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High-Energy Quasielastic Proton-Proton Scattering and Final-State Interaction
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The explanation by Drell and Hiida of the inelastic bump, observed by Cocconi et al. , in high-energy
proton-proton scattering is shown to be inadequate for two reasons: (i) The g(t) = [da (—s~, t)/dQ]/[do (si,0)/dQ]
chosen by Drell and Hiida gives too large wide-angle 7r/ scattering, while a calculation consistent with
v ide-angle 7f-X scattering gives a difterential cross section smaller by a factor of five than the experimental
cross section; (ii) the primary process in the Drell-Hiida mechanism gives much too small D and ti w-ave-

amplitudes, so that even strong resonant final-state interactions in these states do not give any appreciable
structure to the differential cross section. A formulation for the final-state interaction between the pion and
the recoil nucleon is given, and it is shown that the nonresonant final-state scattering in S and P waves gives
large enhancement.

I. INTRODUCTION
'

~ XPERIMENTS done in CERN on p-p scattering
~ above 10 GeV/c by Cocconi et al.r s indicated the

existence of an inelastic bump with two peaks. The
rest mass of the recoiling system corresponding to these
peaks coincided exactly with the second and third m.F
resonances which occur in T= ~ states at energies 1.51
and 1.69 GeV, respectively. Feld and Iso' attempted to
give an explanation of the bump in terms of a one-meson
exchange diagram in which the target proton and the
pion are left in an isobaric state. The objections against
this explanation are: (i) The momentum transfers in
these experiments are (1 GeV/c)' so that this par-
ticular diagram is not expected to be the dominant
process; (ii) The model predicts a peak corresponding
to the (3,3) wE resonance which is not observed. Drell
and Hiida pointed out that these difficulties may be
overcome by considering another one-meson exchange
diagram in which the incident high-energy proton
undergoes diffraction scattering on a virtual pion of
the target proton. They succeeded in obtaining an
inelastic bump and suggested that a final-state inter-
action between the pion and the recoil nucleon may
explain the two peaks in the inelastic bump. The (3,3)
resonance peak should not appear in this case, since
the recoil nucleon and the pion formed from the target
proton by diffraction scattering are expected to be in a
T=-,' state.

In the present work, we point out that two objections
can be raised against the explanation of Drell and
Hiida. The 6rst objection is discussed in Sec. II. In
Sec. III we discuss how the relative magnitudes of the
partial wave amplitudes, due to the primary process,
can be approximately evaluated. In Sec. IV we give a
6nal-state interaction formulation for our present

problem. In Sec. V we discuss our second objection
using the results of Secs. III and IV. In Sec. VI, the
main points are summarized, and some remarks about
the Anal-state interaction formulation are made.

II. DIFFERENTIAL SCATTERING CROSS SECTION
WITH NO FINAL-STATE INTERACTION

The diagram we are considering is shown in Fig. 1 (a).
At the vertex A, we have m.S diffraction scattering, as
has been considered by Drell and Hiida. The box in
the figure represents the final-state interaction, which
we shall forget for the moment. The differential cross
section in the lab system (q, =0) of the "primary"
processs is (p' means average over spins)
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Fin. 1. (a) One-
meson - exchange
graph considered in
the present paper,
At the vertex A,
di6raction scattering
of the incident high-
energy proton on a
virtual pion of the
target nucleon oc-
curs. The box repre-
sents interaction in
the 6nal state be-
tween the pion and
the recoil nucleon.
(b) The same process
in the center-of-mass
system of the pion
and the recoil
nucleon.

and

2' 2 l(qlI' I q', &) I'= 4~—f'(&'/I")~,

cations, from Eq. (2), we get,

d'o.s 3 1 f' pr 1
-- —ns-

dErdQr 2 (2m)' p' p, ly; —pal

The square of the matrix element
I iV(sr, t) I' is related

to the xX differential scattering cross section in the
c.m. system by

4 W)s d~
I3E(sr, t) I'= —

I

—(sr, t) (sr ——W'). (6)
m i dQ, ,„

If now do/dQ, .„,. (sr, t) is known as a function of sr and
t, then inserting (6) in (5), we can evaluate d'os/dErdQr. .

Drell and Hiida have made the following approxi-
mation here. They assume for high-energy diGraction
scattering

for xP emission

= 2 for m+ emission.

=(~ t) = (~»0)t(-t)
dQ, dQ,

(7)

We choose our s axis in the direction of the vector
(p;—pr) and take it as the azimuthal angle of q relative
to the plane containing y; and yy. The integration over
d(cos8) can now be carried out, and we arrive at the
result

d op

da m
(sr,0)=

dQ, . 4m 8"
)2

ImM(si0)
I
.

where the function g(t) gives the dependence on the
momentum transfer, t. Now if the amplitude 3f(sr, t)
is completely imaginary for forward di6'raction scat-
tering, then

dEydQy

anmax Asd (A2)

(gs+ ~2)2
I ~(~,t)

I
'de, (2)

From the optical theorem, ImM(», 0)= (kW/ns)o-r,
where 4= c.m. momentum of ~Ã system and 0-& ——total
cross section. From (7) they, therefore, arrive at the
result

with cos8 determined by the 8-function;

cos0= ( t+A'+ f (E; Er)As/m—)+tI,')—
X (2ql p;—yr

I)-'. (3)

Now, combining (3) with the restriction that cos 0&1,
we get the following inequality:

do.

(», t) = —
I ~A(t)

dQ.
'

4~i

Lsr —(~is+ti)') I sr —(m —p)')
~a(t) (9)

4(4n.)'sr

L
—(t/m') —1—2(E;—E,)/m)a' Amati et al. ' have derived the following t-dependence

+ (4(E —Er)' —2t+2t(E, Er)/—from the Mandelstam representation, making certain
approximations:2'' 2p'(E Er)/iw) —A' (——t+ p,')'—&0 (4)—

From inequality (4), 6' and A'; can be exactly
worked out. To correct for the off-the-mass-shell eGects
at the vertices and in the pion propagator, we use the
function P(h') = L1+(6'+ti')/n) ' given by Ferrari and
Selleri. 6 We also take into account the fact that the
final pion can be ~+ as well as ~'. With these modifi™

'E. Ferrari and F. Selleri, Phys. Rev, Letters 7, 387 (1961).

r(t) =F'I t I/4t ';
P(gs)=inl g+ (1/gs)&&s)/g(1+gs)&/& (10)

Lovelace recently has given the following formula
for ~l differential cross section at high energies as a

D. Amati, S. Fubini, A. Stanghelliru, and M. Tonin, Xuovo
pimento 22, 569 (1961).

s C. Lovelace, Nuovo Cimento 25, 730 (1962).
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formula of Amati et al. gives a differential cross section
4 times larger than that given by the Lovelace formula.
Since the Lovelace formula is in good agreement with
the actual xS scattering results even for large t, so
between curves I and III, only I can be considered as
consistent with xX wide-angle scattering. As this curve
is smaller by a factor of 5 times the experimental cross
section, it means that the Drell-Hiida mechanism is
inadequate to explain the bump.

However, we would like to mention that in the
calculation of D-H a cutoG appears. This cutoff was
adjusted to give the right magnitude of the bump
corresponding to the g(t) assumed. If now the integral
over 6' is taken to the maximum limit and the cutoff
function F(bP) is taken =1, then the height of the bump
can be increased by a factor of 5.4

FxG. 2. Curve I—differential cross section using Lovelace
dependence, but not 6nal-state interaction. Curve II—diGerential
cross section with Lovelace dependence and anal-state interaction.
Curve III—diGerential cross section using the dependence of
Amati et a/. The dashed curve represents the experimental results
of Cocconi et al.

function of both of its variables:

(p (~ ) vp —pop

(s,, t) =n0
I

—
I

—
I mb/sr, (11)

k p'i

where no= 1.8138, go
——2.70, and Vo= —0.298, and

—t/L2p+ (—t+ 4/2) ~&2j~

His formula agrees well with the wide-angle experi-
ments, as well as with the forward peak and the
Mandelstam representation.

We have calculated the differential cross section
d'oo/dErdQq usi. ng the Amati et at. dependence I Eq.
(10)], as well as the Lovelace dependence I Eq. (11)]
for p, =15.89 GeV/c and 8~,b=56.5 mrad. Our results
are shown in Fig. 2. The dashed curve represents the
experimental result. Curves I and III give the differ-
ential cross section on the basis of the Drell-Hiida
mechanism, i.e., the diGraction scattering of the
incident proton by the pion cloud of the target nucleon.
The distinction between I and III is that in I we have
used the Lovelace dependence for ~X diffraction
scattering, while in III the dependence of Amati et al.
has been used. The actual dependence assumed by
Drell and Hiida in their work is g(t)= (1—t/10@') '
which is similar to that of Amati et al. and, in fact,
1.27 times larger in the relevant momentum transfer
region (—37.5 p' to —40.6 p'). This region lies con-
siderably outside the mp main diffraction peak which
extends up to t= —27@,'. The pion lab energy for the
diffraction scattering at the vertex 2 varies between
2.5 and 9 GeV. The broad bump of curve III has
been suggested by Drell and Hiida as the explanation
of the experimental inelastic bump. However, for the
large momentum transfers we are considering, the

III. RELATIVE MAGNITUDES OF THE
PARTIAL VfAVES

(p, k Ii'I p', ~) (q,~ I

I'.
I
q')e(~').

+2+~2

In the k+q=0 system, we get

5'+t '= 2k.q;, (a,—x),
where

(13)

gc'pic
x= COSH~=

and

ao= P+c(t+q )2 t j/(2k~qi~)'

Similarly, we have

&'+p'+a =2k.q,.(ag —x), (14)

where

a3=—L2~, (t+q, ')'"—t+n]/(2k, q;,) a),2= (p'+k, 2).

H«h (13) and (14) are simple functions of cos8, .

In this section, we determine the relative magnitudes
of the different partial waves due to the primary process
in the system k+q=0. In this system, i.e., the c.m.
system of the recoil nucleon and the pion produced,
the process shown in Fig. 1(a) will look like that in
Fig. 1(b). We denote all the quantities in the system
k+q=0 by the suKx c. We take the direction of q;.
as the z axis, the plane containing p;„yy„and q;, as
the xz plane, and denote the polar angles of q. by 8.
and P,. The invariant transition matrix element of the
primary process can be written as
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The elements (g~t111'ply') and (Pr»II'IP' ~) depend
not only on cos8. but also on sin8, and (f. , :

(q,all, l q,)=—(Ep, 2—rt)')2(E„,+2N)'(2
Xt

0 e '&')
—(1—x')'»
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= (s1—212') Lg (t)j' ',2'
= La( —x—tan8t, , cos)t,, (1—x')'»]

X (—2pr.k. cos8r, ) —-Lg(t)g'». (16)
2m

In the derivation of (16), we have used

t '+2 (Pr.)o(k.)o
QI=-

2Pr„k~ cos8t,

k8' Oy
ImM(s1, 0) = 02 = (s1—2222)—,

Sl 2'

$1 2rt'+t1'+2pr, k. (cos8r, cos8, +sin8r. sin8, cosg, )

+2(Pr.)p(k. )o

(8g, is the polar angle of yr, ). From (12) and from
(13)—(16), we get

ti 0
= constant (T'+T" cosset), ) l

(0

g
—abc

+ (T'"+T'v cosset), ) (17)
e'&' 0

X I QW ~ G85 CUFt' 080 0;'t6 Q&&
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l'IG. 3. Squares of the amplitudes T' 7'I 1"I and T v plotted
against x and d'. The values of cp, QI, 82 aIld Q3 used ale those
given at the end of Sec. III.

where

uq —x a2 —XTI—
(ap —x) (ap —x)

((12 x) tan8r, (1—x-')'»
T

(ap —x) (a,—x)

((11—x) (1—x') '"
TIII—

(ap —x) ((t,—x)

tan8r, (1—x')
g&V—

(ap —x) (ap —x)

The "constant" in (17) is determined by the initial
and the final lab momentum of the high-energy proton
and the lab scattering angle. The parameters ao, ai,
a2, a3 are also determined by these quantities.

In order to see the relative importance of the four
amplitudes in (17), we have plotted their squares
against x (equivalently, A ) in Fig. 3. The contribution
of these amplitudes to the single-pion-exchange process
will be proportional to the area between the respective
curves and the x axis, multiplied by a factor of 22r (for
Tr and T'") or 2r (for T" and T'v). The latter factor
arises from integration over P, . There is no interference
term between the direct and the spin-Rip amplitudes
when we take the sum and average of the final and
initial spin states. A.iso, the interference between the
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(ar —x) (as —x) -=Q (21+1)I'&(x)R&

erst and second and between the third and fourth
amplitudes vanishes when integrated over g,. Figure 3
shows that T is the dominating amplitude for low-
momentum transfer. In our treatment of the final-state
interaction, we shall approximate the primary ampli-
tude by T'. As we shall see later, this results in con-
siderable simplification. On the basis of Fig. 3, we expect
this to be a reasonable approximation.

We can now make the following Legendre polynomial
expansion:

nucleon. Our notation will be similar to that of Watson. '
We consider the total interaction potential as con-
sisting of two parts: One is V, the primary production
potential, and the other is e, the m-X interaction
potential. As in Watson, we denote the initial plane
wave state by I

X ) and the final plane wave state by
I
2f»). A state

I
x») will thus be, in our case, the product

of a two-particle xS scattering state and a single-
particle state of the diffraction scattered proton. We
shall try to discuss our problem, as much as possible,
in terms of scattering operators, "rather than in terms
of the "unobservable" potentials. "

The total scattering operator is given by

From (17) and (18), we get

(a, and a,)1). (18) ' v+ = (V+')"

= (V+v) QP&+&+— — vO"+&
I: Hp V——v+—se

= constant P (2t+1)I'&(x)R&. (19)

LEq. (21) of Watson]

= tv++ vGtv++ t v+„GvGt+v+ v+ t v+pGv, (21)

Equation (19) shows that the R&'s are the relative
partial wave amplitudes of the primary process in the
system k+q=0. From (18), we can work out the R&'s:

I": Hp+r e—(L'= I:r&=I:.)

Ro= LA —aoA ]+I 1 a,A +ao'A ]Qo(ao),

Rr = ——',A s+ L1—apA &+ap'A s]Q& (ap),

Rs = L1—apA r+ ap'A s]Qs (ap),

Rp ——L1—apA &+ap'A, ]Qs(ap);

a&+as 1 1 a&+as 1 1—+—)

aya2 a3 a3 aya2 ay aIa2

(20)

The Q&'s in (20) are Legendre functions of the second
kind. Knowing the parameters ap, a~, a2, and a3, we
can And the numerical values of the partial wave
amplitudes from (20). For p;= 15.89 GeV/c and
8& b 56.5 mrad, if we fix pr &,b= 14.51 GeV/c
(t=-39.02&a'), we get ap ——1.09, ar ——3.27, as ——1.49,
a3=2.20, and

Rp= 1.174, Rp'= 1.378,
Rx= 0.290, 3Rz'= 0.252

Rg=0.149,
Ra=0.084,

5Rg'= 0.111,
7R3' ——0.049.

It will be noticed that the R~'s form a rapidly con-
verging series, that Rg and R3 are small, and that the
S-wave amplitude Rp is by far the largest. We neglect
partial wave amplitudes higher than R3.

IV. FINAL-STATE INTERACTION FORMULATION

%'e shall now give a formulation for the 6nal-state
interaction between the pion produced and the recoil

tv+. D,' &(,V+v—)—

(x~l tv+ 'I X.)= (~~ILtv'+(t. —t. Gv)«v+
+tv'. GvGtv+]I x.)

using t„=-v+ t„Gv
= (I» I {L1+t„G]tv

+ (tv+„t„)GvGtv+&
I
x.) . ——-(22)

In terms of state functions, Eq. (22) can be written as

(x~1 «+'I x.)= (4~' 'I vie'"&)
+(& ' ' —& ' &Ivl& "+') (23)

where we have used

(x I(t. G+1)=(@ ' 'I, t +IX.)=vivat'"').
Equation (23) above is Eq. (22) of Watson. The second
term in (23) has been consistently neglected in the
literature. Watson, however, has discussed under what
conditions we can expect this term to be negligible:

' K. M. Watson, Phys. Rev. 88, 1163 {1952),
'0 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 {1952)."E. M. Ferreira, Ann. of Phys. (N. V.) 16, 235 (1961).

= (V+v)- +1 (V+v) .
F.—Hp —V v+se—

We are interested in the matrix element (&»
I tv+, +I x ).

Since v is orthogonal to the initial state
I
x,) (v can be

considered as I'r&vt's, where I'~ Pr& I
X~)(X»——

i
is the

operator that projects out only states of the type 13),
we then get from (21)
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J
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J
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Fro. 4. Processes described by the amplitudes (a)
(xB[sGsGtv+

~
x,) and (b) (xa (sGtv+„+GvGtv+

~
xa)

(i) if the primary potential V can be treated as a small
perturbation, or (ii) if states of the type 8 do not give
any important contribution. Neither of these conditions
is satisfied in the peripheral process under our con-
sideration. We, therefore, drop this assumption.
Instead, we assume that the operator ty of the pro-
duction potential V does not give any scattering
between two states of the type I

Xtt) i.e., the matrix
element of ty between such states vanishes. This is
obviously reasonable, because scattering between states
of the type I

Xz) should be given by matrix elements of
the operator t„. (In these statements, we can equiva-
lently write tv+ and t.+ instead of ty and t. ).

Let us now examine the term (Xtrl ty+. G~Gty"
I X~).

We can write

tvp. =tv +tv G&(«v+.++&)+e(Gtv+.++&) (24)

Ke notice that, from our above assumption, it follows
a term of the form (X~

I
tv Ge shall always vanish, since

s can only produce sta, tes of the type I X&). Thus, we get

(X& I
Iv+. G&Gtv+

I X.)
= (Xgl e(Gty+.++1)GeGty+I X,). (25)

The two amplitudes in (5) can be represented by the
Figs. 4(a) and 4(b). We neglect the contribution due to
these two amplitudes. The possibility of such com-
plicated processes occurring through single potential
terms is expected to be small. From (22) we, therefore,
get

(x~lty+. 'I x.)
= (x&

I Lt v++ t„Gtv+ t;G.Gt,+j I x-) . (2—6)

The transition probability is

I (Xn
I
tv+ 'I X.) I'

=
I (xal tv+I X.) I'+1(xsl I;«v'I X.) I'

+ I «~ I t. Ge«y+
I
x.) I'

+2 «((X~ I
«+I X.) (xs I

e«y+I X.)*)
—2 Re((alt. Gty+I X,)(xtrlt„GeGty I" ) )-

The amplitudes occurring in, (27) can be represented
in our peripheral process by the Figs. 5 (a), (b), (c),

FIG. 5. Processes described by the amplitudes (a) (xJ&tv+
~ x,), (b)

(xs(vGtv+(tx~), (c) (xs)t„Gtv+)x~) and (d) (xa)t„GsGtv+)x, )

and (d). The interference terms in (27) correspond to
interference between 5(a) and 5(b), and between 5 (c)
and 5 (d).

The quantity we want to calculate is (see Fig. I)

d'k' d'q'

(2m)s (2s)'

where the 5-matrix element S~, is related to the tran-
sition amplitude (Xa

I tv~ +
I
x~) by

Str.—— i2rrh (E—tt E.) (X—tt
I tv+.+I X.)

= —s2m-5(Etr —E.)(gs' &

I Vlf.&+&),

in the system p,+tI,=0. (28)

Since the 5-matrix element is Lorentz-invariant, we
can define an invariant amplitude T~, in the following
way:

Stt.= i(27r)'h'(P—;+q, Pt 1~' —q') T~—. —(29).
|A'riting

(y~ (—)
I
V

I It (+1)

= (2 )'~'(p +~'+a')(4 ' 'I vl4"'+')"
we get from (28) and (29)

i.e., the reduced matrix element (4a& &I VIII,&+&), is
invariant. Thus, we obtain a Lorentz-invariant ampli-
tude if we take out explicitly a momentum-conserving
P function from the usual transition amplitude of the
scattering theory. The new amplitude, so obtained,
can be evaluated in any system we choose. One point
to be remembered here is that in the formal scattering
theory, the phase space integration is over the relative
momentum vector only. However, if a momentum-
conserving 6' function is taken out explicitly, then
phase space integration over the total momentum
vector has to be explicitly written. We shall find this
discussion useful, because the amplitudes in (27) are
all in the frame p,+q;=0, whereas we have to work in
the system p~+tI, —pr=0, i.e., the c.m. system of the
pion and the recoil nucleon.
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d.'k d g

(2m)'(2m)'

d'k' d'q'
(2~)''(p+q p—r &—' q)

—I(4»' 'I Vlk '+') I'
(2m)'(2m)'

(30)

From (27), we find that the erst term in (30) will be fUIQ„''+')=tv+IX„)j
d'k' d'q'

(2-)'~'(p'+q' —pr —&'—q') I(x»I VIP.'"').I'
(2~)'(2n)'

,
d'(&'+q') d'(2(&' —q'))

(2~)4'(p'+q* pr —&' —q') —I(X»l V14' "+') I'—
(2~)' (2n.)'

1 t'dq'
I(" I UIW."+') I'q"I (31)

(2m.)' idE,

(evaluating in the system p, +q;—pf=0).
Now, (X»l Vlf,"&+&)„=pi (21+1)P&(q;.q')R~ in the sys™~~~q~ —~~=0 fsee Eq. (19)J. Using this expansion
in (31), we get

d'k' d'g' 1 dg
(2-)'~'(P~+q' —Pr —&'—q')

I Cx»l Vl&."+') I'- =& (2t+1) IR I'-q" ——.
(2~)'(2~)' 7r dF.

(In this case, the intermediate momenta k, q are exactly the same as the final momenta k', q'. )
From (27), again, we find that the second term in (30) will involve the amplitude

(x»l~. «v+Ix. ) =(el Vlk."'+'),
where

(32)

(+I —= C4»' 'I —(x»l
—= (x.l(~.-G+1)—(x. i

AVe first derive an expression for (pl Vlf,"'+'), proceecling in the following way fusing U(0, t),~„IX»)= Ip»&
—')

and a complete set of states J:
(4»' 'I VIP.'"')=& &x»l ~(~,0) Ix-)(x-I VI1'.""'),

n
trop

= & (x Ie'""e '"'Ix-)(x-I Vlf."+')

=g e'&»"""»' (x»le' 're' 'e'»'& & lx)(„X VII'„'&+'), (hereT=-'')
n

T-+00

= 2 e"'»»""(X»I ~(T, —~) Ix-)(x-I VIP."+'), (See Ref. 12)
n

T~QQ

= 2 f&(&—")—2~'&(~ —~-)(x»l»l4-"')l(x-I VIP."+'),

= (x»I VIV."+')—2 f2~i''(I'-'» —'-''-)(x»I~Id-'+')(x-I VIP."+')3. (33)

From (33) we, therefore, get (changing from summation to integration; p„denotes the relative momentum)

(yl Vlp."+')= —2~"(~»—~-)(e»' 'I~lx-)(x-I V Ia"+')~'p-/(2~)' (34)

Equation (34) can be expressed in the following invariant way:

d'k d'q
(4I UI4-"+').= ~(2~)'~'(&'+q' & —q)(e»' 'l~lx. );—(x.—IVI'."+'),

(2~)'(2m)'

In (35), k and q represent the momenta of the pion and the recoil nucleon in the intermediate state.
» S. S. Schweber, An Ietroductq'on to Eeletivistk Quantum Field Theory (Row, Peterson and Company, Evanston, Illinois, 1961).
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The second term in (30) will now be

d'k' d'q'
(2~)'~'(p. +q' pr—&'—q'—) I

(all' I
4""+').I'

(2m)' (2n-)'

(2m)'5'(p;+q; pr —k' —q') ——i(2n)'5'(k'+q' —k —
q) (pa&

—
&

I
v

I x„)„(x
I
V

I It/, '&+&) „

)dq 1 ' dq' 1—(@a' 'I~IX-) (&-I l'l4"'"') q'I
~ dE (2~)' dI' (2w)'

d'k d'q ' d'k' d'q'
X

(2~)' (2m.)' (2')' (2~)'

/' dq '" dq' "'-1 ' dq' 1f" («', «)LZ (2f+1)Fr(q q')%)l q q' q d&,, q—" dn
k dE dF. ' 2m dE' (2~)'

in the system p,+«,—yr=0. (36)

In (36), we have used the angular momentum expansion of the primary scattering amplitude and have introduced
the miV scattering amplitude in the c.m. system given by

dq~ 1/2 ( dq 1/2

f" («', «) = ——(«',~'I I.'I «,~).l
q'

I q
2~ k dE' « dE

The superscripts n and n represent the initial and the final two-particle channels in the final state interaction.
XVhile n is always a ~IV channel, n' can be different because of the possibility of reaction. f ' is related to the
c.m. differential cross section by

do ~&~ g
I

fa'a
I

r

dQ, . q

Considering only the coherent amplitude,

f" («', «) =Z (2f+1)F~(q' q)f/"
I

f~= L(f+1)f~'+~f~ )I-
l @+1

(37)

(cos8~i = q ' q; I cos8g= q' q, .)
Inserting this in (36), we have

d k
(2~)'8'(P*+q Pf I ' q')

I (&—I
I'I—&."—"') I'

(2a)' (2m)'

4~ Q I'(, (8;,P;)V/„*(8„y,)f(a™Q (2f'+1)'/2(4m)'/2V, ,(8„@,)E,

( dq)'"( dq' '" 1 ' dq' 1
XI q I I

q' q dn, P dn—,
E dE/ E dE' 2~ dE' (2 )'

dq)" f dq') '/' 1 ' dq'
l

1
4xP vi 0(8 ~ y )(4m)"( 1+21)"fi"Rg q I I

q'
I q

—q" Idn,
& dEJ 2~ dZ i

dq) 1
14~ Z (2I+1)&i(«»8, )&if&" I'dfI;q' Iq'

l dFJ (27r) 4

dq) 1
=(4 )'4~K (2~+1)I«l'If~"

I
q' Iq'

l dE) (2m)4

q' //dq )=2 (2f+1)4qq'lf" I'IE I'—
I

w &dr.i
(3g)
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The third term in (30) will involve the square of the amplitude shown in Fig. 5(d). As is obvious from the
diagrams, this term should be negligible compared to the sum of the squares of the amplitudes shown in 5(a)
and 5(c). In the Appendix, we shall present arguments showing that the interference terms in (27) should vanish
when integrated over the direction of the relative momentum of the final outgoing interacting pair. The right-hand
side of (30) will, therefore, be the sum of the two terms, viz. (32) and (38).

The differential cross section with anal-state interaction is now given by

tPO E

dEfdQf pj

dk dq (dpi' 1
(2~)'&'(P'+q' P~

—&' —q')
I

—6)~' 'I I'l4"'+') I' PPI
(2m)' (2~)' &dEy (2or)'

q' (dq (dpi' 1
=—2 (2t+1)lz,

l
L1+4E q'qlf~" I'3 I

—Pjl (39)
l or kdE kdE~ (2m.)'

From (32), we can also calculate the differential cross section with no final-state interaction, which is

Zoo E; 1 dq) dpi' 1
=—2 (2t+1)

I
~il'-q'

Ipi
dEydQg p, do) dog)(2 )'

(40)

In (39) and (40), p; and py are the initial and the final lab momenta of the high-energy proton, and E, and E~
are the corresponding lab energies.

From (39) and (40), we get

where

tPo 00

1+—g (23+1)IR(l'(Q 4q'ql fg" I')
dE&dQ& dE&dQ& Q t-o C

(41)

Q—=Z (2t+1) l~il'
L 0

I (~+1)f~""+ff~-"].
2l+1

The quantity inside the square brackets in (41) gives the 6nal-state enhancement factor. However, in (41) we
have considered only the coherent amplitude in the Anal mS interaction. If the spin-Qip amplitude is also taken,
and we sum over final spin states and average over initial spin states, then there is a further term inside the square
brackets in (41), and we have,

d 0 PtTO 1
1+—2 I

~~ I' X. 4q'ql (~+1)fi""+if~-""I'
dEfdQf dEfdQf — Q ~=o (21+1)

1 ((+1)!
+—g Iz, lo &4q'qlf~'"" f~ "I' —(4-2)

Q t- (»+1)(~—1)'-

V. DIFFERENTIAL SCATTERING CROSS SECTION
VfITH FINAL-STATE INTERACTION

Using the numerical values of the relative amplitudes
R~, given at the end of Sec. III, we shall now show that
the contribution to the enhancement factor (E.F.)
due to D and F waves is too small, so that even resonant
6nal-state interactions in these states will not give any
appreciable structure to the differential cross section.
%e shall also show that the S- and I'-wave ~X final
state interaction will give a large~enhancement to the
diGerential cross section.

The contribution to the enhancement factor (E.F.)

(21' )'"(ol' )'"
~A A—

(qq')" (E.—E)—her
(44)

in (42) by a partial wave (l)0) is

4lz, l

q'ql (t+ 1)f""+~f
Q - (»+1)

(~+1).+- q'q
I

fi'" f~ "I' (4—3)-
(2~+1) (~—1) .

A resonant partial wave amplitude f~,q
'~ is given by



H I GH —EN ERG Y QUASIELASTI C P ROTON —P ROTON SCATTER I N 6 230k

where —,'I', ~21' ~ are the half-widths in the channels
u, n', —,'I'p=P ~ —,'I' ~ is the total half-widths; q, q'

are the relative mornenta in the channels 0. and e', 0.,
in our case, is the x3l channel.

For /=2, if we disregard the nonresonant amplitude,
then the contribution to the E.F. due to the second
s-X resonance Ds~s (T= —',) is

4I R,
I

(-,'r.) (-',I, )

Q (~.—~)'+ (si'r)'

4IR, I'
2. (45)

Similarly, for 1=3, disregarding the nonresonant
amplitude, the contribution to the E.F. due to the third
+E resonance Fg~s (T=s) is

(-', I'„)(-,'I';)

Q %„—z) + (-,r,)
(46)

where p is a real parameter. Each of the S and P waves
now contribute a term of the following form to the
E F ~

—(»+1)IRiI 4qsl y,-l'

+—(21+1)
I
Ri I' 2 4q'q

I
jt" I'

~x' (~a)

=—(21+1)IRtl'f (p—1)'+(1—p')) (47)

In deriving (47), we have used the relation

~- -=2 (II/q') (2~+1) 2 4qq'Ifi" I'
a' (ga) a' (Qa}

=2 (II/q') (2l+1)(1—p&)

We have taken the value p=0.3 for the S- and P-wave
mX scattering. This value gives a nonresonant total
cross section of 33 mb for the second pion-nucleon
resonance, and is consistent with experimental cross
sections. The S- and P-wave contributions to the E.F.
is now, froin (47)

R(P+3Ris R +3sR is

(2-2p) =— (48)

Using the numerical values given at the end of Sec. III

To estimate the contribution to the E.F. due to
nonresonant S- and P-wave xE interaction, we make
the following simple optical-model approximation. We
assume

~2»)J $ pua—
2$g

for the R~'s, we get

Q= 1.790, (Rss+3Rts)1.4/Q= 1.275

4Rss/Q =0.050, 4R '/Q=0, 016.

Thus, we see that the E.F., with only S- and P-wave
~X interaction included, is equal to 2.275. From (45)
and (46) we find that the contributions of Ds~s and Fs~s
resonances to this factor are less than 0.1 and 0.048,
respectively. Both these numbers are negligible com-
pared with 2.275. This essentially means that though
the D- and F-wave contributions have resonant forms,
yet they will give little structure to the differential
cross section, because their magnitudes are too small.

The differential cross section with 6nal-state inter-
action in S and P waves is given by curve II in Fig. 2.
Comparing it with curve I, which gives the diAerential
cross section with no 6nal-state interaction, we notice
that the S- and P-wave nonresonant art interaction
gives a large enhancement (the main contribution
comes, of course, from the 5 wave).

VI. DISCUSSION

We have shown that a Drell-Hiida calculation con-
sistent with mX wide-angle scattering is smaller by a
factor of 5 than the experimental differential cross
section. We have considered the experiment done at
p;= 15.89 GeV/c and ei,b= 56.5 mrad by Cocconi et al.
The bump obtained by Drell-Hiida, in apparent agree-
ment with the experimental result, was pointed out
to be due to the g(t) chosen by them which gives too
large mX wide-angle scattering. We also pointed out
that the Drell-Hiida explanation is insufEcient to
explain the fine structure of the experimental bump,
because the D- and t -wave amplitudes due to the
primary process are too sma11; and therefore, even
strong resonant xE final-state interactions give little
structure. Ke, thus, conclude that a simple peripheral
calculation, as done at present, is not able to explain
the inelastic bump in proton-proton scattering above
10 GeV/c. In this context, it is worth mentioning that
a diferent explanation, based on the idea of Regge pole
exchanges, has been suggested by Frautschi, Gell-Mann,
and Zachariasen. "

In Sec. IV we pointed out why we dropped
the usual assumption in final-state interaction, " viz.
(pii& &I Vlf, &+1)=(gg& 'I VI/„'&+&). Instead, we as-

"S. C. Frautschi, M. Gell-Mann and F. Zachariasen, Phys.
Rev. 126, 2204 (1962). V. N. Gribov, B. L. Ioffe, I. Ya
Pomeranchuk, and A. P. Rudik, Zh. Eksperim. i Teor. Fiz. 42,
1260 (1962) Ltranslation: Soviet Phys. —JETP 15, 984 (1962)g;
A. P. Contogouris, S. C. Frautschi, and How-sen Kong, Phys.
Rev. 129, 974 (1963).We shall like to point out that by using
the Lovelace dependence for 7fE diffraction scattering, we have
actually taken into account the exchange of a "Pomeranchuk"
Regge pole in t variable.

' For dispersion theoretic formulation of Gnal-state interaction
and its equivalence with formal scattering theory treatment, see
M. Jacob, G. Mahoux and R. Omnes, Nuovo Cimento 23, 838
(1962); J. D. Jackson, Nuovo Chnento 25, 1038 (1962).
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sumed that the scattering operator ty+ of the primary
production potential does not give any scattering
between states of the type

I
x&). Our assumption was

based on the argument that scattering between states
of the type I

x&) should only be given by the operator
t„+ of the mX interaction potential v. We shall also like
to note here some other points of difference. Watson,
in his final-state interaction formulation, assumed two
conditions: (i) The primary interaction should be of
practically zero range, (ii) It should be attractive, so
that the two interacting particles tend to stick together.
Neither of these appear in our present case, because of
the special way we consider the whole process occurs.
Here, the incident high-energy proton is di6raction
scattered by a virtual pion of the target nucleon cloud,
leaving behind the real pion and the target nucleon,
which will then interact strongly with each other.
Thus, even though the range of the primary process is

of the order p, '=1.4 I', and the pion-nucleon phase
shifts may not all be positive, it is sensible to think of
the whole process as divided into primary production
followed by a final-state interaction of the pion and the
nucleon.
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APPENDIX

We shall now present arguments showing that the interference terms in Eq. (27) should vanish when integrated
over the direction of the relative momentum of the final interacting pair.

Let us consider the amplitude (x~l vGtv+I x,) occurring in the erst interference term in (27). This amplitude
describes the process shown in Fig. S(b). We can write it in the following way:

1
(x& I

~«v I x.) (x~
I
~

I x-) P
8—E.„

d p))
Arb(E E„—) (X„It—v+

I
X.), (E=E~=E.)

(2~)'
(A1)

The principal value part corresponds to contribution from energy-nonconserving intermediate states. Now, the
only intermediate states which should come into our consideration are the energy-conserving ones, because the
pion in the intermediate states, produced by the primary process, is taken as areal pion. We, therefore, neglect
the principal part in (A1). This leads to

(x~lmotv+I X.)=— (x 1~ix-)(x-It 'lx.)p-'I
(2x)' &dE.

(A2)

We shall work in the system p,+q;—pt =0 and shall take the direction of q; as the s axis, as in Sec. II. In this
system, we have

(x„l tv+I x,)=P (21+1)Pq(cos8„)Rr, (cos8„=j;.P„) I see Eq. (19)). (A3)

We shall now de6ne an amplitude

f'( ~,p)p= ——(xsl~l x.)p. l

2~ kdE„)
(A4)

similar to the mlV elastic scattering amplitude
1 t'dp )

f(p.,p-) =—(x.l t'I x-)p-I
27r ~dEJ (AS)

The difference between (A4) and (AS) is that in the former, the matrix element of the potential e occurs, instead
of that of the operator t„.Now, f(pz, p„) has the following expansion (considering only the coherent amplitude):

f(p~)p„)=p (2l+1)P((p~ p„)f(.
=4~ Q I ((8~,yg) Yg„,*(8„,y„)ft, , I see Eq. (37)].

l, m
(A6)
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We assume a similar expansion for f'(pii, p„), viz,

f'(1.,1.) =4 2 &,-(8.,V.) &,-'(8-,e.)f '.
From (A2), we now have

(A7)

xsl~G&.+IX.)= p f'(I, I-)(x-ll 'lx)did- [u»ng (A4)l
(2m)'

p.[2 4~1't,- (8J.A.) I't .- *(8-A -)fi")[2 (2l+ 1)'"(4~)'"I't,.(8-,4-)«]dII.
(2~)' i,m

[from (A3) and (A7)]

= i Q (2l+1)Pt(cos8~) (P~fio)Rt. (AS)

Next we consider the amplitude (Xsl l„Glv I
X—,) which describes the process in Fig. 5(c).From Eq. (34), wehave

(X.
I

&.-G&~+I X.) = (el I'lk. ot+')

dpi'
(~ '-'I IX-)(x.. l

&Io'"')p,.-"—«I,.
(2~)' dI'.„

f(pa, p )P (X
I
lt+IX )dQ„[using (A5))

2x

=2t Q (2l+1)Pi(cos8y~)(p„fi)Ri [using (A3) and (A6)]. (A9)

Let us now consider the amplitude (X~lt, GnGti
I
X,) occurring in the second interference term in (27). This

amplitude describes the process shown in Fig. 5(d). We write this amplitude in the following way:

(x I&. G~«+lx.)=Z- (x I&. Glx-)(x-I'« 'IX )

d pm
(X~I l„GI X„)[iP (2l+1)Pt(cos8„)P„fi'Rtj [using Eq. (AS)).

l (2m)'
Now,

(x I(&-G+1)lx-)=(4 '-'IX-)
=(x, lU(l, o) Ix„)
t~+ ~

=8(B I) 2mi8(Ep E—„)(x—~lvlp„'+')—[see the derivation of Eq. (33)j.
Therefore, from (A10)

d3p
(X~I t„GtiGtt,+I x.)-= 2~id(E, L—.) (x~

I
tel y„—t+&)[l p (2l+1)Pi(cos8„)p„f,'R&g

l (2~) '

d
(x~lt~lp„t+&)[l p (21+1)Pi(cos8 )p„fi'Rgp~' dQ

(2m)' l dE&'„

= —2 Qt (2l+1)Pt(costi)(P~fi)(P fi")Ri fusing (A5) and (A6)j.

(A11)

(A12)

We should like to say a word here about the partial wave amplitudes fto As seen from E. qs. (A6) and (A7),
they are determined by the potential v. In relativistic theories, we say that the potential is given by left-hand
discontinuities. Since the partial waves in the physical region due to the left-hand discontinuities are always real,
therefore, we shall argue that the fto's are all real. intuitively, one can think of the f&"s as some sort of Born
amplitudes.

We consider the first interference term in (27) integrated over the direction p~ (the relative momentum of the
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outgoing pair):

Re{("sI »v+I ~.) (Xsl ~G»&+I".)"'}d(cos8&)

=2 Re [P (2»+1)P~(cos8s)R~][i P (2l'+1)Pt (cos8s)Pgf~ ORt ]*d(cos8~) [using (A3) and (AS)],

=2 Re[—i2 g (2»+1))R~['(P,f,o)] (f,"s are real),

Next, we consider the other interference term,

«((~sl». «~+ix.)(X~I» G~«~+IX)*}d(cos8s)

=2 Re [2i P (2»+1)Pg(cos8s)(P„f~)Rt][—2 g (2l'+1)P~ (cos8g)(P„f~ )(P„f~ ')R~ ]*d(cos8s)

=2 Re[—iS Q (2»+1))R~('P '( ft)' (P fP)-]

=0

Thus, the two interference terms in (27) vanish when integrated over the direction of p~.
For the processes shown in Figs. 5 (c) and 5 (d), we can also have inelastic scattering and spin-Rip scattering

in the final mS interaction. However, in these cases too, the interference terms between these two graphs can be
shown to vanish when the integration over p~ is carried out.


