE principal formalisms by which gas condensa-
tion has, in the past, been investigated separate

into three distinct areas of study. The widest of these is
the statistical-mechanics approach' which, in turn, is
centered about the construction of a partition function
or higher order virial coeScients. A second formalism is
that of Becker and Doring' which is concerned primarily
with the development of droplets in a condensing gas.
A third avenue of investigation is a Quid-dynamical one
which was first suggested by Jeans"" in studies of

*Permanent address: Physics Department, New York Uni-
versity, New York, New York.' J. E. Meyer, J. Chem. Phys. 5, 67 (1937).

2 M. Born and K. Fuchs, Proc. Roy. Soc. (London) A166, 391
(1938).' B. Kahn and G. Uhlenbeck, Physica 5, 399 (1938).

4 J. Frenkel, J. Chem. Phys. 7, 200 (1939).
' W. Band, J. Chem. Phys. 7, 324 and 927 (1939}.
6 B.Zpmm, J. Chem. Phys. 19, 1019 (1951).
s C. Yang and T. Lee, Phys. Rev. 87, 404 and 410 (1951).

M. Kac, G. Uhlenbeck, and P. Hemmer, J. Math. Phys. 4,
216 (1963),' R. Becker and W. Doring, Ann. Physik 24, 719 (1935).

'e J. Jeans, Phil. Trans. Roy. Soc. London A199, 49 (1902)."R. L. Liboff, Phys. Letters 3, 322 (1963).

gravitational instabilities. In the present analysis
another kinetic formalism is initiated, which is centered
about a Soltzmann-like equation. This equation stems
from the first-order reduced Liouville" equation and is
derived (cf. Appendix) by expanding the integral over
the two-particle interaction in terms of the correlation
between the particles. The lowest order equation so
obtained contains a collective force term over non-
correlated particles. "

This equation is used to uncover the stability of
Maxwellian equilibrium states. If these instabilities are
interpreted as being the origin of condensation phe-
nomena (gas -+ liquid), then the related stability criteria
readily yield phase-equilibrium curves. That this is
indeed the case has been demonstrated" (to within
second-virial-coefficient standards) through exhibiting

's H. Grad, in Rare/ed Gas Dynamics, edited by F. M. Devienne
(Pergamon Press, Inc. , New York, 1960}.

'3 It should be noted that the distribution function of the Boltz-
mann equation is a truncated one LRef. 12j (expectation of ending
no particles within a certain distance of particle i, with particle i
in a given state), while the distribution function in the present
work is the standard reduced distribution.

'4 R. L. Liboff (to be published).
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the equilibrium statistical-mechanics counterpart of the
kinetic stability study herein presented. The resulting
domain of validity relates to large enough specific
volumes.

In this manner a condensation theory is developed
which includes thermal effects and the influence of
collective forces. More generally, there are three dis-
tinct mechanisms that contribute to the development of
condensation (classical). Only one of these —the col-
lective force mechanism —contributes constructively to
the growth rate of the perturbation. The remaining
two—thermal effects and short-range random collisions—tend to destroy the condensation. "

The system which is investigated is an infinite homo-
geneous gas vanishing at infinity, whose thermodynamic
equilibrium is generated by a Maxwellian distribution
function. The stability of this equilibrium configuration
is examined through a normal-mode, Fourier-transform
perturbation analysis. The problem is solved for all
force laws Fsr which include a repulsive core together
with an attractive r ~ (iV) 1, and integral) tail. The
theory considers longitudinal perturbations whose
wavelengths are large compared to the diameter of the
core.

The results fall into two distinct categories depending
on whether X&3 or X&4, respectively. Each region
exhibits distinctive properties peculiar to its own group.
This, of course, reAects the fact that the 6rst class of
forces (S=2,3) includes very-long-range interactions,
while the second group, X)3, includes short-range
interactions (%=4 is a special case but clearly belongs
to the second group).

The criterion which discerns between the existence
and nonexistence of growing modes separates accord-
ingly into two classes. For the (iV= 2,3) group of forces
this criterion appears as inequalities that include the
frequency and wavelength of the perturbation, so that
unstable modes are always present. One concludes that
there are no stable thermodynamic equilibria for gases
interacting under (iV=2,3) force laws, which is con-
sistent with results of statistical-mechanics studies.
However, in this first class (X&3), there do exist
maximum growth rates. For the (iV=2) case" the
growth rate is maximum for long wavelengths and
diminishes as the wavelength approaches some critical
distance. For the (Ã=3) force the growth rate is
maximum for some intermediate wavelength X3', and
diminishes as X —+ ds (a definite finite distance) for short
wavelengths, or as P, —+ X)))3' for long wavelengths. For
large temperatures, the wavelength X of the unstable
mode varies as X Ts for the (X=2) gas, while X Ts'"
for the (X=3) gas. The equilibriuni temperature is Ts.

For the second class of force laws (iV&4), the criter-
ion pertaining to the existence of growing modes is
independent of the frequency and wavelength of the

' This is must evident only at the start of. the growth of tile
instability. Collisions may very nell aid t.be (undensation mecha-
nism in the nonlinear region,

perturbation, and is only dependent on the components
of the equilibrium-state vector and the constants in
F~. The vaporization curve (also called. "phase-
equilibrium" curve) which emerges is: Psrs'=pir Lor
equivalently: Ps= (E/Piv)Tss]. The equilibrium Pres-
sure and specific volume are Pp and vp, respectively. The
constant pN is an explicit function of the parameters in
Ii~. For any single gas the related equilibrium curve is
seen to intersect the family of isotherms I'p'vp=KTp ln
accord, qualitatively, with classical thermodynamic
diagrams. In addition, the theory satisfies the constraint
that the equilibrium curves are to have the same func-
tional form for all gases. More quantitatively, the
actual form of the vaporization curve" can be accur-
ately 6tted by one of two forms. In the region far
removed from the critical point (Ts«T.—=critical
temperature) where the heat of vaporization is slowly
varying, the Clapeyron equation is readily integrated
and gives the well-known logarithmic variation (a),
lnPp —1 p . However, if Tp is not small compared to
T„ the form (b), Ps T", rr)1, is more appropriate.
(More generally, a linear combination of both forms
accurately fits all points. ) Clearly, the included theory
yields results consistent with the experimental observa-
tions of region (b).

It is also interesting to observe that the vaporization
curves (for N&4) are a,symptotic to Psvs' ——0, in the
limit as S—&~, or equivalently, in the limit of vanishing
attractive interaction. This, of course, is consistent with

(1) the classical requisite that all thermodynamic
equilibrium states for perfect gases are stable, and (2)
that condensation is a collective phenomenon, so that
in the absence of a cooperative coupling (X—&~) con-
densation should vanish. This latter consistency also
applies to the result that for the long-range class of
forces (S=2,3) all equilibria are unstable.

The influence of collisions is considered in the limit of
small collision rate where it is found that the effect of
random impacts is to diminish the growth rate of the
instability mode by an amount which is exactly equal
to the collision frequency. For the 6rst class of mole-
cules (iV&3), this effect may drastically alter the re-
sults stated above, so that for collision frequency

sufficiently large, stable thermodynamic states may
exist. For the short-range class of forces (X)4), the
effect of collisions are readily incorporated into the
theory and a formalism is described from which phase-
equilibrium curves may be obtained.

II. ANALYSIS

A. Starting Equations and
Dispersion Relations

The kllietic equation einployed in tire pr.esent analysis
is of the form,

af/ai+( Vf+ (r/rrr) F -~,f-0, (1)
'6 A. H. Wilson, Thermodynamics Ond StutistkaI, AIgclgvsics

(Cambridge University Press, New York, 1957).
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The integral over y gives ~. To obtain the e depeendence of
6 dth 't d'this leading term, we rs

powersers of z to obtain
=2&(l ' —1) (17)d8 ~&4y (k'—k)

irac delta function.
k' '

d h i i foThe integral over k' yiel s t e

"ds (—)"2ls'"+'

sN n-I (2n+1) |
ds—Ze-s" .
ZN

(23)

'*"x kxeCX7'

k Gk ———242(k)
N+14m. x

the olar axis,n
'

rdinates with k along pIn spherical coor ina e
one obtains

e eX anSiOn COefFiCientS Qn. It ISsse vest e t p
quite evidentq

'
that when ~ =Ã—

contribution.the series gives ga lo ant mic c
out this logarithmic pde en ence,
following manner:

1
CX7 Sp

k Gk ——

4m.
d cos0

"r2dr exp( —2rk cos8)rk cosg

rN+j.

=IN'+2 (u,X), (24)

ond integraon
'

l A is some finite
. Th fi i 1

is further divided accor ing o

' darkle'"~"

rN—1

"-'+z ~-"""jL 4(N—2)/2S n

dr( 1
skr ——sinkrcos

N I(—
b or equivalent y,

19)
7

(25)+Q (N-2) /2
Z

'n the final form,This is written in 4(N 2) /2 in—&+4(N-N—2) /2 ln(2+N (

oo

1—N122n+I—

1

*kN ' —(s coss—sins'k G*=nryi
bks

where

n Qn (1 b g(N—n2)) ~ (26)

(20)=(zrn*kN 'IN (bk),

. Ke will beefine the function IN. %which serves to define t e
interested in va

elen ths are large comprturbations whose wave engpertur a i

g o" pre ulsive core.
case

t er
t value o i

ill
th i te by

(X=
btains (integratingwhich case one o ain

parts),

er ent series giveshe uniformly convergIntegrating t e un

IN = —4~(N 2) in&+—gb(N 2) nG

—a

22n+2 N(2—7)
i 2)2+2 —X

S even) explicitlyerms of IN evso that the leading term
appear as

sins,
= —1+—+.

3t

IN Q~(N —2) inc

e—=kb. (21)

For =, '
e ral is still well behaved at the

origin, and one o ai
U= s coss —sins),

1 0(22))+B((2,Ã). (28
~N 4—3(X )

contri u iob t n and one obtainsFor odd S there is no log
directly (X)4)

~ ~ j1 z coss —sins) ds sins I:1+o(")1+I3'(&,I)/)('29)
3 (X—4) 4N '

(22)

rm in the expansion ofFor E&,3 the leading term in e

de end only onand 8' are finite an epThe constants 8 an
(a,I)/)

the dominant termrm is seen to

I'd h df X even. Table in iappears or
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Equations (34)—(36) will serve as our fundamental
dispersion relation in the following sections.

Fro. 1. The func-
tions 4 and Z for the
E&4 class of forces.

terms P&«&] in these expansions of I& about e=O. I~
may now be written

I~=IN«&(1+eI~ "&+ . +e~ '&~ 1ne+. ), (30)

where 6~=0 for S odd.
To within these leading terms, Eqs. (12) and (13)

appear as (dropping the * notation)

ig(( k (v).=——(r/nz)G v(fo, (31)

(32)ik G=nrmk~ 'IN«&.

These two equations yield the single equation for G,

+= 3mC'b~ 4(.iY 4)/nr'n—o,

against Z(iP) (where P= p/Ck), as in Fig. 1.
It is clear tl~at solutions exist only if

(38'I

(39)

B. Syeci6c Cases

(a) X)4
For this force law, Eq. (34) appears as

3mC'b" '(X— 4)/—n~eor'= Z(P) . (37)

It is clear that the only normal modes lie on the positive
imaginary axis in the t plane, i.e., for t =i8, P= ~P ~.
Since k is real and 1 =«/Ck, setting t'=if is equivalent
to setting «=ip, p=

~ p~. This indicates that the only
normal-mode solutions are purely growing (unstable)
niodes. "

The solutions are obtained by plotting the straight
lines,

HZ

'~ fd3t-
Iv&~ — G=O.

g k—«

1
—inc
3

E&4
-N+4

3(E 4)—
TAszE I. The dominant terms of IN about ~=0.

(33)
Furthermore, the equality gives the curve that

separates stable (no growing modes) from unstable
(growing modes)

thermodynamic
equilibrium. In terms

of the specific volume v0=n0 ', and the equilibrium
temperature ET0=mC', this "vaporization" or "phase-
equilibrium" ) curve appears as

To~o nvrv'/3E——b~ '(V 4)=7~,— —(40)

or, equivalently, employing Eqs. (6) in terms of the
pressure I'0, as

07

Po= (&/p~) To', (41)

In the special case of longitudinal fluctuations
(k)(6=0), Eq. (33) gives the dispersion relation,

t)0 ~0 E-PcV ~

0!T S0k
1=— I «&Z(l.),

mC'
where " vt.-&"'dz

For some specific X, the curve (42) intersects the family
of isotherms P0v0 ——KT0, as depicted in Fig. 2. For

(34) X))4, P~ —+0, and Eq. (42) tends to vPPo +0, which is—

l =«/Ck, w=$/C.

(35)

POVO
- kTO

ImZ& 0,

ReZ&0 ' ImF =0

ImZ &0,

0&0&-,'~,

0=~m,

In the upper half f plane, Z exhibits the following
properties":

UN STAB
EQUI

FIG. 2. Phase-
equilibrium curve for
the 1V&4 class of
forces.

Z(it) —1 P(k~)'"+—
'" Decaying and propagating roots rrvay 4e obtair~ed in the

lmver half |plane by distorting the contour of the F integra, l;
however, such solutions are, of course, not normal modes.
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depicted in Fig. 3.This latter diagram shows the manner
in which the unstable modes dix~imish with vanishing
attractive interaction. "

The behavior of the roots in the region of large P
(Cii/Ckj))1) may be obtained by equating the asymp-
totic development of Ii CEq. (36d)] to %. This gives

0!~V~ Rp

FIG. 4. The func-
tions@ and Z for the
E=4 force.

p
V 3~b "~(X—4)

(43)

so that the growth rate p decreases as the wavelength X

increases (opposite to result for %=2), and is inde-

pendent of the temperature.
I'inally, an estimate for the critical temperature 1&

may be obtained by setting vo
——vo

'" b", i.e., the
"packing volume, " in Eq. (40). This gives

P'= p.b/C

This equation has solutions only for

(Vs/C')&2e, Clne=1j, (48)

&Tc-C~~r~'/b" jCb/3(~ 4)j. —

(b) iV=4

(44) which gives the desired criterion for the existence of
solutions to (47). The equality gives the related phase-
equilibriurn curve,

In this case, Eq. (34) assumes the form, T'o&o= n4r 4'/6eK= y4 (49)

Z(I ) =—C'/V' 1n(kb) —=44

V'= n4r4sno/3tri

(45) This is fundamentally the same form as was uncovered
in the X)4 case Ccf. Eq. (40)j, and one obtains in
similar manner the alternate equations,

The immediate conclusion is that normal-modes
solutions occur only for kb(1, which is consistent with
the original domain of validity for the expansion of I~.

Again, the only roots are those for which I =iP,
J3= I/I. In terms of P, the dispersion relation (45)
appears as

Pp (K/y4) Tp'——,

&o'~o= &y4.

(c) X=2

(50)

(51)

C2— 1

V' lnP —ln(pb/C)
=~(:e)

ps= (V'/C') Inp. (47')

FIG. 3. Phase-
equilibrium curve in
the limit of vanish-
ing interactions.

Po

STABLE EQUIL.

Pv,' o

UNSTABLE EQUIL.

VO

'o Here we are assuming that Inrrrio /b~~! is bounded as E
becomes large. Relaxation of this constraint yields interesting
results.

These two functions of P are plotted in Fig. 4 (for
fixed p).

The criterion which discerns between the existence
and nonexistence of solutions to (47) is uncovered by
examining these curves in the region of large P where
one obtains

For this case, Eq. (34) appears as

Psd 2—$2C2/~ 2 —g(I.)

=O.'2r2 no/ S2.2 2 /

(52)

(53)

1 3 15
+ + ). (54)

ps ps p4

Once again, the only roots of (52) are those for which

i =if or &o=iii In a pr.evious analysis by the author" it
is shown that ~2 is the maximum value that LM can
assume and that, furthermore, this maximum is ap-
proached as the wavelength A becomes large compared
to d2. In addition, as ) —+82, p —+0, and the instability
vanishes.

It follows that for a given (xp, To) (i.e., given thermo-
dynamic equilibrium state), there is always an unstable
mode. In order to ensure that this result is independent
of the presence of a finite core (i.e., Io&" is independent
of b), Eq. (34) must be examined in the region of large

P, retaining terms of higher order in e. The relevant
equation appears as

y,
' — 1 (pb)'1 1 iib)'1

1+—
I

—
I

———
I

—+
oossP' 3!kC) Ps 5! C/ P'
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It is clear that there is always a root,

P2))/22/op 22

The Taylor expansion of f' about the absolute Max-
wellian fp appears as 2o

or equivalently,

X'))d22= ZT p222/r22n2N p. (56)

22 u( T //pf"=fo 1+—+ + I

—3 i+ . (63)
22o C' 2 To EC2

The larger the equilibrium temperature Tp, the larger The variables e, u, T, are perturbations about T = T'p

the wavelength X of the Quctuation which will exhibit +„=0 z„—zp so that
collective behavior. This wavelength grows as Tp'f'.

T„,= To+ T,

(d) %=3

For this case, Eq. (34) appears as

Ck/o12 ——Z (g),

o12= 2rnsr 2222 p/4222C

u =0+u,
22 =22p+22.

(64)

(57) These equations are consistent with the perturbation
f=fp+c.

(58) Substitution of (63) and (64) into (62) gives

~~o1, o/ 1/2/) 1/2 (60)

so that p, decreases with increasing X. Since p —+0 as
),—+X3 also, it follows that p assumes a maximum at some
intermediate wavelength Xo'. While the (/V= 2) gas will

naturally coalesce to globular forms of the dimension
d2, for the (iV=3) gas the heterogeneous equilibrium
depends on whether X~~X3'.

If the effects of the 6nite core are brought into play,
then, again, there is still a persistent growing mode,

X))4ETp/2rnpr 22/2 p, (61)

which is seen to grow as Tp.

III. THE EFFECTS OF COLLISIONS

To exhibit the inQuence that random collisions have
on the above analysis, the following simplified collision
form is adopted:

~f/~l I -ii= v(f' f)—(62)

The collision frequency is v and f' is a local Maxwel-
lian which includes the actual number density e,
temperature T, and macroscopic Qow u of the gas.

Again, rOOtS Only OCCur fOr l =ip; o1=i/1, and fOr

Ck/ops&1, this latter criterion following from the fact
that Z(iP)(1. The equality establishes the minimum
value that X can assume which is

'Ap= C/o&2.

Inasmuch as this root related to a finite k and P —~ 0, it
follows that at this minimum wavelength, p= 0, i.e., the
instability vanishes at Xe.

All of these results are strikingly familiar to the
results of the (/V=2) case, which is to be expected
inasmuch as these two force laws are both very long
range. However, there is one dissimilarity. In the previ-
ous (X=2) gas we found that the growth rate /ti was
maximum in the long-wavelength limit. However, in the
present (iV=3) case, the equation of the asymptotic
values for Z to Ck/oio gives

Bf t 22

=v —g+—+
co11 — +p

(65)

If v is taken to be small (along with the perturbations
e, u, and T, then to within terms of lowest order the
collision form (63) appears as

~f/~ /
I «»1= (66)

The inclusion of this in Sec. II A produces one eGect,
that is, to change i~ to i~—v, or, equivalently, to change
the argument i of F(f) to

t = (oi+iv)/Ck. (67)

Since the only relevant roots occur at l =if=i/2/kC,
one obtains

oi =- i(/1 —v), (68)

i.e, , the collisionless growth rate p is diminished by an
amount which is exactly the collision frequency v.

%e now apply this result to the class of forces E&4.
Let us recall the procedure which discerned between the
existence and nonexistence of roots (cf. Fig. 1). A very
similar procedure now applies again with P =/ti/Ck, and
again one concludes that normal modes occur only if
4&1 Lcf. Eq. (39)~. However, these normal modes
will grow only if p, )v, due to formula (68). More
generally, v is a function of (b,N, 22p, Tp). These values
also determine p, (for fixed k) through the equation
O'=Z(iP). If the intersection of 4 and Z lie to the right
of P.= v/Ck, instability results. Combining this fact
with the explicit dependencies of 4 and v on (no, Tp)
yields criteria for the stability of the (22p, Tp) state.
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APPENDIX
fr (&I)fl(ss) = sx') fx(sr', ss sxK ~1)~2 ' '
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A1 i.e., one equa i
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