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Resonant Charge Exchange in Atomic Collisions
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The remarkable results of Everhart et al in .observing resonant charge exchange in wide angle (small
impact parameter) ion-atom collisions, are discussed in terms of the vrell-known impact parameter method.
It is shown that previous theories based on adiabatic potential curves are inconsistent with the results of
He+-He experiments. However, experimental results are correctly predicted from a Heisenberg representa-
tion consisting of the basis set of single configuration wave functions built up from molecular orbitals
(independent-particle model). This set includes virtual (autoionized) states. In this representation, the
collision can be assumed to be adiabatic except for very short or very long collision times. The case of double
charge exchange is treated, and it is shown that a three-state approximation is required. The presence of
phase shifts in empirical equations is a result of the breakdown of interference at zero-collision time. Damping
is discussed. The results include the work of previous authors and are general enough to include new cases.
In particular, charge exchange in He++-He, Li+-Li, and Li++-Li collisions is discussed and predictions of
experimental results are made.

I. INTRODUCTION

ECENTLY, Everhart et al.' ' discovered a remark-
able experimental result in large-angle symmetric,

ion-atom scattering. For these collisions, it can be
shown' from classical orbit theory that the distance of
closest approach of the nuclei is small compared to
atomic sizes. The electron capture probability plotted
versus incident ion energy shows several pronounced
peaks in the symmetric cases of H++H and He++He
collisions (Fig. 1).The present paper is a theoretical dis-
cussion restricted to these wide-angle, zero impact
parameter collisions.

A. History

The basic theory of charge exchange stems from the
work of Heisenberg, 4 who introduced the concept of
resonance in connection with the discussion of the
excited states of the helium atom. This well-known term
arises from the analogy between the quantum-mechani-
cal system of two degenerate states and the classical
system of two oscillators of the same frequency which
are coupled together. Pauling' and Finkelstein and
Horowitz' applied this concept to the stationary states
of the H2+ molecule, the simplest example of resonance. ~

Hs+ was viewed as a system of a hydrogen atom (H,)
*Alfred P. Sloan Foundation Fellow.' For a discussion of H+ on H see G. J. Lockwood and E. Ever-

hart, Phys. Rev. 125, 567 (1962).' For a discussion of He++He see F.P. Ziemba and E.Everhart,
Phys. Rev. Letters 2, 299 (1959).

'A summary of experimental results and some of the theory
underlying these experiments is presented by F. P. Ziemba,
G. J.Lockwood, G. H. Morgan, and E. Everhart, Phys. Rev. 118,
1552 (1960).

4 W. Heisenberg, Z. Physik 39, 499 {1926).
~ L. Pauling, Chem. Rev. 5, 173 (1928).
~B. N. Finkelstein and G. E. Horowitz, Z. Physik 48, 118

(1928).
'For an extremely simple discussion of these matters see L.

Pauling, The Eature of the Chemical Bond (Cornell University
Press, Ithaca, New York, 1960), 3rd ed. , pp. 14-19; see also
L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1935), pp.
32'-331.

FyG. 1. Experi-
mental results for
charge exchange in
wide angle scatter-
ing; Po is probability
of the incident ion
being scattered as a
neutral particle; P2 is
probability of being
scattered as a doubly
ionized atom (refer-
ences 1, 2, and 14).
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D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy.
Soc. (London) A216, 437 (1953) (see especially pp. 453&56); see
also O. B. Firsov, Zh. Eksperim. i Teor. Fiz. 21, 1001 (1951);see
also T. Holstein, J. Phys. Chem. 56, 832 (1952).' N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553 (1931).

"W. Kohn, Phys. Rev. 90, 383 (1953).

and a proton (Hb+). (H,Hb+) is degenerate with

(H,+Hb). Two stationary states, split by an energy E,
exist for the molecular ion at finite internuclear dis-
tance: One wave function is a symmetric sum of the two
degenerate wave functions; the other is antisymmetric.
H H&+ is not a stationary state of the total system, since
it is a mixture of two stationary states. The total wave
function oscillates sinusoidally between the extremes of
H +H& and H H&+ with a charge exchange frequency of
E/h. Bates, Massey and Stewart' applied these simple
ideas to atomic charge exchange collisions. They applied
the impact parameter method' " (IPM), in which it is
assumed that the nuclei move in classical orbits, such
that the stationary electronic states are well defined at
each instant of the collisions. Since these stationary
states and their corresponding energy eigenvalues are
known, one can solve for the probability of charge
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0
Internuclear Separation

FIG. 2. Crossing
of potential curves.
Two potential curves
for the states s' and
s may cross in a cer-
tain approximation
(such as in a single
configuration molec-
ular orbital theory).
In a higher approxi-
mation, the curves
repel each other. If
the atoms approach
each other slowly in
state s, an adiabatic
transition from s to
s' will occur. If they
approach each other
rapidly, a diabatic
transition from s to s
will occur.

dependent Schrodinger equation (in atomic units)" is

K%' = s (8%/r)t),

where GC is the Hamiltonian

ZgZg N 1 N 1—Z~ g-
'=' le' —R~l

+Z, (2)
'~'

I pr Oil

and + is the total wave function of the molecule
(atom+ ion)

e=P, c, (t) X.(R, 9r, ss,
" y~),

exchange in wide angle proton-hydrogen atom collisions,
where the experimental results agree with theoretical
calculations. " However, in the more general case of
more than one electron, the problem is unsolved. Reso-
nant charge transfer in wide angle scattering for many
electron systems is the subject of this paper.

II. GENERAL THEORY

A. The Impact Parameter Method

The IPM' " is based on the assumptions: (1) the
nuclei move in classical orbits derivable from a poten-
tial; (2) the wave function of the total system is ex-

panded in an adiabatic Heisenberg representation; that
is, a set of stationary state wave functions and energies
exist at all internuclear distances for each electronic
state of the molecular system of atom plus ion. Assump-
tion (1) holds best at the high-energy limit where the
potential energy of the two nuclei is much larger than
the total electronic energy. This corresponds to the case
of impact parameters which are small compared to the
dimensions of the atoms. For the case of bigger impact
parameters electronic screening must be considered.
Then assumption (1) loses force, since one cannot speak
of an internuclear potential when the wave function con-
sists of a mixture of stationary-state wave functions,
each of which has a different energy eigenvalue. Some
success has been achieved with a screened Coulomb
potential ' ""However, due to the lack of theoretical
justification it should be considered only useful in
representing empirical data. In the present case of wide
angle collisions between light atoms and ions (hydro-
gen or helium) at experimental energies (1—100keV),
electron screening plays a small role, and assumption
number (1) of the IPM is well justified. The time-

"See reference 1. However, there are some terms in the empiri-
cal equation for the data which are theoretically unexplained.
These are discussed in a later section of this paper.

~ E. Everhart, G. Stone, and R. J. Carbone, Phys. Rev. 99, 128/
(1955)."G.H. Lane and E. Everhart, Phys. Rev. 117, 920 (1960).

where 2=
l
R

l

=
l
R~—R~

l
is the internuclear distance,

the (or, (os, (os
. . (o~, R~, R~ are the coordinates of the X

electrons and nuclei of the molecule, respectively, and
the I, are solutions of the stationary-state Schrodinger
equation

X.s &sXs.

The solution to (1) for R not constant is given to zero
order' "by the adiabatic approximation:

c, (t) =c,( ~) expl —s—
where the e, are the eigenvalues of (4).

To take account of departures from adiabaticity to
erst order, it is necessary to discuss the time dependence
of the X, functions. Then one obtains a time dependence
of the coeKcients c, (T). This is given by the
expression' "
dc, (t) ax, (R(t), 9, (t)j= —p c, (t) d~x„LR(t),9;(t))

dt Bf

&exp

where dz denotes integration over the electronic vari-

' Atomic units will be used throughout this paper:

1 a.u. of energy=pe'/h'=2Err=27. 2 eV.

1 a.u. of length=ao=h'/pe'=0. 53 4
1 a.u. of velocity=e'/h=2. 18X10' cm/sec.

1 a.u. of time =h'/pe'=2. 42X10 "sec.
It is useful to note that the energy of an ion in atomic units is given
by the relation

E= ~&m V'= i X18363fV'.

Since 1 a u. =272X10~ keV, E(keV) =253IIVs, where 3E is the
atomic weight and V the velocity in a.u. Typical experimental ion
velocities range from 0.1 to 1 atomic unit (see Fig. 1). In atomic
units, the angular charge exchange frequency is co = 2' ~ =E, where
E is the energy separation between the stationary states."L. I. Schi6, Quantum mechanics (Mcoraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , pp. 213—216.
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ables yt, ys 9~. Taking the time integration of (6),

dt g c,(t) d~x„
8+P Bt

Xexp —s (e, e~)dt—' . (7)

This can be seen to be similar in form to a Fourier
integral. In analogy to Fourier theory, (7) is small if the
collision is so slow that the time variation of the
expression preceding the exponential factor contains few
frequency components as high as the argument of the
exponential function. This can be seen to be merely an
expression of the uncertainty principle (in a.u.)

AEht =1,
where AE is the uncertainty in energy of a given state
and ht= T is the duration of the collision. A convenient
measure of the effective range of interatomic forces is
the quantity X

(Ea)
$c, (R) e, (R)jdR—=, (9)

2
't e, (R)—e,(R)],„'A=

where e, and ~ are the energies of the symmetric and
antisymmetric states involved in charge exchange. In
the special case that

e, (R)-e.(R) =ese a, )I = 1!-n. (10)

This defines the velocity for which diabatic behavior
occurs.

An example of this relation occurs when two potential
curves cross's (Fig. 2). The role of curve crossing be-
comes apparent in later paragraphs. It can be shown
(see Appendix) that the crossing or noncrossing of
potential curves is closely related to the damping of the
resonance, and that (11)holds equally well for diabatic
crossing of potential energy curves.

B. Diabatic Behavior

The major consequence of the deviation from adia-
batic behavior is the breakdown of the two-state ap-
proximation. It often occurs that at least one of these
states lies near in energy to a large number of other
states of the same pa, rity. By examining the examples
given in succeeding sections (III C.1-III C.2) it can be
seen that the total width 2I' of the band of states
involved usually amounts to only a few electron volts

~6L. Landau, Physi. Z. Sowjetunion 2, 46 {1932);E. C. 0,
Stuckelberg, Helv. Phys. Acta 5, 369 (1932);C. Zener, Proc. Roy.
Soc. (London) A137, 696 (1932); D. R. Bates, ibid. A257, 22
(1960).

It is reasonable to assume in the present case of zero
impact parameter, that 2) =vT, where e is the relative
velocity of the colliding nuclei. Then expression (7)
becomes

2XAE& v.

(=0.1 a.u.). By the uncertainty principle (7), in colli-
sions lasting for times less than =10 a.u. the total elec-
tronic energy is uncertain by this amount. However, in
these experiments' ' typical velocities are of the order
of 0.1—1 a.u. , typical interaction lengths =2 a.u. and,
therefore, typical collision times =2—20 a.u. Thus, it
must be assumed except for the lowest velocities, that
the total wave function must include a mixture of elec-
tronic states lying in a band within a few electron volts
of the state involved. Since the effect of mixing in ad-
ditional states destroys interference, it does not appear
unreasonable to take the width 21 as a measure of the
damping of the resonance in charge exchange. (See
Appendix. )

The frequency of charge exchange is given by the
elementary relation a&=Z=(e, —e,) in atomic units. '4

For a sharp, undamped resonance, there is the familiar
relation

F I'

Thus, resonant charge exchange occurs most favorably
when the ratio of energy splitting between symmetric
and antisymmetric states to the width of the bands of
competing states is large.

C. The Limit of Zero Collision Time

%hen the collision time is short compared to one
period of resonant charge exchange, the width of any
state is large compared to the separation of the inter-
fering states, interference is destroyed totally, the final
wave function becomes a 50-50 mixture of the two
charge exchange states, and the electron capture proba-
bility is 0.5. I ockwood and Everhart used an empirical
equation to represent the experimental data for reso-
nant charge exchange of the form (in a.u.)

(&a&Ip= Et+Es s111 —p
2'v

&z=o
Ep~ 1p

where E&, K2 are slowly varying functions of reciprocal
velocity. Idea, lly, according to the IPM, P=O. Everhart
and Lockwood found an empirical value near P=tr/4.
Under these circumstances, the empirical expression
(12) would predict Ps(tt= ~)=ts. Thus, the phase con-
stant P arises from the breakdown of coherent inter-
ference at high collision velocities. ~~

"At even higher energies (=1 MeV), the recoil velocity of the
nuclei becomes large compared to electronic velocities. Under these
circumstances, transfer of electronic momentum does not occur
and the nuclei are stripped of all electrons and emerge from the
collision totally ionized. However, these energies are well above
the range covered by experiments so far.

D. R. Bates and R. McCarroll, Proc. Roy. Soc. {London) A245,
175 {1958)have modi6ed the electronic eigenfunctions to take into
account momentum transfer. Calculations for H+ —H by A. F.
Ferguson and R. McCarroll, summarized in a review by D. R.
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IIL DETERMINATION OF THE STATES

Although interference between some combination of
symmetric and antisymrnetric states is necessary for
resonant charge exchange, it is by no means clear how to
obtain the required potential curves for these states.
Bates, Massey, and Stewart gave a basic expansion in
terms of symmetrical and antisymmetrical molecular
wave functions, but did not specify the wave functions
or energies. Jackson's stated that the "two lowest
molecular potential energy curves for the appropriate
molecular ion should be used for calculation of reso-
nance charge exchange. "On the other hand, Ziemba and
Russek" achieved agreement with experiment for
He —He+ collisions by assuming the symmetric and
antisymmetric states to be separated by an energy of
107 eV (3.9 a.u.) at zero internuclear distance. Lock-
wood and Everhart' criticized this assumption as un-

justi6ed. They pointed out that the molecular wave
function at E=O is that of Be+, whose ionization poten-
tial is only 18 eV (s a.u.). Presumably, on the basis of
the criterion of Jackson, they concluded that the differ-

ence in energy between any symmetric and any anti-
symmetric state cannot be larger than this value.

This contradiction lies even within the paper by
Jackson, "who obtained the values of the energies of the
states at zero internuclear distance by "symmetry argu-
ments from the atomic energy levels of the beryllium
atom, " which are inconsistent with his own criterion.
It is the purpose of this section to clarify these contra-
dictions and set forth an unambiguous basis for deter-
mining the energies of the states required for a pre-
diction of the frequency of resonant charge exchange.

A. Nature of the Intermediate States

First, it should be noted that a basis set consisting of
stationary states in the molecule with 6xed nuclei is not
suQicient; nor is it necessary to use a set which corre-
sponds exactly to the Heisenberg representation (states
for which the Hamiltonian operator is strictly diagonal).
In a representation which is built up of approximate
wave functions, there are off-diagonal matrix elements
of the Hamiltonian operator which cause transitions
from one state to another. As long as the time associated
with these transitions is long compared to the collision

time, the approximations made have no harmful effect.
For example, states above the ionization potential of the
molecular system are good, since autoionization life-
times (=40-400 a.u. =10 '~10 ' sec)" are large com-

Bates and R. McCarroll, Suppl. Phil. Mag. 11, 39 (1962), show
some improvement over previous work. ¹vertheless, the failure
to account correctly for the phase shifts or for the diminished
amplitude of the resonance indicate that these sects arise from a
breakdown of the two-state approximation, as outlined in the
present discussion.

'~ J. D. Jackson, Can. J. Phys. 32, 60 (1954).
' F. P. Ziemba and A. Russek, Phys. Rev. 115, 922 (1959).
~ G. Wentzel, Z. Physik 43, 524 (1927); T-Y Wu, Phys. Rev.

66, 291 (1944).

pared to collision times (=1—10 a.u.). Thus, the role of
these virtual states cannot be neglected. An example of
such a state is (He) s+(1o,) (1o. )' (see Sec. IIIC.2).

Furthermore, the adiabatic approximation (assump-
tion number 2 of the IPM—see Sec. II) does not hold
for states which are separated by energies which are
small compared to the broadening caused by the un-
certainty principle. LSee expressions (6)—(8).j This
nonadiabatic behavior is necessary to account for the
damping phenomenon in resonant charge exchange. It
will be shown how the adiabatic approximation gives
completely wrong results for He+-He charge exchange.

In succeeding paragraphs, an adiabatic Heisenberg
representation with an approximate basis set of single
configuration molecular orbital wave functions is set
up and used.

B. Molecular Orbital Approximation

The molecular orbital, or Hund-Mulliken, approxima-
tion assumes an independent-particle model in which the
stationary states of the molecule are built up of a
product of one electron orbital wave functions. Thus,
the total electronic wave function can be described by
stating the electron configuration in terms of molecular
orbitals. At small internuclear distances (E=O) the
molecular orbitals go over into the atomic oxbitals of
the united atom (atom formed by fusion of the nuclei
of the two atoms which form the molecule). Since energy
levels of the united atom are usually well known or
easily estimated, one can obtain the energies of the
molecular states at E=O. At medium internuclear dis-
tances (R=X) the molecular orbitals (MO) can be de-
scribed fairly accurately as a linear combination of
atomic orbitals (LCAO). At very large internuclear dis-
tances (E&)X) where the MO approximation at times
becomes inaccurate, one can specify the wave function
of the entire system in terms of the wave functions of
the separated atoms (Heitler-London or atomic orbital,
AO approximation). Although these two approximations
are quite different, it is possible to expand the basis set
of the AO method in terms of the I CAO-MO wave
functions. The MO approximation can be assumed to
be reasonably accurate where charge exchange is
eRective (X&X).

The MO wave functions are not strictly eigenfunctions
of the true molecular Hamiltonian. The off-diagonal
matrix elements which connect these approximate wave
functions (electron correlation or con6guration inter-
action) usually amount to a few electron volts (=0.1
a.u.), and are small for collisions occurring in the energy
range studied experimentally. ' 3 For more detailed
treatments of the AO and MO theories, the reader is
referred to standard works. "

2' G. Herzberg, Molecular Spectra. and Molecular Structure
(D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1950),
2nd ed. , Chap. 6; C. A. Coulson, Valence (Oxford University
Press, Oxford, 1961), 2nd ed. , Chaps. IV-VI.
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C. Ayplications

1. Hp+

I
f

l
l

l
l

I

O.He
+

H +H (n=m)

The electronic energies E,~=K Z~Z—~/R [see ex-
pression (2)j of the Hs+ molecule are shown in Fig. 3
and are summarized in Table I.

The electronic wave function of the initial state of the
system is

1a~—10.„
4 i jag=4(t= Qo

&
R= oo )= 1$&=

l-le+

-5—

H'+ H(n=~)
=H'+H {n=2)

H +H(n=l)

By expression (5) the final wave function

Vy=% (t =+~, R=+~ )

O

e,dt
l

—(1,) exp( —~
"l.5—

1$g r
e,dt

l

—expl —4

1sg
+ -p(-.

2
e,dt exp —i

R (a.u.)

(e —e,)dt. (14)

Evaluation of p is simplest for high velocities (zero
impact parameter). Then R=et, where e equals the
velocity of the incident ion."Then

(Ea) 1 +"
[e (R)—e, (R)]dR. (15)

TABLE I. Lowest states of the H2+ molecule.

State

Even

United atom Electronic
(He+) energy

approximation (a.u.)
MO (R=O) (R=O)

1$

LCAO-MO
approximation

1$A+1$B

Odd 1
2

1$A 1$B

~ More general formulas to handle lower velocities are given
elsewhere. (See reference 8.)

The squares of the coefficients of 1s& and 1s& give the
probabilities P'0 and P~ of charge exchange or non-
exchange, respectively. Finally,

Ps ——C~*C~=sin'Q/2)
I' r C~*C~——cos——'(p/2),

where

Fro. 3. Potential curves for H++H. (See reference 23.)
Only orbitals of 0. type have been shown.

This result is in agreement with previous calculations, "
since the adiabatic and molecular orbital wave functions
are identical. (Ea) has been evaluated by Ziemba' from
the exact H2+ energies" to be 4.88 a.u. , which is in good
agreement with the experimental value of (4.45&0.08),
if one considers the simplified nature of the theory. The
effective range can be evaluated by inserting the experi-
mental value for (Eu), the value of [e„(0)—e, (0)]=—,

'
a.u. (Table I) in expression (9). The result is X(Hs+)
=1.48 a.u. in agreement with the value of 1.5 for the
mean radius of the charge distribution of the hydrogen
atom, '4 which is a measure of the range of interatomic
forces.

The weak damping of the H —H+ resonance (Fig. 2)
comes from the large ratio of (e,—e,)/F= (e„—e,)/F.
Here, there is a single state which is far away from a
group of closely spaced states (Fig. 3).

Z. He —FIe+

The electronic energies of the He+ —He system are
summarized in Table II and Fig. 4.

The electronic wave function of the initial state of the
system (He~+He~) is 4';;~ 4(T= —eo, R= —Do)——

D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. London 246, 215 (1953).

'4 H. A. Bethe and E.E.Salpeter, Quantum 3fechanics of One and
Txo-Electron Atoms (Academic Press Inc. , New York, 1957),p. 17;
or E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, ¹wYork, 1953), p. 117.
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(au)
0— Be"'

-~- Be"(a

Be"(a
»4—

— He"-+He+(is)

He'++He(is)'
He (is)+He (is)
He(is)(zs)+He'(is)

He(is) +He (is)

-8- Be'+(is

Be'+(is)(al.

l0 Be+(is)(zp)

-l2-
Be"(is

- Be+(is)'(ap

Be+(is) (as)

I

0
I I I

5
R(a u)

IO 20
t I t

40

Fig. 4. Diabatic curves suitable for discussion of fast collisions involving He ions. These show the electronic
energies of the He-He system for a few states of interest. To the right of the 6gure, at large internuclear dis-
tances, the energies are those of separated atoms and/or ions. At smaller internuclear distances, the energies are
those of a single configuration molecular orbital wave function. At R =0, the energies are those of the Be+united
ion. Since these are diabatic curves, crossing of states of like symmetry is permitted, in contrast with the non-
crossing rule for adiabatic curves. (See Table II and Sec. III C.2 for further discussion. ) Thus, there is not the
usual adiabatic correlation between states of the united atom and separated atoms. The curves were constructed
from calculated wave functions whenever possible, as is shown in the references. The remainder of the curves
were constructed by plausible interpolation or by author's estimates. (He)24+: Zero of energy. (He)2'+ o.g, a„.
Energies are obtained exactly by scaling E as Z' and R as 1/Z from the Hs+ curves (Fig. 3). (He) s++: It is not
possible to make a unique connection between molecular orbital and separated atom states. Here, the three
molecular orbital (o.~)', (o.g) (o.„),and (o. )~ states are visualized (dashed lines) as arising from the avoided crossing
of the He+-He+ curve with the degenerate He++-He and He-He++ states. (He)2++ (o.,)~ (R=0.8 to R=i.8
a.u.). LSee W. Kolos and C. C.J. Roothaan, Rev. Mod. Phys. 32, 219 {1960).g (He}~+ (0~} ', (0„) '. LSee refer-
ence b, Table II. For term values of united or separated atoms, see reference a, Table II. In the case of virtual
states, energies were estimated from term values of similar ions. Also configurations containing (2pa.) were
evaluated from the relation E{2Po)'=-,'E{'S)=-,'E('D} (see reference b, Table II).j

=1sz(1sn)'. It is readily proven by writing this in an
antisymmetrized product to be equivalent to a (1sz) '
"hole" of the form (1o.„)-'+(1~~)-'/(2)"s This is
formally identical to that derived for (Hs)+ (13), (14),
and (15), except that the labels u and g must be inter-
changed. I'ollowing this analogy, then one must find the
value of (ErJ), the area between the appropriate I and g
curves.

Referring to Fig. 4 and Table II,one can see that these

Tanrz II. States of (He)s+.

State

MO designation
For large For small

Ro R

United atom
(Be+)

approximation
(R =0)

Electronic
energy
(R =0)
(a.u.)

Odd
Even (diabatic)
Even (adiabatic)

(i~a)'(1~ ) ( ~g)'( ~ ) (»)'(2P) —14.2'
(1aff) (1crts) ~ (1a ff) (10.s )g (is) (2p) 2 —9,4b

(1o &) (10~) 2 (10ff)
2 (20 ff) (is) 2 (2s) —],4.3a

& Experimental value obtained from the reference by Charlotte E, Moore,
Atomic Energy Levels (U. S. Government Printing Office, Qlashington,
D.C., 1949), Vol. I, Natl. Bur. Std. (U. S.), Circ. 467.

b Calculated by the author from theoretical orbital energies given by
P. E. Phillipson, Phys. Rev. 125, 1981 (1962).

o At R = oo, both (iog)&(iots) and (ia&) (icrss)» go to the separated atoms
He (is)~+He+(1s).

states start out as the degenerate ground state of the
system He(1s)s+He+(1s). At smaller internuclear dis-
tances the u state becomes the lower of the two. It can
be described unambiguously as (1og)'(1o„) at all inter-
nuclear distances, and therefore becomes Be(1s)'(2P) at
2=0. The g state can be described as (1o,)(1o.„)' for
large internuclear distances. However at 8=2 a.u. , it is
crossed by a (1o,)s(2a,) g state derived from He+(1s)
and He(1s)(2s). For values of E to the left of the
crossing point, there is an ambiguity as to which g
curve to assume for purposes of calculating (Err). The
adiabatic curve obeys the noncrossing rule of von
Neumann and Wigner" and thus becomes (1o,)'(2o,),
which is the lower choice and is almost indistinguishably
close to the (lo,)'(1o„)I state. Finally, it goes to the
united atom state Be+(Is)'(2s) which is lower than the
previously described odd state Be+(Is)s(2P). On the
basis of the adiabatic potential curve, one would expect
a value near zero for (Ea) and, therefore, a lack of
resonant charge exchange. This is c1early in disagree-
ment with experiment.
"J.von ¹umann and E Wigner, Phys.ik. Z. 30, 467 (1929).
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The upper alternative, which will be designated the
diabatic curve, can be described as (1o,)(1o.„)' at all
internuclear distances and becomes Be+(is)(2p)' at
E=O. If one uses this diabatic electronic energy curve
of Fig. 4 (see also Table II), the value obtained for (Ea)
is 7.8 a.u. , in agreement with the experimental value of
(7.1&0.2) and the theoretical values of 7.0 and 6.6
previously obtained, respectively by Jackson's and
Ziemba and Russek. " (The disagreement among theo-
retical calculations reflects small differences in theo-
retical potential energy curves for the He-He+ system. )
From expression (9), the observed value of (Ea) and
(e,—e,),„,„(see Table II), one obtains an effective range
of 0."/4 a.u.

To obtain agreement with experiment, it is therefore
necessary to assume that the molecular system crosses
the interfering (1&r,)'(2o,) cu. rve and remains on the
diabetic curve given by molecular orbital theory. In
fact, one can show that the (ia,)(1o. )' diabatic curve
must cross an infinite number of curves of the form
(iag)'(fsog), for the experimental results to agree with
theory. The occurrence of these crossings is consistent
with the discussion based on the Landau-Zener
theory. "" For, if one uses a reasonable value for
DE=0.1 a.u. , one finds d E(2X)=0.15 a.u. , which is com-

parable only to the slowest collision velocity of 0.14
(Fig. 1).

Here again, as in H+ —H, the presence of an un-

damped resonance is caused by a favorable ratio of
(e,—e,)/I' (Fig. 4). It is of further interest to note that
the (1o.,) (1o„) state is above the ionization potential of
(He)s+ for small values of R. (See Sec. IIIA.)

3. Other Systems: Li+—Li, Li++—Li, IIe++—He

It is of interest to extend the theory of resonant
charge exchange to cases that are not yet investigated.

The Li—Li+ wave function before collision is
(is~)'(isis)'(2sii), which can be written as (io.,)'(io.„)'
X(2o,—2o„)/(2)'i'. At R=O, the united atom wave
function is C+: (1s)'(2p)'(2s —3p)/(2)'i'. The even and
odd states are separated by the (2s —&3p) splitting,
which is about 2 a.u. However, this is somewhat smaller
than the uncertainty in energy, which is the order of the
total splitting of the states of the C+ atom (ionization
potential= 1 a.u.). Thus, conditions are unfavorable for
a pronounced resonant phenomenon, since the oscilla-
tions would be of long period and would be heavily
damped.

The situation is favorable, however, for Li-Li++.
Here the initial wave function is

(1s„)(is,) (2s,)

, I:(1 ) '+(1 .) 'jL(2 .)—(2 -)j
=L(1 .)'(1 -)'j

V2

Then, denoting the probability of capture of the 2s&

"See Appendix.
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FIG. 5. Charge exchange for Li++-Li collisions, shown for three
values of p, the probability that the outer 2s electron is captured
by the scattered ion. p is expected to be a slowly varying function
of 1/o. A phase shift has been applied to make the curves connect
smoothly to the correct limit for f/o=0.

electron by p and probability of capture of a isis electron
by p', it is readily shown that

~o= pp'

~ =P+P'(1—2P) (16)
&s= (1—P)—P'(1—p),

where P'0, P~, and P2 are the probabilities of double-,
single-, and nonelectron capture, respectively. As in
Li-Li+, the term p arising from the weakly bound outer
electron is a slowly varying, heavily damped function
of the electron energy. The period of oscillation of p' is
determined by expressions (13), (14), and (15), where

(Ea) is largely determined by the separation between
the even and odd states of the (Li)ss+ core. Although
detailed calculations for this molecule are not available,
estimates can be made by a simple scaling procedure.
It is remembered that (Ea)=2K(AE), , that lt n 1/Z
and (AE) rr Z', therefore (Ea) n Z. Then, (Ea) for
(Li)ss+ should be ss(Ea) for isoelectronic (He)s+. Thus,
the predicted value for (Li)so+ is (Ea)=3.5Z=10.5.
Curves for Po, P'~, and P2 are shown in Fig. 5.

In the case of He++-He collisions, the initial wave
function is

ou og &e, od
@(He++—He) =@»= (isn)'=

2

o~ o'g o go ~ o'~o g
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t.o
He on He The value X in the limits of integration indicates that the

interaction takes place within the region of molecular
binding. These integrals may be estimated from expres-
sion (9). Since XL(He) s+j=0.74 and XL(He) ss+7
=-',X/(H)s+$=0. 74 also, it is reasonable to assume
)tL(He),++&=0.74. Now

0
0 .5

Ilv(a u)
l.o

ez(0) =et Be++(2p)'j= —3.4,

«(0)=.(Be++(Is,2p) = —9.1,

eN(0) =e/Be++(is)'j= —13.65.

Fro. 6. Charge exchange for He++ on He. A phase shift has been
added to make the curves join smoothly to the correct values for
1/v=0. Also, for simplicity of calculation, (Ea)Nv has been as-
sumed to equal (Eu)vz.

This wave function is seen to be a superposition of three
MO states,

+v +z
+BB= — +

2 W2 2
(17)

+N &g )
2

1
ev ———(~,~.+~.~,), ez=~.' (18)

(+AA+FBB+~~FAB)/2

+V (+AA FBB)/~~

'Fz = (+AA++BB—~2+AB)/2

The transition from AO to MO states is shown in
Fig. 4. For fast collisions, the final wave function can be
obtained by expanding +BBin the MO basis set (17) and
taking into account the phase relations. Then, ig-
noring a common phase factor, one obtains

where
@&———,'[+N —Vive —'e'++ze-'e~j,

&«)N V

(20)

(Ea)Nz + t-'z —6~
8R.

(21)

27 A fourth state 4 g~, with the orbital wave function
(o.go.„—o-„fTg)j2 is a 3Z„+ state. Since the initial state in cases of
experimental interest is almost always a singlet state and since
singlet-triplet transitions can be neglected in fast collisions,
triplet states have been neglected throughout this paper.

are the wave functions of the three singlet states formed
from two electrons in 0., or o-„orbitals. '~ The other two
AO wave functions also can be expressed in terms of
O' N, %y and 4z'.

4 (He He ) =+AA (FN+~~+v+ Fz)l/2
(17')

'0 (He+ —He+) =O'AB = (IrN 'Fz)/2. —

These equations are readily solved for the MO functions
in terms of the AO basis:

(See Fig. 4.) Then (Ea)Nv 6.7 (Ea——)Nz=15.2.
Expanding 4f;„,y back into the original AO basis and

taking the squares of coefficients, one obtains

Ps= PBB=s (3+2 cos($1)+cos(ps)
+2 cos(0s —0t)},

Pt=PABs sin (sos),

Po=PAA= s(3—2 cos(pt)+cos(gs)
—2 COS(gs —Q,)}.

(22)

Very roughly, for (He)s++, (Ea)Nv=-', (Ea)Nz', from (21)
Ps= 2gt. Using this simplification, (22) reduces to

Ps COS' (-,Q,), —
Pt ——sin'(s pt),
Ps ——sin'( —',p,).

(23)

(See Fig. 6).
The large separation of the energy curves for (He)s++

(Fig. 4), indicates a more pronounced tendency to
follow the adiabatic potential curves than in the case of
(He)s+. Thus, one would expect relatively heavy damp-
ing for (He) s++. Nevertheless, enough oscillations should
be present to test the theoretical predictions.

IV. CONCLUSIONS

It has been seen that the observed phenomena of wide
angle resonant charge exchange scattering in multi-
electron systems cannot be accounted for by an adia-
batic theory. This has been circumvented in this paper
by assuming a quasiadiabatic basis set of MO wave
functions. This independent-particle formulation is
adequate for discussion of resonant charge exchange and
has been used to predict the results of experiments on
new systems. On the other hand, for small angle
scattering the impact parameters usually are large
enough so that the adiabatic approximation still may
be valid.

The necessity of a three state approximation (Sec.
IIIC.3) appears to be quite general in the case of charge
exchange involving two s electrons.

It should be pointed out that the present treatment
has validity over a limited range of ion velocities
(v=0.1—1). At higher velocities, diabatic transitions
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between MO's take place. These account for breakdown
of coherence (Sec. IIC), formation of multiply charged
ions (Fig. 1), and charge exchange in nonresonant
systems, such as He+H+. s At lower velocities, the
collisions become truly adiabatic. A discussion of these
phenomena is outside the scope of the present treatment.
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APPENDIX

Damping Effects

This section compares the idea of damping effects
(Sec. IIB) with the Landau-Zener treatment of curve
crossing to show the close relation between the two
points of view.

As a simplified model for damping, consider the inter-
ference between a single state of energy e, and a band of
states of energy e, and width 2F. The probability of
charge exchange due to coherent interference is given by
an expression of the general form P~=

~
C~

~

', where

Fxo. /. Probability of coherent interference of a single
state with a band of states of width 2F.

where
2x (H„)'

Ae(d/dR) (e,—e, )
(A3)

which becomes

adiabatic transition to a mixture of the states s' and a.
In such a mixture interference is absent. At the second
traversal of the crossing point the same phenomena
recur. Again a mixture of states a and s' fails to inter-
fere, so that the over-all probability of constructive
interference is equal to the probability of two successive
diabatic transitions, "I'0= I".P is given by the Landau-
Zener formula":

1 1
C~ =— 1+—

2 2F

es—e +I'

e "'A (A1)

Then,
1 sin'(I' t) 2 sin(1't) cos(L», —e,]t)

P~=C~'= 1+ +—
Ft

This function is shown in Fig. 7. It can be seen from
(A1) that the oscillation in P~ is between the envelopes

2m (H„)'/e(d/dR) (e, e;) in a.u.—, (A3')

and
AB=2F

If„ is the o6-diagonal matrix element connecting states
s and s', and v the collision velocity. It is reasonable to
assume that B'„causes the splitting between the states
at the crossing point. Then DE=28„.Furthermore, it
is reasonable to assume

(e e ) (e e ) e1- sin(I' t)
P~(w) =- 1W

4 I't
(A2)

d(e.—e. ) 1
&s &a maxe

dR

te=2xer9, /e(e, —e.) . .

and the amplitude of oscillation is given by Pg(+)—P~(—)=sin(I' t)/(I' t). As a measure of the mean If R=X, then
decay time, one can take the value of the integral

"sin(x) vr

dr= — or I'5t = rr/2 = 1.57.
g 2

This is to be compared with the uncertainty principle
AM, T=1.

The process can be seen from a quite different point
of view of the Landau-Zener formula. "The initial wave
function contains a mixture of 4, and 4 .At the crossing
point (Fig. 2) there is a probabilitv (1—P) of an

Taking the collision time T/2=), /e,

Pp=e '" exp/ 2x'eI"Tlt—/(e e ) 5

28 This statement is not strictly correct. Inclusion of quantum-
mechanical phase factors introduces oscillatory terms in the
expression for the probability of two successive events. It can be
shown that these terms have important bearing on the theory of
asymmetric charge exchange. )See W. Lichten, Bull. Am. Phys.
Soc. 8, 393 {1963).g Nevertheless, in the present application, these
terms can be ignored.
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Taking the approximate relation 2I'/(e, —e,), =0.1
(see Fig. 4).

P ~
—O. l e7rI'T ~

—0.85FT
0

The mean life for decay is given by the relation
0.85FT=i or I.'T=1.2, which again agrees with the
uncertainty principle DENT =1.

Thus, two apparently quite different approaches
agree. This tends to reinforce the conclusion that adia-

batic potential curves are not important in the theory
of fast atomic collisions. It would be interesting to find

out if a more refined collision theory would bear out
these arguments.
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Calculation of the Scattering Constant from the Theory of Multiple Scattering*

B. P. NiGAM
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The expressions for the mean spatial and projected angles of multiple scattering are obtained using the
distribution function for multiple scattering derived by Nigam, Sundaresan and Wu, and compared with
those of Moliere. It is shown that Moliere's calculations involve the approximation of X,QB -+ 0. The dis-
tribution function of Nigam ef a/. is found to give correction terms which are proportional to powers of
x,+B and X,+B ln(n/&. QB).

I. INTRODUCTION

HE theory of multiple scattering of a charged
particle passing through matter has been worked

out by Williams, ' Goudsmit and Saunderson, ' Moliere, '
Snyder and Scott, 4 and Lewis. ' The formulation of the
theory as done by Moliere, ' and Goudsmit and Saunder-
son' has the very interesting feature that the differential
law of scattering enters into the theory of multiple
scattering only through a single parameter, the screen-

ing parameter X . Bethe' has established that the theory
of Goudsmit and Saunderson' has a close quantitative
relation to that of Moliere. ' The theory of Moliere has
been widely applied in the interpretation of experi-
mental results. However, Nigam, Sundaresan, and Wu~

have pointed out that the formula given by Moliere
for the scattering cross section of a charged particle by
an atom in his theory of multiple scattering is incon-
sistent. This is because Moliere's calculation of the
scattering amplitude includes an inconsistent expansion
of the phase shift in powers of crt ——zZe'/Ae. Nigam et al. , '
use Dalitz s relativistic expression for the single scat-
tering cross section derived in the second Born approxi-
mation for the scattering of a spin-half-charged particle
by the screened Coulomb field of an atom, and the dis-

*Work performed, in part, under the auspices of the U. S.
Atomic Energy",'Commission.
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tribution function for multiple scattering was calcu-
lated in powers of n& in a consistent manner. They ob-
tained satisfactory agreement with the experimental
results of Hanson, Lanzl, Lyman, and Scott' for the
1/e widths of the distribution function for the scattering
of 15.6 MeV electrons by Au and Be. Further the work
of Nigam, Sundaresan and Wu, r (hereafter to be re-
ferred as paper A), in contrast to Moliere's' theory,
predicts different screening angles for electron and posi-
tron scattering and consequently, different distribution
functions for multiple scattering. Nigam and Mathur"
have applied the results of paper A and calculated the
difference in multiple scattering of electron and positron
and found good agreement with the experiment of
Henderson and Scott."

The method of estimating the energy of fast ionizing
particles in photographic emulsion by measuring the
deviations in their tracks produced by multiple scatter-
ing was first suggested by Bose and Choudhuri. "
Gottstein, Menon, Mulvey, O'Ceallaigh, and Rochat"
have shown that the mean deviation of a charged par-
ticle passing through a given layer of matter is directly
proportional to the charge and inversely proportional
to the product (momentum )& velocity) the constant
of proportionality depending on the composition of the
scattering medium. They calculated the "scattering
constant" using Moliere's theory. In this paper, the
mean angle of multiple scattering, spatial and pro-

~A. O. Hanson, L. H. Lanzl, E. M. Lyman, and M. B. Scott,
Phys. Rev. 84, 634 (1951)."B.P. Nigam and V. S. Mathur, Phys. Rev. 121, 1577 (1961)."C.Henderson and A. Scott, Proc. Phys. Soc. (London) A70,
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