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The analogy between Regge poles and poles due to single-particle exchange is extended to the case of
many-particle amplitudes, by considering diagrams with two or more poles. A set of diagrams is obtained
in which the internal lines represent Regge particles. The problem of coupling three particles of arbitrary but
physical spin is treated first, and coupling constants depending on the helicities are defined. The vertex
functions which couple three Regge particles, and which have similar symmetry properties, are defined in
terms of the residues of Regge poles. The propagator for a Regge particle with trajectory a (t) is essentially
a rotation matrix for spin a, corresponding to a rotation from the initial to the final direction of the center-
of-mass momentum, divided by sine. (a —o), where o is a constant which replaces the signature. The possi-
bility of using this formalism to predict the high-energy behavior of production amplitudes is discussed, in
particular, for single-particle production. As for elastic scattering, one can give a unified description of the
low-energy and high-energy regions, and the Regge poles in appropriate crossed channels should dominate
in the high-energy region.

1. INTRODUCTION

'HE Regge pole approximation to scattering ampli-
tudes' may be regarded as a modification of the

ordinary pole approximation. In place of the exchange
of a single light particle, one considers the exchange of
a "Regge particle, " which represents a whole family of
particles or resonances associated with a single Regge
trajectory, and which also has a quite diferent asymp-
totic behavior. There is, in fact, a close resemblance,
which has been noted by various authors, ' between the
contributions of a particular Regge pole and a lowest
order Feynman diagram, and it is natural to ask whether
the Regge-pole formalism can be extended to production
amplitudes by considering diagrams with two or more
poles, like that of Fig. 1. The essential di%culty in
doing this (apart from the problem of proving the re-
quired analyticity) is to know how to couple together
particles of variable, and even complex, angular mo-
mentum. What is required is a set of "Feynman rules"
for Regge particles which will allow the contribution of
any such diagram, in which each internal line corre-
sponds to a particular Regge trajectory, to be written
down.

It must be emphasized that the analogy between
Regge-pole diagrams and ordinary Feynman diagrams
must not be carried too far. In conventional perturba-
tion theory, the only free parameters are the masses and
coupling constants, and the complete perturbation
series is essentially determined by the first Born ap-
proximation and the (generalized) unitarity equations. '
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On the other hand, since Regge particles have variable
mass, a Regge-pole diagram necessarily contains vertex
functions rather than simply coupling constants, and
both these functions and the Regge trajectories them-
selves are a priori undetermined. The effect of the
unitarity equations is, therefore, likely to be rather
different. There is no reason to believe that a better
approximation can be obtained by including, in some
sense, diagrams with closed loops of Regge particles.
Instead, the unitarity equations should serve to deter-
mine, at least partially, the arbitrary functions appear-
ing in the Regge formulas, though it is also conceivable
that they may require the introduction of additional
terms corresponding to cuts rather than poles in the
angular momentum plane. An argument which suggests
that this may be the case has been presented by Amati,
Fubini, and Stanghellini. 4 However, it is quite possible
that the cuts are cancelled by other contributions. ' In
any case, even if there are cuts, it is probably still true
that there is a region of the invariants in which the pole
terms are dominant. For simplicity, we shall assume
in this paper that scattering amplitudes, suitably de-
fined, are meromorphic in the right-half angular mo-
metum plane, Rej)——,'.

A further motivation for the present work arises from
the suggestion of Chew and Frautschi' that all particles
are bound states in the Regge sense, that is, that they
are all members of Regge families. If this conjecture is
correct, then in a Regge-pole diagram the external lines as
v ell as the internal lines should be regarded as repre-
senting Regge particles, and the three particles which
are coupled together at any vertex should be treated in
an essentially symmetric manner. Ke shall adopt this
point of view in the present paper. However, it would
clearly be easy to accommodate a number of non-Regge
particles of fixed angular momentum.

A very convenient formalism for discussing the angu-
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FIQ. 1. A typical pole
diagram for a production
process.

lar momentum decomposition of many-particle ampli-
tudes has been given by Wick~ in terms of helicity
states. ' We shall use this formalism throughout. How-
ever, we find it very convenient for our particular
purposes to make some changes of notation andnormah-
zation. The relevant definitions and formulas are sum-
marized in Appendix A. In particular, it should be
noted that the symbol

~
O,sjp, X&,hs) denotes a two-

particle state in which the helicities are Xj and —P, 2. This
convention may appear rather arbitrary, but, in fact, it
is not unnatural to start with a state in which the
center-of-mass momentum is in the s direction and the
s components of spin are P j and P2, and a considerable
simplihcation results from so doing. We also note that
a factor L(2j+1)/4m. g'~' has been absorbed in the
normalization of the state and, therefore, does not
appear in the partial-wave expansion of the scattering
amplitude.

%e consider first, in Sec. 2, the problem of coupling
together three particles of arbitrary, but physical, spins.
This problem is of considerable intrinsic interest, quite
apart from its possible generalization to complex spins.
We define a set of "coupling constants" giss(Xi, 4,Xs)

depending on the spin components );, and vanishing
unless Xi+As+As= 0. Apart from normalization factors,
g»s is essentially the amplitude for the (virtual) decay
at rest of particle 3 with s component of spin A3 into
particles 1 and 2 with momenta in the positive and
negative s directions and s components of spin —X~ and
—X2, respectively. By rotational invariance, this ampli-
tude is clearly su%.cient to determine the general ampli-
tude. It has certain symmetries under permutations of
1, 2, 3, and under change of sign of the three X;, which
are easy to obtain.

We then consider the coupling of three Regge particles
corresponding to the three trajectories j,=a;(t;). This
coupling may be specified by a vertex function
f 128(Xl, X2,4; t&, ts, ts), where t,=m, which has many of
the properties of the coupling constant g~23. This func-
tion is defined in terms of the residues of Regge poles. In
Sec. 3, we examine the contribution of a Regge pole to
the scattering amplitude for a process u+b —+c+d.
This discussion serves to define the vertex functions for
the case when two of the spins are held fixed and physi-

' G. C. Wick, Arms Phys. (N. Y.) 18, 65 (1962).
s M. Jacob and G. C. Wick, Arms. Phys. (N. Y.) 7, 404 (1959).

cal, and also to identify the propagator for a Regge
particle. The denominator is simply sinn(n —0), where
0 is a constant angular momentum which plays the
role of the signature, and the numerator consists essen-
tially of a rotation matrix for angular momentum o.

corresponding to the rotation which takes the initial
center-of-mass momentum into the final center-of-mass
momentum.

In Sec. 4 we extend the discussion to the case of a
five-particle amplitude, for the process a+b -+ 8+d+e.
We make an angular momentum decomposition in terms
of the total angular momentum j and the angular mo-
mentum j' of particles c and d in their center-of-mass,
Then, since this amplitude is coupled to the elastic a-b

scattering amplitude by unitarity, and since the total
angular momentum j is common to both, we must
assume that the five-particle amplitude also is a mero-
morphic function ofj in the right-half j plane, Rej&——,.
However, it is also related by crossing to the amplitude
for the process a+b+e —+ 0+8, for which j' is the total
angular momentum, and by a similar argument we may
expect that this amplitude is meromorphic in j . It is,
therefore, natural to assume that the amplitude is
simultaneously an analytic function of both variables,

j and j', meromorphic in the product of the right-half
planes. We can then make a double Sommerfeld-Watson
transform, and pick up the contributions of the various
Regge poles. We shall concentrate on the term arising
from a particular pair of Regge poles, and show that it
Inust have precisely the form suggested by the Feynman
rules already obtained in the discussion of four-particle
amplitudes. This also serves to define the vertex func-
tions when only one of the three particles has fixed
physical spin. To define them in complete generality we
should have to go to the six-particle amplitudes. It is
clear that the discussion could easily be extended to this
case, with no essential changes, but we shall not do so
explicitly.

In Sec. 5 we discuss the possibility of using the
formalism developed here to make predictions about
the high-energy behavior of many-particle amplitudes.
We consider in particular a five-particle process, such as
X+s ~E+m+m. Because there are now five inde-
pendent invariants, one must be rather careful to say
what is meant by the high-energy region. We distinguish
three regions of the invariants: the low-energy region,
in which all the invariants are small; an intermediate
region in which the total energy is large, but the effective
mass of at least one pair of final-state particles is not;
and the high-energy region, in which all the energy-type
invariants are large. Now in the case of a four-particle
process, one can give a unified description in terms of
Regge poles of the low-energy and high-energy regions.
If s is the total-energy invariant, then Regge poles in the
s channel are important at low energies (since they
describe the resonances), while the poles in the t or u

channels dominate at high energies. We give a com-
pletely analogous description of the five-particle process.
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In particular, we discuss the high-energy region in which
we may expect particular pairs of Regge poles, in
channels corresponding to momentum-transfer invari-
ants, to be dominant. At this stage, it seems unlikely
that any immediately useful experimental predictions
could be made, because of the large number of unknown
functions involved. However, if the stage is reached
where some of the Regge trajectories are known with
reasonable accuracy from elastic scattering data, it
should be possible to make rather definite predictions
about the asymptotic behavior in this region.

2. THE VERTEX FUNCTION

We shall begin by discussing the coupling of three
ordinary particles of spins j1, j2, j8, and masses m1, m2,
m8. We consider the virtual decay process 3 ~ 1+2,
whose amplitude may be defined in the usual way in
terms of the residues of scattering amplitudes at the pole
s=m82. This amplitude is completely specified Lsee
Kq. (A/) j by the amplitude for the decay at rest of
particle 3, with s component of spin X8, into particles
1 and 2, with momenta in the positive and negative
s directions, and s components of spin —)1 and —'A2,

respectively, namely,

(OO, —~„—~2~ r(m8) ~~3)

=(—X„—X, ~2 (m, )~)S(~,gX,+Z„o)
=E(ji,ki)lV( j2,X2)CV(j8,X8)

Xf12,8(mi', m2', m3 )g123(klX2X3), (1)

say, thus, de6ning a set of "coupling constants" g»8.
Here f12,, is a kinematical factor of the dimensions of a
mass, which is introduced to make g]28 real when all
the particles are stable, and to give it maximum sym-
metry. This factor will be discussed further below. The
spin-dependent normalization factors 1V(j,X) are intro-
duced for reasons which will become clear in the follow-
ing section, and are de6ned by

&(jp)=L(j+~) (j—~) '3"' (2)

The coupling constants defined in (1) have certain
symmetry properties which are easy to derive from
parity conservation and invariance under rotations
through x. These are

gl28(~1~2~8) 'gg213(~2~1~3) y

= t'g218( —4—4—~8),
= 2tt g128(—Xi—X2—X3), (3)

where the sign factors are

Q= t"Q1'g2$8 ~

f =,( 1)/i+/8+/3

Here g; are the intrinsic parities, and

&=+1 for 3 bosons,
= —1 for 2 fermions and 1 boson.

Note that g1, g2 are the parities of particles 1 and 2,

not 1 and 2. For fermions these parities are opposite, so
that we can also write

g= &12$I$2'g8 )

f
—

& . ( 1)/3—/1—/2

where
e12= —1 if both 1 and 2 are fermiolis,

=+1 otherwise.

Thus, g is the relative parity of the vertex in the
ordinary sense (e.g. , 2t= —1 for the /3//3/2r vertex). The
sign factor t might be called the relative j parity. It is
important to note that it is unchanged by adding 2 to
any of the spins. Thus, both 2t and f' are characteristic
of the Regge families to which the particles belong,
rather than of the individual members of these families.

Now, we may also consider the virtual crossed process
2 ~ 1+3 and, thus, obtain from crossing symmetry a
symmetry of g»8 under interchange of 2 and 3. If the
kinematical factors are chosen so that f12 8 and f18,2

differ only by an appropriate phase factor, then the
complete symmetries of g»8 are

g128 g281 g 812 gg182 &!g218 gg 821

g128(~1~2~3) gg128( ~1 ~2 ~8) ~

Let us now return to the kinematical factor f12,8,

which is required to make g»8 real when all three
particles are stable. The phase of the amplitude (1) is,
of course, to some extent a matter of convention. It may
always be chosen so that (1) is almost real if m3 is
just above the threshold m3=mi+m2. Then, to make

g128 real below threshold, we must factor out the
threshold behavior k8'3. Here the center-of-mass mo-
mentum k8 is given by

2m k3 = d "2(m12 m 22 m82)

where
6(s t u) =s'+t'yu' —2st —2su —2tu.

The orbital angular momentum l8 is the smallest angular
momentum satisfying

(—1)"=qe12,

which can be formed out of the three spins. Consider
first the case of three bosons (e=+1).Then/1 ——l2=l8=l,
say, and a suitably symmetric (but not unique) form
for the kinematic factor is simply'

f12,8 =~1—21+1(m12 m22 m82) (9)

where M is some convenient fixed mass introduced for
dimensional reasons. The situation is rather more com-
plicated when the particles are two fermions, 1, 2, and
one boson, 3(e= &12

———1).Then we have li= l2=/, with

(—1)'=2t as before, but now /8 /&1 Howev——er, w.e

These functions are arbitrary to the extent that they may be
multiplied by any symmetric function of the mP which is real and
free of singularities in the region m; &0.
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I 123(ml m2 m3* ) 231 232 233 gl*2 3" (12)

where the m,' will be determined explicitly in the follow-

ing section.
The next property we may expect the vertex functions

to have is some symmetry under permutations of (123)
or change of sign of the helicities X;. In view of the
remarks about the sign factors rf and t above, it would
be consistent to suppose that F&~3 has precisely the
same symmetries as g123, namely, (5) and (6), provided
that the relative j parity i is regarded as a function only
of the signatures (that is, of the o~) and not of the
variable spins j;. It is, of course, essential that the
definition of the kinematic factors should be extended

can now take'

f12,3
——M'-'-"Pm32 —(ml+m2) 2]'13

XLms' —(ml —m2)']l' (10)

The factors f», 2 and f23, 1 would differ from (10) by a
change of sign of each of the expressions inside square
brackets, so that each factor is real in the corresponding
physical region.

We now turn to the problem of coupling three Regge
particles, corresponding to the trajectories j;=n;(t;).
Since the masses are no longer constants, we must
have in place of a coupling constant a vertex function
I'123()ll, )12,X3 fi fs f3), where f,=m . Clearly, these vertex
functions must be defined in terms of the residues of
Regge poles, just as the coupling constants are deter-
mined in terms of the residues of ordinary poles. Ke
shall do this in the following sections. Nevertheless, it is
convenient to anticipate the discussion by considering
here the properties we may expect them to possess.

The first of these properties is a relation to the
coupling constants already defined. When the Regge
trajectory j;=n,(f;) passes through a physical spin,
there is (in general) a corresponding physical particle.
We shall denote the mass and spin of the lowest member
of this family of particles by m; and 0.;. The spins of the
higher members are then o,+2, a~+4, ~ ~ . It is im-
portant to notice that the signature of a Regge trajec-
tory is defined by 0.; and, in fact, we shall find it con-
venient to use o.; in place of the signature. (This avoids
the necessity of using diferent conventions for boson
and fermion trajectories. ) Now when all three tra-
Jectories pass through physical values, the vertex func-
tions I'~23 must be proportional to the corresponding
coupling constants g~~3, since the Regge formula must
have the correct residues at the ordinary poles 3;=ms,'.
We may, in fact, normalize I'»3 by requiring that, at the
positions of the lowest members of each family, it should
be equal to the coupling constant:

I 123(ml m2 ms )=gl23.

We shall find that for higher members of the families an
additional normalization constant, related to the slope
of the trajectory, is required, that is, that

to unphysical spins in such a way as to make F»3 real
in the region below all thresholds; for, otherwise the
symmetry relations could involve a variable phase
factor equal to unity only at the physical points. We
define the function

F12,3(tl, ts, t3) = (kl/3/I)&1 ~1(k2/~)l3 ~3

&&(ks/M) -"f»,3(f„»,13), (13)

where f12,3 is the factor (9) or (10) appropriate to spins
0-;. It is easy to see that this factor has the correct
behavior ks&'3 ~»+'3 at the threshold [3——(f 'is+f2'~')' "
However, it is not possible to factor out completely the
behavior at $3=0, and 7~~3 therefore is not, in general,
rea1 in the region where t~ is negative. In order to obtain
functions which are real in that region it is generally
necessary to make linear combinations of the F»3, and
the appropriate factors necessarily depend on the
helicities. The expression (13) does, however, include
all the factors which depend on the variable spins, and
the only remaining factors required are of the form t;"'.
(This is the reason for this particular choice. )

One problem which arises on going from physical
spins to continuous spins concerns the range of values
of the X;. Clearly, this range cannot change discontinu-
ously as we go along the trajectory, and we must,
therefore, allow each X; to range (by integral steps) from
—~ to + co . For physical values of j;,only those values
of X, satisfying

~ X;( &j; are physical. In this connection,
it may happen that all vertex functions vanish at a
particular j; for physical X;; then there is no particle
associated with the trajectory at this point. "

3. FOUR-PARTICLE AMPLITUDES

We consider here a scattering process a+f1 -+ c+d.
The scattering amplitude is given by Eq. (AS) of
Appendix A, which may be written in the form

where X= —X,—X~, p, = —X —X~, 8 is the scattering
angle, and the angles @and it are defined in Appendix A,
Fig. 8.

Now, if we set

di, „(j,cosos) =E(j,X)1V(j,I3)di„„'( 8), (15)—
' It is assumed here that the orbital angular momentum in-

creases linearly with ja, and thus increases by 2 on going from one
member of the Regge family to the next. This is generally true,
with the reservation that for some j& some of the "possible"
values of l3 become negative and therefore unphysical. (Compare
Ref. 11.) Note that the possible values of 13 for fixed j3 differ by
2. It is unimportant which of these values we choose since chang-
ing l3 by 2 introduces only the real rational function kP."M. Gell-Mann, in Proceedings of the )P6Z Annual International
Conference on High-Energy Physics at CERE (CERN, Geneva,
1962), p. 533.
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~vhere «V'(j, X) is given by Eq. (2), then d&, ,„(j,x) is a
meromorphic function of j in the entire j plane, and as a
function of x is (apart from a phase factor) the boundary
value of a function dx, „(j,s), which, if j is not at a pole,
is holomorphic in the plane cut from —~ to +1. (See
Appendix 8 for the details. ) As in the preceding section,
we use, in place of the signature, a 6xed angular mo-
mentum o-, which may take the values 0 to 1 if the j in
(14) are integers, and —.

', and -,'if the j are half-odd-
integers. We define two amplitudes T'(j, t) by

(—~„—~.
I

T.(j,«) j) ., )~,)
=-:51+(—1) '5L&'(j, ) P(j,«)5 '

X(—) „—) d~T'(«) ~).,X,). (16)

Then our basic assumption is that each of the functions
T (j,«) is an analytic function of j, meromorphic in the
right-half j plane Rej& —~. This assumption is con-
sistent with the results which have been proved in
Schrodinger theory with suitable potentials. "We can
then transform Eq. (14) by a Sommerfeld-Watson trans-
form, provided that the functions (16) are appropriately
bounded for large j. In doing this we have to show that
the lower limit on the sum over j, namely, max/, ,«i), is
unimportant; that is, that the integrand of the contour
integral has no poles (other than Regge poles) for posi-
tive j less than this value. This is proved in Appendix B.
In deforming the contour to run parallel to the imagi-
nary axis, we shall pick up the contributions of the
Regge poles. Here we wish to consider the contributions
of a particular Regge pole at j=n(t), with "signature" 0..
If the residue of T (j,«) at this pole is P(t), then the
contribution to the amplitude (14) is (see Appendix 8)

(—X„—XdiP(t) iX„) s)
2 sinir(n —0)

Xe 'x&$dx„(n, cost)), +(—1)' "dx,„(n, cost'«)5e—"»

FIG. 2. Regge-pole dia-
gram for a four-particle
process.

constantiV, we examine the residue of the pole at the
position t=m~' of the lowest particle on this trajectory .
If we assume that the external particles are the lowest
members of their respective families, then we may use
the normalization condition (11).Clearly the residue at
this pole should be effectively the product of two decay
amplitudes, which may be expressed in terms of the
coupling constants by Fq. (1). In this way we find

E=LV.1V blV, Ãdcx'(mrs),

where «V, =«V(j„h,), etc. , and n' is the slope of the
Regge trajectory. Similarly, by examining the residue
at a higher pole t= mI*', we may evaluate the additional
normalization factor «ri' which appears in (12). We find

rii* L~ (mlc2)/~ (mls)51/2

Finally, the contribution of this Regge pole may be
obtained by substituting (18) into (17). It may be
represented diagrammatically by the diagram of Fig. 2,
and is (omitting the constant mass arguments)

lVcil bA cA d Q 'Pedi(~c)~d)~i «)Pedi(«),

XGi, x„(p,t),$; «) I"-,s(p, X,Xs, «)J', s (t), (19)

where the summations over 'A and p, are dummy sum-
mations eliminated by the 8-function factors in the
vertex functions, and the "propagator" G& is given by

Gi. &, (g tilt «) =n'(mi')e 'x&Gx„'Ln(t), cost«5e '», (20)

where

Now the general arguments which have been used to
show that the residue P(t) must factorize into two
factors, depending, respectively, on the final and on the
initial state, " are equally applicable to the case of
general spins. Thus, P(t) has the form of the product of
two vertex functions. The vertex functions are effec-
tively defined by the relation

(—) „—) d~P(«) ~).,),)~()„+)d+), 0)~().+) b+„, o)

X I'i.s(«i, )t.,Xs,' «,m ',ms')F. s, i(m. ',mb', «), (1g)

where the subscript 1 labels the trajectory, and N is a
normalization constant to be determined. We note that
only vertex functions with two of the particles physical
can be defined by this equation. To determine the

'2 J. M. Charap and E. J. Squires, Ann. Phys. (N. Y.) 20, 145
(1962);21, 8 (1963),and to be published; I.Hartle (unpublished).

'3M. GeQ-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, ibid. 8, 343 and 412 (1962);
J. M. Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962).

G).„(n,x) =
2 sinir(n —0)

X[&, „(,*)+(—1) —"&,„(,—*)5. (21)

The set of "Feynman rules" is essentially obvious
from this example. Note that the internal line is labeled
by two helicities, representing its spin components in
the directions of the initial and final center-of-mass mo-
menta, Lwhich are related by the rotation (Q, —t), —P)5.

We conclude this section with g discussion of the
asymptotic behavior of (19) for large cos8. Using Eq.
(810) we find, for Ren) —sr,

(—i)"+"m-I'(2n+1)L1+e—' l —'5
Gx. (~:s)=- —a (22)

2 +' sinrr(n —0.)

as s —+~, Ims&0. In terms of the Mandelstam in-
variant s, which is related to s by

s 24k's as s~~,
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4. MANY-PARTICLE AMPLITUDES

We now consider a process

a+6 -+ c+d+e. (24)

With a particular choice of axes, the amplitude for this
process may be written Lsee Eq. (A9)) in the form

(oo, (»'a'@', —j „, —x.),(—j,) ) T(») )
—ao, &...j,)

= P ((»'j' »', —&., ——&d), (—X.) ~

T (»)!X„,X,)
iPld'

X (j), „"(, (j')—e '&'&'d), &'( —lj), (25)
where

V+X.+Ad=0,
»('+j+jl.=o,
»(+X,+X(,——0.

(26)

Now according to the general principles of S-matrix
theory, this same function should also represent, if
analytically continued in an appropriate way, the ampli-
tude for the crossed process

c+b+e —& c+d, (27)

The amplitude for this process is

(~ q, —~„—~, ! T(») ~00,(j„),(»—ao, ~...~,))
= P(—j „—j, ! T'(»') ~(j,),(»p,j.,X,))

jj')
Xdl, ,"( a')e '4'&'d& „'( 6—), (2-8)—

v here jl', »(', »( are given by Eqs. (26). Comparing Eqs.
(25) and (28), one sees that T'(») and T"(»') should be
analytic continuations (in» and»') of the same function,
except possibly for a constant phase factor. We define
four amplitudes T( ~ ', suppressing the helicity
labels, by

T'"'(i» j'»')
=dL1+(—1)' jL1+(—1)" "3

Xp (j,&)E(j,» )Ã(j', &')1V(j',»
')j—'

X((»'j' —»(', —X„—j d), (—ll, ) ~
T'(»)

~
jl„jl(,).

Since each of the angular momenta j and j' is the total
angular momentum in one process, we shall assume that
these four amplitudes are analytic functions of both
variables, meromorphic in the product of the right-half
planes. Then we can make a double Sommerfeld-Watson
transform„picking up Regge poles in each variable. Ke
shall consider the contribution of a particular pair of
Regge poles, j =((,(») and j'=((2(»'). This contribution
may easily be written down in terms of the residue

where k and k' are the initial and final center-of-mass
momenta, we, therefore, have for large s

F,d, ,Gl„e(n,z)F.(,, l f...lj.(„l(312/k1~')'( —2)'+"

2ri'(2(2+1)L1+e ' & '&j s )
X——

2'"+' sinlr((2 —0) M']

FIG. 3. Regge-pole
diagram for a 6ve-
particle process.

pl2(», »'). Now from the general requirements on factori-
zation of residues, pl2 must be the product of a factor
depending on the initial state, that is essentially I'~ ~,

and a factor depending on the final state. Applying the
same argument to the process (27), we see that pl2 must
be a product of three distinct factors,

pl 2(»p» ) ~V p d2Fcd, 2cI 2 lFe2 lIela lPcb, l .

As before, the normalization factor iV may be found by
examining the residues at the poles t=mI', t'=m2'. One
obtains in this way precisely the expression one would
expect on the basis of the "Feynman rules" described
in Sec. 3, for the contribution of the diagram of Fig. 3,
namely,

3 eÃbXcÃdÃe P Fcd2(j cold j( e» )Fcd, 2(» )

xG, , „.(O,a', y', »') r-„,(„'z,j; »', »)F„,(»', »),

XG, „(o,lj,o; ») I'-, l,(»(jl.old, »)F (,(») . (29)

The only di6erence between the contributions to the
amplitudes for the processes (24) and (27) is a constant
phase factor which arises from the fact that for the
latter amplitude F2, , & is replaced by J,&, 2.

One important distinction between this expression
and the contribution (19) to a two-particle scattering
amplitude is the fact that only three of the summations
over helicities are removed by the 8 functions in the
vertex functions. One genuine summation from —~ to
+~ remains, though, in practice, it may be possible
to neglect all but a small number of terms. Moreover,
so long as the sum converges reasonably rapidly, this
difference is unimportant for predictions of high-energy
behavior, since every term has essentially the same
asymptotic behavior. It is also possible that one might
be able to convert this in6nite sum, like the sums over

j, into an integral, by using analyticity properties in
P; however, we shall not consider this question here.

S. DISCUSSION

One of the most promising features of the Regge-pole
formalism is that it allows a unified description of the
low-energy (resonance scattering) and high-energy
(diffraction scattering) regions. In a scattering process
in which the total energy is s"', the contributions of the
resonances at low energies are described by the Regge
poles in the s channel; whereas at high energies the
scattering is dominated by the Regge poles in the t or I
channel, depending on which of these invariants is
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numerically small, that is, for near-forward or near-
backward scattering. (There is, of course, a basic differ-
ence between the two regions, namely, that in the low-

energy region one does not expect the Regge poles to
describe the whole of the scattering, since the back-
ground integral term is certainly not, in general,
negligible. ) This kind of description can readily be
extended to production processes and, to be specific, we
shall consider a five-particle process a+b -+ c+d+e.
There are five independent Mandelstam invariants for
this process. We shall use the letter s to denote the
(necessarily positive) energy invariants, and 3 to denote
the momentum-transfer invariants. Thus, for instance,

Sab= (p +apb)

~ae (pa pc)

Because of the larger number of invariants, one has to
be careful to specify precisely what is meant by 'low-

energy' and 'high-energy' regions. We shall find it useful
to distinguish three diferent regions, specified by the
magnitudes of the energy invariants s,. ~, s,~, s... sq,
(with one linear relation between them):

I. Low-energy regiorts: s & small. Then all the other
invariants must clearly be small also.

II. Iritermediate regiors: s, ~ large, but at least one of
the other energy invariants small.

III. High-erlergy region: all energy invariants large.

FIG, 4. A typical diagram
for the low-energy region.

Here "large" means much larger than the squared
masses, and "small" means of the order of the squared
masses. Note that the total energy is not necessarily
larger in region III than in region II.

Different kinds of Regge diagrams will be important
in each of these three regions, though as in the four-
particle case it is only in the high-energy region that
one may expect the Regge pole terms alone to give a
good approximation to the entire amplitude. In region I
the important diagrams will be like those of Fig. 4. It
makes little diAerence in this region whether one treats
the internal lines in these diagrams as short-lived parti-
cles in the ordinary sense or as Regge particles; the
important contribution in each case occurs for s, ~ and

sd, near the resonance positions.
In region II, one should really distinguish three sub-

regions, according to which of the three final-state
invariants is small. If s b is large enough, these regions
will not overlap, though for moderate values of s b, more
than one pair of final-state particles may be in the
resonance region. In any case, we are well above the
resonance region for the two incident particles, and

+b

Fn. 5. Typical di-
agrams for the inter-
mediate region where
the total energy is
high but particles d
and e are resonant.

(b)

1' IG. 6. Typical diagram
for the region where all
energy invariants are large.

'4 I. G. Halliday and J. C. Polkinghorne (to be published). I ani
indebted to Dr. Polkinghorne for informing me of their results
prior to publication.

their scattering will be dominated by an exchanged
Regge particle. In the subregion where s~, is small, we
should expect diagrams like those of Fig. 5 to pre-
dominate. Here the Regge trajectories are defined by
t&, or t„, and by s&,. Whether it is the t&, or t .poles
which dominate must depend (as in the choice between
t and u in the four-particle case) on which of these
invariants is numerically smail. (If neither is small, we
should expect the cross section to be very small indeed. )

Finally, we come to the region III, in which we are
above the region of resonances between pairs of particles
in the final state. Then only Regge poles in the mo-
mentum-transfer variables can give an important con-
tribution, and we have to consider diagrams such as that
of Fig. 6, in which the Regge trajectories are function
of tb, and t„.This diagram will, therefore, be important
in the subregion where these particular invariants are
small. Clearly, the subregions corresponding to different
pairs of momentum-transfer invariants are generally
well separated from one another, as are the forward- and
backward-scattering regions in the four-particle case.

The region III is particularly interesting from the
present point of view, since it is only in this region that
one can make experimental predictions by considering
the pole terms alone. We shall, therefore, examine the
asymptotic form of a contribution like that of Fig. 6.
Apart from a different labeling of the particles, this is
given by the expression (29) with 3= t„dan('= ti„. For
large values of s,~ and s~, we can use the asymptotic
form (22) for the propagator. Thus, we might expect
that the dependence on the invariants sg. and s,~ is
through a factor of the form

(sd,/M') '&" (s,s/M') 'i "&
y (31)

with t= t ., t'= 3&,. However, it has been pointed out by
Halliday and Polkinghorne" that this is not necessarily
true if the order of the limits sd, —+~, s,~~~ is im-
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'p

/

/

(b)

FIG. 7. Regge-pole diagrams for pion production in 7f'-Ã colli-
sions in two regions. P denotes the Pomeranchuk trajectory, and
lV, x on internal lines label the nucleon and pion Regge trajecto-
ries.

diagram of Fig. 7(a). On the other hand, according to
the peripheral model, it is dominated by a single-pion-
exchange process in which at high energies the pion-pion
scattering may be treated as diffraction scattering. This
corresponds to the diagram of Fig. 7(b). If the descrip-
tion suggested in this paper is correct, each of these
models has its range of validity. They apply, in fact, in
certain subregions of the regions II and III, respectively.
Other diagrams will apply in the other subregions.
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For two particles of masses m~, m2, and spins j~, j~,
one first constructs center-of-mass states of total mass
s'~' by combining two one-particle states in the form

~
O, s&7$,7il,X2)=

~ p64, l~l)
~

p@Q,X2). (A3)

Here we have used the notation (A1) also for negative
p. Note that the helicity of particle 2 is —Xs, this
apparently unsymmetrical convention avoids some un-
necessary complications in later formulas, particularly
in connection with crossing symmetry. Note also that
we have not included any kinematical factor in (A3);
thus, the normalization in terms of s contains a factor
2s't'/p. The momentum p is given as usual by

p'= h(mrs, mss, s)/4s,
where

D(s, t)u) =s'+ t'+ u' 2st 2su 2tu. — — —
(A4)

(A5)

APPENDIX A

Helicity Amplitudes

We summarize here the relevant definitions con-
cerning helicity states, ~' and introduce some useful
notations.

The states of a single particle of mass m and spin j
are labeled by the momentum p, or p, 8, p, and the
helicity lt. They are defined in terms of the states ~0,7)
of momentum zero and s component of spin X by

~ p, X)=
~
pay, 7 )= U(rtir'tp/m) ) 0,7~), (A1)

where U(gap/m) is the unitary operator corresponding
to a I.orentz transformation taking the vector (m, 0)
into the actual momentum vector, namely,

U(pr7 sinhx) = e-isa''e-issue ™ii
We use the covariant normalization
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FIG. 8. Relations between
the angles in a scattering
process; 8;,@; and 8y,@y are
the polar angles of the
initial and Gnal center-of-
mass momenta, and 8 is the
scattering angle.

The general two-particle state may be obtained by
applying a Lorentz transformation U(P'tt'P'/s'I') to
(A3).

Three-particle states are formed similarly by first
combining particles 1 and 2 to form the state (A3), and
then combining this with particle 3 to obtain a state

IO,"a ~,(.~~,~„),),(~,))
=

I
P'a'y', say, )„),) I

P'e'y—',),)
Here X~ and —'A2 are the helicities of 1 and 2 in their
center of mass and —X3 is the helicity of 3 in the center
of mass of all three particles.

Angular momentum states for two particles are de-
6ned, with an unconventional normalization, by

2j+1
IO, s jest, ),t,) s) =—— dQ IO, sttp, ) t,ks)

x&&ID'(yao) I) t+)„)*. (Au)

With this normalization, the inverse relation is simply

I 0,s84,X1,X2) =2 J O, &jest X1 )t2) &tu I
D'(@+o) I

~i+~s) .

A similar decomposition may be made for a three-
particle state in terms of two angular momenta.

For the S matrix, we use the notation

s&P',fls —1IP,s)=(2~)'b4(P' —P)&fl2'(~) ls)

with s=p"=P' and

&i'1',fl &(~) Iil,s) = b' b'.&f I &'(~) I s).
The angular dependence of the amplitude for a decay

process c —+ a+b is given by

&ay,x.,), I r(~,s) I),)
=&).,),IT"( .) I)().+)~,ID'(o, —a —y) I).). (A7)

For a scattering process a+b —+ c+d, we have

(t)type, )t„)a I
2'(s)

I
t),tie;,) „)s)

=P; &x„)„lr'(s) I)~.,)t,)
&«)„+),ID'(y, —a, —p) I).+) b), (Ag)

where the angles @, r)t, tP are defined by the spherical
triangle of Fig. 8. In particular, 8 is clearly the scatter-
ing angle. Finally, for a production process a+b —+
c+d+e, the amplitude is

(a,y„(s'a'tt ',) „),),(),) I 2'(s)
I a;y, ,) .,),)

= Q ((s'j'p', X„Xa),(X,) I T '(s) I) .,) s)

x&),+).ID'(0, -~', -@')ll ')
y(&p'+). ID (y, e, —tt) I)t.—+),),

where Q, t7, it are again defined by- Fig. 8.

where

and also
Z (j,),)= r(j+~+1)r(&—)+1)

P~.( j 1s)= (——1)—" "P.~(j,s) (84)

A limit function p&,„(j,x) on the real interval —1 &x& 1

may be de6ned by

s-..(j,*)=(~')"- p..(j, ~'o),
and for physical j the rotation matrices may be ex-
pressed in terms of this function by'0

x(j,x)
dz„~(—8)= pi„(j, costi),

~'(j,~)

&(j~)
p „, z(j, cost7),

x(j,)t,)

dq„(j, cost)), sav. (85)
&"(j,) )&(j,.)

' Some of these analyticity properties have also been discussed
by J. M. Charap and E. J. Squires, Ann. Phys. (¹Y.) 20, 145
(1962).

'9 See Higher Transcendental Functions, Bateman Manuscript
Project (McGraw-Hill Book Company, Inc. , New York, 1953),
Vol. II, pp. 168-174. Most of the results, of this section are im-
mediately applications of the properties of the hypergeometric
function, See, ibid. , Vol. I, Chap. 2.~ A. R. Edmunds, Angular Momentum in Quantum mechanics
(Princeton University Press, Princeton, 1957), p. 58,

APPENDIX 8

Analytic Proyerties of Rotation Matrices

Since the rotation matrices are expressible in terms of
the hypergeometric function, their analyticity prop-
erties are easy to obtain. It is convenient however to
collect the relevant formulas here. "%e define functions

pz„(j,s) related to the Jacobi polynomials" by

P~s(j,s) = [s(a+1)j""+"'[s(s—1)j"""'~2-x" " '+"'(s)

r(q —&+1)

F(j—X+1)F() —p+1)
X [-,'(.+1)]it"+ &[-,'(.—1)]«"- &

XF(),—j, )+j+1;X—p.+1;s[1—s3). (81)
This is an everywhere meromorphic function of j, X,
and p, and a holomorphic function of s in the plane cut
from —rc to +1.However, our discussion is restricted
to the case where X&y are integral. It is then an entire
function of y, and has zeros as follows:

p..(j, )=o
j=p, &+1, , ) —1 if p, &X,

at (82)j= —1r —p+1 —X—1 if p&'A.

It has the symmetry properties

P ~. .(7,s) =P~,,—(i,s),
&'(i,l )P.~(i,a) =&'(7 ) )P~.(j, ),s



It is also useful to define a second function

V"(j,s) = Cl(s+1)3""'"'Ll(s—1)3*'" "'Q —" """'()

N'(j, fi) a+1 if"+» z—1

2I'(2j+2) z —1 2

where j,=max(~) [, (f [). U we define

=(j+k) Ti,„(x)77'„(j,.r) dr, (812)

which is meromorphic in the entire j plane, and as a
function of s has the same domain of holomorphy as

Pz„(j,s). It also satisfies the symmetry relations (83),
though not (84). The functions are related by

then we can write

T~.(*)=2 ~~.V)7 ., ~V,~)
i=7 0

(813)

(89)

whence it follows from (85) and (87) that for Rej)——,
'

dg„(j,s) (Wi)" I'(2j+1)(-,'z) ' (810)

according as Ims&0 or (0. For large j, such that
~
arg j( &m —8&s., and with s 6xed and not on the cut,

we have"

qq„(j, c os hg) ~~L/ 2j sinh$]'~'e "+"f. (811)

Now consider a function Tq„(x) defined on the real
interval —1&x&1,and let

T~.'= (i+s) Tq„(cosel) di,„'( 8)d cosr7 . —

The inverse relation is

p,„(j,s) =~-' tan~(j —) )
XL(—1)"-q.„(j,.)—q„.(—~

—1,.)), (87)

and, in addition, the discontinuity of q~„across the cut
from —1 to +1 is expressible in terms of p~„according to

i& "q&„(j,x+i0) —ii "g&„(j,s:—i0)= i~»,„(j,i).—(BS)

The asymptotic behavior of these functions is most
easily expressed in terms of qq„. For large values of z,
the asymptotic behavior follows at once from (86),
and is

Using the symmetries for physical j, we then have

Tg„(x)= —,'i
dj

~~.(j)7i.,-~(j, —*)
sinn( j—X)

where C is a contour encircling the positive real axis in
a clockwise sense, and excluding any poles of Az„(j),
and then deform the contour to run parallel to the
imaginary axis, picking up Regge poles in the usual way.
A typical Regge pole term at j=a has the form

dg, „(rr, —x),
sinn (rr —X)

In this form (though not in the form (813)] the lower
limit of the summation may be set equal to 0 or —' since
either pq„or p„, q vanishes at all the additional points.

Now suppose that Tq„(x) is analytic in x (except for
square-root branch points at x= ~1 which are present
if X~fi is odd) and polynomially bounded in the x plane
with a cut only on the positive real axis. Then by re-
placing pz„ in (812) by the discontinuity of qz„as given
by (BS),and integrating from —~ to +1, we obtain an
analytic continuation Az„(j) which is bounded by an
appropriate exponential in the right-half j plane. Thus,
the conditions for a Sommerfeld-Watson transformation
are satisfied and we can first write

s' This follows from Ref. 19, Vol. I, p. 77, Eq. (16). where Itl is the residue of N '(j,p)Az„(j) at j=er.


