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In this paper, a detailed analysis of EE and A"X scattering on the basis of the Regge hypothesis is carried
out. The Regge expansions of a set of ten invariant amplitudes describing EX scattering are presented,
with residues expressed in factorized form. Expressions involving both the full Legendre functions and their
asymptotic forms are given. Spin sums are carried out to obtain simple and convenient expressions for the
contributions of the P, p, or, and P trajectories to the differential cross sections. The optical theorem has been
applied to Gnd the contribution of the P, P, p, and co trajectories to the spin-averaged total cross sections.
Finally, we have analyzed the available data on the total and differential cross sections for SE scattering
to extract information about the Regge-pole parameters. The possible effect of the spin structure of the
amplitudes, and the variation with energy of the Legendre functions has been taken into account. We show,
by a natural definition of helicity flip and no-flip couplings, that the amplitudes, and especially the cross
sections, for SE scattering are very simple in the asymptotic limit. In an Appendix, the decay properties of
a spin-2 meson associated with the Pomeranchuk Regge pole are discussed.

I. INTRODUCTION there will be many independent physical quantities in
the SE and EX system which can be expressed in terms
of Regge poles. With these, more detailed and precise
experimental consequences of the Regge hypothesis can
be deduced, and their investigation will lead to corre-
spondingly more stringent tests of the Regge hypothesis.
In terms of experimental feasibility, the nucleon-nucleon
system appears to be the most suitable for further de-
tailed experimental verification of the Regge pole con-
jecture. For all these reasons, we feel that the nucleon-
nucleon system merits a thorough treatment based on
the Regge pole hypothesis, which is given in this paper.

Consequently, we present in Sec. IIA the leading
terms in the Regge expansions of a set of ten invariant
amplitudes, which are free of kinematic singularities, de-
scribing ÃÃ and SXscattering. We discuss the possible
transitions in XA and EN scattering between states of
given parity, spin, and isospin. These are conveniently
summarized in terms of rI' L= (signature) (parity) J and

( )IGP. The se—lection rules which result reduce the
number of independent amplitudes describing the scat-
tering which arises from a given Regge pole. Regge
expansions for the helicity amplitudes are also obtained
in this section. In Sec. IIB we briefly discuss a high-
energy symmetry between reactions whose amplitudes
are related by a reversal of external baryon lines. '

The expansions we derive in this section are of interest
regardless of whether the set of important singularities
in the angular-momentum plane consists of poles only
or contains also cuts. However, the usefulness of the
Regge asymptotic expansion for data analysis will be
seriously imparied if cuts play a very signi6cant role.

The functions b, (u) occurring in the Regge expansions
are related to certain coupling strengths. In Sec. III we
establish the precise relationships in a number of par-

'N this paper we shall discuss nucleon-nucleon and
- ~ nucleon-antinucleon scattering at high energies
(s —+ ao) and low-moment um transfer —s&&t &0. It is in
this regime of momentum and energy that the Regge
pole hypothesis, in terms of which we shall discuss
XX and Xg scattering, finds its most immediate
application.

The general features of the nucleon-nucleon problem
have already been discussed in terms of Regge poles. '
Simple expressions have been obtained for various differ-
ential cross sections on the basis of an analysis which
ignored the spin structure of the amplitudes. Perhaps
the most characteristic result of such a simple Regge
pole analysis, which shouM also come out of any more
detailed Regge analysis, is the prediction of a diffraction
cross section which, as energies become arbitrarily large,
and momentum transfers remain small, has the func-
tional form

(
da do

=p (t) (I/I, )' i~ i') —Il .
~p

Recent data' on pp scattering in the range 15&I/2IIIN'
&25, 0& t/2m~'&3 —have been analyzed' in terms of
Eq. (1.1), with the important result that at least the
most general features of the Regge hypothesis (as ap-
plied to nucleon scattering) seem to be consistent with
experiment.

The nucleon-nucleon system is of intrinsic importance
in elementary particle and nuclear physics. The com-
plicated spin structure of the amplitudes means that
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ticular cases by comparing the Regge amplitude to the
corresponding Feynman amplitude at the pole.

We should like to mention at this point that other
discussions of the Regge expansions of the 1VN and NN
amplitudes have also been carried out, ' ' ' and some of
the results of Sec. II of our article are contained in these
papers. In particular, Gell-Mann4 has presented his
expressions for the amplitude in "factorized" form, as
shall also be done in this paper. In addition, he has
analyzed in a most interesting way the question of the
presence of "ghosts" in these amplitudes. Muzinich, ' in
his discussion of the Regge expansions of NN and NN
amplitudes, considers a problem not discussed here;
namely, he shows (on the basis of the Mandelstam
representation) that the Froissart' analytic continuation
of the partial-wave helicity amplitudes can be carried
out for the EE problem, where the particles are spinors.

In Sec. IV we discuss in detail the cross sections for
NN and NN' scattering. "The contributions of the F, p,
co, and I'" trajectories are all discussed. All spin sums are
carried out explicitly.

In Sec. V we turn to an analysis of existing data on
N1V and 1VN scattering in terms of the Regge pole
hypothesis. Our analysis is based on the data of Diddens
et ul. '' and of Lindenbaum et at" We find that an
analysis which includes the full variation of the
Legendre functions with energy, as well as the spin
structure of the amplitudes, does not change the basic

nclusjonsu, u of the Regge analysis of total cross sec-
tions. A second vacuum trajectory, introduced by
K. Igi,"is consistent with the data. However, because
the 0.» data" are so far from satisfying the Pomeranchuk
theorem, and because the o-„„data, containing the
Glauber correction, are so unreliable, the conclusions of
such an analysis must be regarded as rather tentative.

The angular distributions have been expressed in
terms of the Regge-pole parameters. If only the
Pomeranchuk. trajectory is included, the differential
cross sections can be expressed in terms of essentially
one function, a result which becomes clear when the
differential cross sections are expressed in terms of
helicity amplitudes. "The available data have been used
to determine this function; we find it has a linear be-
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havior for 0(—t&0.40 (GeV)', and is a constant in this
region if ss ——1 (GeV)'.

Throughout this paper, our emphasis has been on
exploring the detailed experimental consequences of the
Regge hypothesis as applied to the nucleon-nucleon
system. It is hoped that this eftort will instigate more
elaborate experimental investigations, designed to test
critically the predictions made here. We wish to check,
as thoroughly as possible by experiment, whether this
approach to elementary particle physics has a firm basis
in the facts of nature.

S=u(pt') &u(pt)u(ps')»(Ps)
T= su(pr')~"u(pr)u(Ps')~"u(ps)
A =u(p, ')t'yean„u(p, )u(ps')ipse„u(ps),
U= u(pr') V.u(pt) u(Ps') v.u(ps),
&=u(pt')»u(pt) u(ps') ~su(ps)

(2.0a)

p'= eL(st~~st) (ssi~ss)+3(stist)(ssiss)], (2.0b)

P —,L—(sr ~st) . (ss ess)+ (st st) (ss.ss)], (2.0c)

s (p1+ps)

u = —(Ps' —P t)'~

t = —(pt' —pt)'.
(2.0d)

In the above, the s; represent isospinors.
The inclusion of the isotopic factors, which we usually

drop for the sake of simplicity, is accomplished quite
' M. L. Goldberger, M. T. Grisaru, S.W. MacDowell, and D. Y.

Wong, Phys. Rev. 120, 2250 (1960).This paper will be referred to
hereafter as GGMW."D. Amati, E. Leader, and B. Vitale, Nuovo Cimento 17, 68
(1960).This paper will be referred to hereafter as ALV.

II. PROPERTIES OF THE AMPLITUDES DESCRIBING
NUCLEON-NUCLEON SCATTERING

A. Regge Expansions for Nucleon-Nucleon
Scattering Amplitudes

The Regge-pole contributions to the amplitude may
be deduced from the partial-wave expansion of the
amplitude in the cross channel according to the pre-
scription of Frautschi, Gell-Mann, and Zachariasen. ' 4

To obtain them, we may employ the matrices of Gold-
berger, Grisaru, MacDowell, and Wong" who have dis-
cussed the application of the Mandelstam representa-
tion to the EE problem. GGMW, and Amati, Leader,
and Vitale'~ have shown that only if the EE scattering
amplitude is expressed in terms of Fermi invariants are
the associated invariant functions free of kinematic
singularities.

In order to facilitate comparison with previous work,
we shall adopt the notation introduced by GGMW. The
nucleon-nucleon scattering amplitude is written as

T=Pr Pr(F sr(s, u, t)S+Fr r(s,u, t) T+F~r(s, u, t)A

+Fvr(s, u, t) U+Fp'(s, u, t)P'j,
where
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readily by making use of the matrix

1 —3
t Ar) (=-) (2.0e)

which relates the invariant functions F, considered as
a two-component vector in the isotopic spin index, to
the relevant functions in the t channel with isospin I .
The first row and column refer to I=-o, and the second
to I=1.

Throughout this paper, we shall suppose that the
Regge pole is in the t channel. However, we may briefly
indicate here how to pass from the t channel to the
u channel, or vice versa (t =u). This corresponds to
interchanging Pi' and P2'. The following changes are
thereby produced: (i) The full amplitude changes sign;
(ii) the spinors of the final particles are interchanged,
u(pi') u(p2'); (iii) in the c.m. system, the scattering
angle changes from 8 to 2r —0; (iv) 6nally, the isospin
projection operator P' changes sign while P' does not.
The matrix (2.0e) then becomes

3
(err) (=)—— (2.0e')

It should be noticed that Eq. (2.0e') already includes
the sign change mentioned in (i) above.

The first part of the problem is to ascertain the con-
tributions to the five invariant functions, Iiq, Iiz, Ii~,
Ii y, and IiI, resulting from a Regge pole characterized
by definite values of 6, I, P, and signature (r). This may
be expedited by employing some of the formulas of
GGMW. (In the following kinematic considerations, we
shall omit the isospin factor. ) With the aid of Eq. (2.6)
of GGMW, we see that

'55 '—3 1 1 1 1'5'
T+7 1 6 2 0 0 6 T
A —A =— 4 0 —6 2 —4 A, (2.1)
V+V 4 4 0 2 2 —4 l

P—I'. 1 1 —1 —1 —3. I')

and, consequently,

~s
PT 1

Py
p~

'—3 6 4 4 1 'F1
2 0 0 1 F2

1 0 —6 2 —1 F2, (2 2)
1 0 2 2 —1 I'4

6 —4 —4 —3, Ii5,

T=Fi(S S)+—F2(T+T)+F2(A A)—
+F4(U+ V)+F2(P P) . —

The set of invariant, functions (F] F2)F3,F4,F2} have
nice symmetries under the interchange I~ t due to the
generalized Pauli principle, but in the Regge pole con-
siderations, it is much more convenient to work with our
unsymmetrized functions. Inverting Eq. (4.24) of
GGMK, we have

'Ii1 1
F2 1 0
F3 ————1
Ii4 2m 0
F5, 3

0 4 0 3 G1
4 0 0 0 Gg

0 0 0 1 Gg

0 0 4 0 G4
0 —4 0 1. G5

(2.3)

and using Eqs. (4.27) and (4.28) of GGMW to relate
G; and 6;., we obtain

Fs $0
Fz 1 0

———0
Fy 2~ 0
FpJ 1

0 0 0 1 61000 6,
O1O O 6, .
0 0 1 0 64
0 0 0 0. Gg.

(2.4)

Thus, the 6; of GGMW are exactly the same as the
choice of invariant functions convenient for our analysis.

The partial-wave decomposition of the G's may be
obtained by using Eq. (4.33) of GGMW, which in our
notation reads

1/E'
0

G(f) = 0
0
0

0
0
0
0

—1/p-'

m2/Eip2
0
1/p2
0
0

s/E'—1/p'—
0

1/p'-
—s/p'

—s/m'
—E'/m'p'

0
1/p'

s (E'+m'-)/m'p"-—).
(2 3)

where 4p' = t 4m', 4E2 = t,—and s = —[1+2s/(t 4m') J—
together with equations which relate the f, to their
partial-wave forms.

The angular functions employed for this purpose were
evaluated from the reduction formulas of Jacob and
Kick" with the following results:

E (2J+1)f2=-
p J(7+1)

s(2Pg i' —J (J—1)Pg)-
Pz'+ 1

2Pg i' —J(J—1)Pg
f22~, (2.6d)

f2 —(m/P) (2J——+1)P~'(s)f»~/[J(5+1)]')2, (2.6c)

fi= (E/p) (2J+1)P~(')fo', (2.6a)

f2= (E/p)(2~+1)P~(s)f»', (2.6b)
' M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).

4 3 1~ 22 ~ (2.6e)

We can now easily obtain the Regge amplitudes corre-
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sponding to a given trajectory. Use of Eqs. (2.4) and
(2.5) can be made to obtain the partial-wave expansions
of the amplitudes F8, , Ii p. These are summarized in
Table I for states of the 2'I)N system classified by the
quantum numbers rP, J, and ( )rG—P.

Mandelstam' has shown that it is likely that the true
asymptotic expansion of the amplitudes in the sense of
Regge involves Legendre functions of the second kind
rather than those of the erst kind. The transition from
the Regge expansion to the modified expansion
amounts to the replacement' of P (x) by (P (x), where
(P (x)= —[tanprnQ, (x) j/2r. In this paper we shall
write the expansion formally in terms of the I' for typo-
graphical reasons only; in practice, it makes no differ-
ence in the data analysis whether one uses I' or the
more correct (P .

The next step is to factor out the threshold behavior
in the functions f We m. ay do so by introducing the
functions b; according to the definitions:

be written conveniently in terms of the 5; and4

Z '(s, t) =[Z (s,t)+rZ (N, t)j/(1+re ' "&')),

where
n!Qpr t—4m')

Z (s t) —e
—4Ea

2"(n--', )! 2so i
2$

xP. —
I
1+

I (28)
t 4m—'~

The asymptotic behavior of these functions is inde-
pendent of the signature:

2s+t 4msi"—
Z (s, t) =

2$0

n(n —1)(t—4m')'(2s+t —4m') m '
! !

2 (2a—1)4so' k 2so

f» (t)=
n l+2r ( P' I) (2so

2m'(a+-', )!(2mE) (4m')
(2s+t—4ms) a(a —1)x'+, (2 9)

2so 3 2 (2n 1)—
(t 4m'~ -1+—re—'-(')—-

x I I . b»(t), (2 7a)
2So 3 2 Sinprn(t)

Z- !ng~ ( p' (2so

( ( +1)j"' m 2 m( +-', ) I(2~E (4m')

(t 4m'~ -1+—re—'-(—')

bio(t), (2.7b)
2sp J 2 sinprn (t)

f„(t) E,'- n!Qpr p' ) (2sp

( +1) m' 2m'( +-', ) I 2 E) (4m')

(t 4ms) 1—+re '
x I I

b22(t), (2.7c)
2sp ) — 2 sin2rn(t)—

F.' n!+2r ( p' ) (2so)

Ps 2~2(n+-,')!I 2~a) &4m'i

where x= (t 4m')/(2—s+t 4m'), an—d

Z.'(s, t) = dZ /d(s/sp)
=n[(2s+t —4m')/2sp]" '[1— . j. (2.10)

Upon substituting the Z into the amplitudes of
Table I, we obtain formulas for the Regge pole terms in
the XE-scattering amplitude.

Thus far in our analysis, we have not incorporated the
hypothesis that the Regge pole terms are factorizable. "
The eGect of this property is to reduce the number of
independent invariant functions, b, (t), from three to
two in the case where the Regge trajectory has the
quantum number rP=+. It results in no change for
those contributions to the invariant functions arising
from trajectories with 7-I'= —,since there is only one
invariant function, bo(t) or bi(t), associated with such
poles.

The relations

tFp+4mpFE+ (2s+t —4m')Fr =0,
(t 4m')m 1+re '—

x I I . bo(t) (2 7d)
2sp / 2 sin2rn (t) (tFv+4msFr) [2Pm i'(—1 2s/(t 4m—')) n(—n 1)Pm—J-

+�F(4m'—t) [(1—s') P '+s(2P„ i' —n(n —1)Pm) J =0,f2 (t) 4m' 2!

n (n+1) t 4m') 4ms—
n lgpr po ) (2so)

2m+'(a+-', )! 2prFj (4m'I

(1—4m') 1+ e '
xl

2sp — 2 sinpra(t)—

are valid for the contributions from Regge poles with
rP=+, irrespective of whether the coupling to the pole
may be factorized. The additional relation imposed by
the factorizability of the pole contribution, however,
may not be expressed in the simple form of a linear rela-
tion between invariant functions. Rather, it leads to

bi(t) (2 7e) expressions for all the invariant funct:ions as a bilinear
form in two functions instead of as a linear form in three.

The new expressions for the amplitudes in Table I may

"S.Mandelstarn, Ann. Phys. (N. Y.) 19, 254 (1962).
"M. Gell-Mann, Phys. Rev. I.etters 8, 263 (1962); V. N.

Gribov and I. Ya. Pomeranchuk, ibid. 8, 346 (1962).
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TABLE I. Partial-wave expansions of the invariant ES scattering amplitudes associated with the exchange
of an object in the t channel with quantum numbers rP, J, and ( )rG—P.

Quantum numbers
of object

exchanged
P J ( )rGP

P„'

pP p' 1—s2

Ps=Fr =p~=pv=o
Fp= 2Ls(2 n+1) /pE) P(z) fz (t)

2sE(2n+1) s fl
PS=- ——[2P r' —n(n —1)P,j

1—s2 n(n+ 1)

py =Fs/s
2»E(2n+1) z(2P» r' —a(n —1)P ) fr

P I+
p' 1—s2 n(n+ 1)

p~ — p~

Fp =—(mz/E') Frr+ (P'/Es) Fs

Partial-wave expansion of amplitudes Fs, Fp, Pg, Fy, FI
221.E(20.+1) z(2P» r' —n(n —1)P») fzz» m P'

ps= frr P.(z)+z P '+ — — z—(E'/m'+1) — f„
p' 1—s' n(n+1) E Ln(n+1) g'"

2rrE(2n+1) s(2P» r' —n(n —1)P») fzz» E P,'n&i
~ /jI J12

P' 1—s' n(n+1) m Ln(n+1) jr"
2rrE(2n+1) $2P» r' —a(n —1)P»j fzz

pA=
p' 1—82 n(n+1)

2zE(2n+1) z(2P» r' —n(n —1)P») fzz» m
p~— P-'+ f12

p' 1 z' n(a+1) E Ea(n+1)3'"
2s.(2n+1) m' ) (2P, ' —n(n —1)P,) f„E frz

p@— zP.'+ —+z' ~- —s—P '———
n(n+1) m Pa(n+1) jr"

The functions fii (t), fis (t), and fzz (t) of GGMW,
which appear first in our Eq. (2.6) are the elements of a
2)&2 symmetric reaction matrix. The assumption that
it may be factorized is equivalent to choosing the
representation:

f» (t)=[f&+ (t) J', fiz (t)=- fi+ (t)far- (t),
f»'(t) = [f~'(t)1'.

It is natural, therefore, to introduce the functions bi+(t)
and bz+(t) so that

b»(t) = [b+i(t) 1',
b (t)=[b.(t)j[b (t)j,
b-(t) =[b~ (t)7,

which when inserted into Eq. (2.7) yields the final form

of the Regge amplitudes for EX scattering. These are
given in Tables II, III, IV in their exact form. The
leading terms in the series, valid for s))4m2 —t, are to be
found in Tables V, VI, and VII.

It has recently been shown" that the Regge analysis
of scattering problems involving spin may be decisively
simpli6ed if helicity amplitudes are introduced. To make
use of these results (as we shall in Secs. IV and V), we
wish to express the helicity amplitudes explicitly in
terms of our factored residues bj+ and b2+. This is most
easily accomplished by using first Eqs. (4.17a—e) of
GGMW to relate the helicity amplitudes (Pi,gz,&z,&4,@z)
to the {F.. .Fz},and then the inverse of our Eq. (2.2)
to relate them to Fg, Iiz, Ii~, Fy, IiI. Use of Table II
then yields the desired results, which are the following:
(T=8zrs"rtr, and we use nzrr as the energy unit)

= 2ssi/(s 4)4—
—2ts (s+t—4)—2ts(s+t —4)'

2ts (s+t 4)— —
2ts(s+t —4)

r~ [st+4s+4t 16 ]— —

T1
T2
T3
T4

Ts/2[ —st(s+t —4) J'i'
4(s+ t 4)—

st
X 4(s+t 4)—

—st

zZ t(s (st+2t —8)+2 (t—4)') —rsstz Y

,'Z t(2s+t 4) (s+t—4) t Y —(s+t 4)— — —
rrZ t(st 2t+8) (s+t 4)—4st'Y- —

——,'Z t(2s+t —4) (s+t 4)+t(s+t 4)Y- —
Z„(2s+t 4)t ' t Y— — ——

b~+'Z.
br+bsr Z . (2.11)

52+' .
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TABLE II. Regge amplitudes for a pole in the t channel with quantum numbers rP =+, (—) rGP =+.
In the tables, t'=(1+re ™a)/2sins-u.

2$0
Fs=g-

(4m')'

(s+rs(t —4mp)) u(pt —2mp+s)p (2[(t—4mp)/2sp]p
4mpz (s,t) [by+(t)]p+t ——z ' —

I

— z y' —(u 1)Z
I
—[bp+(t)]p

sp s(sjt 4m') —( 2u —1

(s+-', (t—4mp) )-(t+4m')
I

— ——
I Z-'[bL+(t) b .(t)]

Sp

2sp t 4m—' Z~' u(s+-', (t 4m'—) ) 2 t 4m'—' t —4m' lp, = —t.— t ————z. ,' —( —1)z. [b„(t)]'—t Iz.'b„(t)b„(t)
(4m')' 2 sp s(s+t 4m') —2u —1 2sp 2sp

2sp nt (t—4m')' 2 t—4m2
Fa=g- Z--~' —(u —1)Z- [b (t)]'

{4m')' 4s(s+ t —4m') 2o.—1 2sp

2sp (s+ p (t—4m') ) u[ms(t —4m')+ (s+ p (t —4m') )'] 2 t—4mP)
Pr = t. (t—4m—') Z.' z. , —(.—1)z. [b„(t)](4m')' s(s+t —4m') 2u —1 2sp jsp

(t—4m')
(2s+ t 4—m') Z, 'b—,+(t)bp+ (t)

2Sp

/'t —4mp~
Pv = —t ————+ ——— — Z. ' —(u —1)z. t I[b+(t)]p+4m'I Iz.'b ~(t)bp+(t)

(4mP)P sp s(s+t 4m') —2u —1 2sp, 2 j k 2s, j

%e have introduced the following abbreviations:

Z= dZ/ds= Z'/sp,
(1+r=e ' )/2 sinpru,

I'-=~( L2/(2~ —1)3L(t—4)/»p]'Z. r' —(~—1)Z.}.
In the asymptotic limit s ~ ~, t&0 the relation between the helicity amplitudes and b&+, 52+. simplifies to

T2
= (spt /2) (s/»)

T4
TQ

t

—t
—2(—t)r/s

t

(—t) "'(1+st)

t

2( t)r/s

&&+'

2nbg+b2+

4' 2b2+2

(2.12)

(2.13)gy ~ T3) T2= T4 ~

and a simple relation between the helicity amplitudes is carried into the amplitude for the reaction
is revealed, Nr+¹' Ns'+Ns, (2.11b)

Nr+Ns ~ cV,'+Ns', (2.11a)

B. A Symmetry of NN Scattering

The amplitudes which describe nucleon-nucleon scat-
tering in two different channels are related, in the
graphical description of these processes, by a reversal of
the external baryon lines. For example, under line
reversal the amplitude describing the reaction

TABLE IV. Regge amplitudes for a pole in the t channel
with quantum numbers rP = —,( )/GP =+. —

sp u(s+-', (t—4m') )Fs= —|
4m' s (s+t 4m')—

t—4m»
X — ——Z 1'—(n —1)Z b1 (t)

2n —1 2sp

—(t—4m')
Fy =———— Fg

2s+t —4m~TABLE III. Regge amplitudes for a pole in the t channel
with quantum numbers rP= —,( )'GP = —. —

FB=Fg=FA=Fv=o

FI =—f(2sp/4m')Z b (t)

F& = —f(t/4m')Z 'b1(t) —Fg

Fv ———Fg

I"P——t Z 'bI(t)+Fs
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TABLE V. Leading terms in the expansion of the Regge amplitude for a pole in the t channel
with quantum numbers rP =+, ( )'G—P =+.

2s, (2s+t 4m—') n(n 1—)
Fs ~ 1

—
~

— —
~

4m't bi~(t)5 s 1— x' n(—t+4m')
(4m')' ( 2so j 2 (2n —1)

(u —1) (u —2) (n —1) (n —2)sxs
XLb&+(t)bs~(t)5 1——— x' +utgb, ~(t)5s n

2 (2~—1) 2 (20.—1)

2so 2s+t —4m') '
F, ~ i.————

i
tax[b„(t) nb„—(t)5b„{t)

(4m')' 2so j
2so (2s+t —4m'

Fg ~ —
1
——

~

—— — — ta(n 1)x'[bs—~(t)5'
(4m')' k 2so

2so 2s+t 4m')i-
Fp —& 1—————

~

axPntb (t) —4m'b {t)5b (t)
(4m')' 2sp j

2so 2s+t 4m')— (n 1) (n——2) t' (u —2)' 4m'
F,~i.———=

~

a(t 4m')b—,+(t) —b,+(t) 1 —x' +b2~(t) n —(n 1)x'i — —+——
i(4m')' 2so j 2 (2n —1) g 2 (2n —1) 4ms tj—

in which x —+ —x/(1+2x), s ~ —s(1+2x). The ampli-
tudes for these two processes are related, ' in the limit
of high energies and low-momentum transfers, by a
multiplicative factor v.e. They, therefore, satisfy a
"generalized Pomeranchuk relation. "7- is the signature, '
or orbital parity of the Regge trajectory, and in EE
scattering e= ( )rGr —The re. sultant factor is therefore

(—)rG which, for the neutral member of an isotopic
multiplet, is the charge conjugation quantum number C.

Examples of this symmetry are provided by the
following reactions in which the p meson is exchanged:

III. ASYMPTOTIC AMPLITUDES DUE TO THE
EXCHANGE OF P, ~, g, AND e MESONS

In this section, we construct the contributions to the
invariant amplitudes describing EX scattering arising
from the exchange of the I', ~, p, and m mesons. We can
then compare the asymptotic forms of these expressions
to those given by the Regge theory applied to the corre-
sponding trajectories, and identify the residues b, with
appropriate coupling constants by comparing the ampli-
tudes' at t=nz, ', m~',

We shall 6rst consider the Pomeranchuk trajectory,
having the quantum numbers of the vacuum and
txt (0)= 1. It is possible that there is a spin-2+ resonance
occurring on this trajectory" at t~1 (GeV)'. We may

Pole Asymptotic amplitudes

T(sro+n~sr +p)
—T(sr++ n +sr "+p)—
—T(sro+p —+ sr +n)—

T (sr++p —& sr'+n)

T(p+n p+n)
—T(n+n —+ p+g))

T(p+p ~ n+n)—

T(n+p —+ n+p).

(2.13a)

(2.13b)

(2.13d)

(2.14a)

(2.14b)

(2.14c)

(2.14d)

2s+t 4m') ~ '—
Fs ~ 1' ———

~
n(n 1)—b, (—t)

2s, j 4m2

/ 2s+t 4m')—
I'r ~ —

1
~

————
~

u(n —1)x'—b&(t)
2s, j 4m~

$2s+t 4m') -'—
b~(t)

2s, j 4ms

Fi ———F~

TABLE VII. Leading terms in the expansion of the Regge
amplitudes for a pole in the t channel with quantum numbers

(2.13c) .P = —{—) 'GP =+

TABLE VI. Leading terms in the expansion of the Regge
amplitudes for a pole in the t channel with quantum numbers
z= — (—)IGz= —.

(2s+t 4m''i ~ '—
Fp ~ —1'i ——

i
n (a—1) +1 b, (t)

2s, j 4ms

Fs=Fz =F~=F&=o

2so 2s+t —4m' a(a —1)x'
F~ ~ —t-—————— bo(t)

4m' 2s0 2(2n —1)

For prehminary experimental evidence for such a resonance,
see: W. Selove, V. Hogopian, H. Brody, A. Baker, and E. Leboy,
Phys. Rev. Letters 9, 272 (1962); J. J. Veillet, J. Hennessy, II.
Bingham, M. Bloch, D. Drijand, A. Lagarrique, P. Mittner
A. Rousset, G. Bellini, M. di Corato, E. Fiorini, and P. Negri, ibid.
10, 29 (1963).
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identify the Pomeranchuk pole residues with the
coupling constants of this spin-2 resonance to the
nucleon. To do this, we must first construct the con-
tribution of a spin-2 meson, C, to the invariant ampli-
tudes describing .&VX scattering.

The propagator for a spin-2 meson must be a tensor
of rank four. Its most general form is, therefore,

Dp„)„(q2)= a( bpi, b„,+bp, b„i,+Bop.b),

++(qi qabpv+ qpqvbia)/m

+D(qvqabpi+qpqibva+qvqibpa+qpqabvi)/m

+F(q q„q),q,)/m') (q'+m') ', (3.1)

where we have taken into account the symmetries
D„„y,=D„„), and D„„),=D)„„,.At the pole q' = —m', the
propagator is divergenceless, q„D„„q =0, and traceless,
D»y, =O. From these two conditions we find B=C

3 D= 1, and E= 34 . The factor a is determined to
have the value 2, so that if a polarization tensor e„„ofthe
meson is normalized to 1, then e„„D„„),eq, = 1.

In the Born approximation, the coupling of the C
meson to two nucleons takes the form

(1/4mN ) (XcÃN $CNN)+p+v

+(2/4mN)(cNNL~pv +& ~p7 (3 2)

where Zp= (p+p')„.
From these results we readily see that the C-meson

pole term in the amplitude has the form

(XCNN EciVN)
T= Q2 Z„'Z, '

t—mg 4mN'

2$CNN
+ (~.~,+~, ~.) ~

4mN

(XCÃN ECNN)
XN& Z„Z„

2$CNN 1
+ (+pPy++vVp) ui u2 u2ui ui

4mN 3 t—me

t 2

XCNN~ ——1
~

—&CNN, (3.2)
(4mN2 J 4mN'

~h~~e Z„'= (p2+ p2') „,Z„= (pi+ pl )
Using Eq. (2.21) of ALV, which states that

2imN f8 i'Z„'y pn, n2'u2+ n, 'n, u2'Z py„n27
= (4mN' t 2s) (S—+—P) 4mN2V+tT (3—.3a)

and

Qj Zp P@NyN2 Z„P„N2
= —(2$+t 4mN') V+tA 4mN—'P (3.3b)—

we6ndthat the C-pole terms in the invariant amplitudes
are:

(4mN2) 2 (t mc') F2—
= xCN N(+CNN )CNN) (4mN'$ 2$)

2p~cNN(& 4mN ) ~kcNN7—, (3.4a)

(4mN2) 2 (t m—c')FT
= (XCNN E—CNN) &CNNt(4mN' t —2—s), (3.4b)

(4mN2) 2 (t—mc') F~ = —2(cp;, N2m gpss, (3.4c)

mcl'c ——Ip/2c,

where ac = ReLdn~(t)/dt
~ &=„„7,and we find

(3.5)

bi~(mc')/(mecso7 "2.
= f(xcNN (CNN)+&cN—Nmc'/(4mN' mc')—7/mN, (3.6)

b~ (mc')/P~~cso7"'= 2mN&CNN/(4mN' mc') . —
In the Appendix we discuss the decay rate and branch-
ing ratio of the C meson.

In a similar way, we may compare the Feynman
amplitude corresponding to p exchange with the associ-
ated Regge pole contribution, to identify the residues
b, (t)pat t=mp2. For the p-pole termin the amplitude, we
have

(12NN p

T(SV~) JNNp ui pp ~

0 pv(P1 Pl)y Tani
&2mN

u2 gyp (I2vN /2mN)& (p2 p2) 7T u2
X , (3.&)

t—m2
P

which can be reduced to the form

—2"rNNp )
2 1) t m'I—

PpNN
X S[4mN2 —2s—t]

4mN'

2$+t
+P 1 I2pNN (1+12pNN)

4mN'

upNN (1+upNN)+ tT+ (1+upNN) V, (3.8)
4mN'

using the relations

n„cp„(p' p)—,u„=up [2m—Nea p+2(p'+ p) p7np,
(3 9)

(Pi+Pi )p(P2+P2 )p= u s= 4mN ——3—2$,

and Eq. (3.3b). In the column vector, the first row
refers to I=0 in the s channel, and the second to I= 1.

(4mN2)2(t —mc )Fi
4X—CNN (CNNmN'(4mN' &

—2$—), (3.4d)

(4mN')'(& —mc')Fr = &gcNN mN + (XcNN )cNN)

X fcNN (4mN' t 2—s)'—. (3.4e)

These expressions may be compared to those in
Table VI. In particular, we can, at t =m&'-, identify the
Pomeranchuk Regge pole parameters n, b~+, and b~+
with various properties of the C meson. At the position
of the resonance, t =mc', we must. have Renr (mc') = 2.
Also Imai (mc') =Ir is rela—ted to the width, '
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Near the p-meson pole, therefore, we have (dropping
isospin factors)

—2y~sr, ') (4msr' —t—2s)
~8=

t m'—~ 4m~'
IJpNN ) (3.10a)

27NNp
&r=

l l ~pprzr(1+spiv~),
t ms —14m~'

F~ is not singular,

2YNNp )
1(1+ir,ppi ~),

t ms—

(3.10b)

(3.10c)

(3.10cl)

—2y~N, ') (4m~' —&
—2s)

I'I =
l IJ„Nrr(1+p, »). (3.10e)

mp' I —4mrr'

We compare these results to those arising from the p
trajectory. At ]=mps, Rea, (m, ') = 1, and as before, we
have

The corresponding formulas for the co Regge pole are
exactly analogous to those of the p, since the only
difference is that of isospin, which we take care of with
the matrix A, (see Eq. 2.0e).

Of those Regge poles associated with meson systems
having zero spin, the most prominent contributor to the
EE-scattering amplitude is likely to be that correspond-
ing to the pion, since Rea (1) is zero for the lowest 1,
a (m ')=0. This trajectory has 5=1, C=+, r=+,
7.I'= —.Near 3=m ',

Ip= BZpFp6p ~

where a, (m, "-) = 1+rIp and sp =ReLda, (1)/Ch l ~=~p~ J.We
then find that the b,P(1) are related, at t=mp', to the
coupling constants p»& and pp» as follows:

[1—(m '/4mN')]himp(m ')Lrrtse, f '"
2y, »E1+&p&Nmp'/4m~' j, (3.11a)

L1—(m '/4mpr') Jb~p(m ')Lrr-'e 1
"'

= 2yprvrr(1+ @prvrr) . (3.11b)

As we shall see in Sec. V, and as suggested on the basis
of a spinless treatment of EX scattering by Hadjioan-
nou et at. ,"such a singularity is also needed to cancel
the contribution of the co Regge pole in EE scattering.
It must, therefore, have I=0, and is a companion to the
Pomeranchuk trajectory in that they both have the
quantum numbers of the vacuum. Igi has suggested"
that the I" be associated with the ABC anomaly, " "
but this seems inappropriate because the trajectory
associated with the ABC anomaly must have 0.=0 near
t =0. If the I"singularity is a pole, rather than a branch
cut, there exists the possibility of associating I"with a
resonance with J=2 in the region t&4m '. We would
look for such a resonance in the 1 to 1.5 GeV region,
which still remains virtually unexplored. "However, the
I" trajectory may not reach the line Rex= 2, or even if
it does, Ima may be large, so that a resonance would
not occur.

Mandelstam" has recently investigated the contribu-
tion of a class of multiparticle intermediate states to the
partial-wave amplitude. He concludes that they give
rise to cuts in the angular-momentum plane which are in
general present up to t =0. If this conclusion is correct,
it appears to us much more plausible to regard the I"
singularity as the cut associated with the I' pole, rather
than as a second vacuum trajectory. For further
comments, see Sec. V of this paper.

IV. CROSS SECTIONS FOR NUCLEON-NUCLEON
SCATTERING

A. Elastic Differential Cross Section

In terms of the couplings r); and g; of the sth Regge
trajectory to pairs of incident or outgoing nucleons in
the states without helicity Rip (r)) and with helicity
flip (p), the elastic differential cross section takes the
form 15

X —
l (nrv'r)rv'+4 rv'harv')', (4.1)

s,ii

and, therefore,

bp~(m ')/ire =2grr~ '/(2sp)'~'

where

r1= bi+ —(at/4m') bs+

In considering various trajectories which may con-
tribute to XX scattering, we should like to mention
briefly some recent speculations on the existence of
another trajectory with C=+, for which a(0) lies in
the region 0 to 1. Igi" has shown that the data on n.+p
and 7r p scattering require some singularity in the J
plane which lies in the region 0 to 1 for forward scatter-
ing. Let this singularity, which has C=+ and r=+,
since it is coupled to the two-pion system, be labeled I".

y= (—1/4m')"'(bi+ —abs+).

"N. K. Booth, A. Abashian, and K. M. Crowe, Phys. Rev.
Letters 7, 55 (1961).

'3 J.Button, G. R. KalbReisch, G. R. Lynch, B.C. Maglic, A. H.
Rosenfeld, and M. L. Stevenson, Phys. Rev. 126, 1858 (1962).

'4 B. Richter, Phys. Rev. Letters 9, 21'/ (1962).
"See, however, Ref. 21.
26 S. Mandelstam, lecture given at the California Institute of

Technology (unpublished) and private communication.
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do» 2s+t —4222&II' ~2pt &I2s+t 4222—~' ~p&'& 2s+t 4—222~' ~"&"

162rs(s—42&2&r2) =Dp p +2Dptu
2sp"2sp"

Using Eq. (2.12) we may easily construct the contribution to the differential cross sections for XI0 and
I11III scattering from the P, P', o&, and p trajectories. For pp scattering, we find

+2Dpp
2s+t 42&2—~' "P'" 2s+t 4rp2—~' 2s+t 420—pP '."&

2sp~ 2sp"' 2sp"

2so2so" 2so

2s+t 42&2~—2 ""& 2s+t 4r12~2- 2s+t —42&2&I12 ' p'&I&

+2D p +Dp p (4.2)

The result for pp scattering is the same except for a minus sign on the terms Dp„and Dp „.Since no I= 1 pole is
included, do„„/dt=do„„/dt

The coefficients D;; are found to have remarkably simple expressions,

np(t) . t(b2+P)' ' 2

sin' Dpp(t) = (b, ) —I2P (sIIp)2
2 4m~' 4nzN'

(4.3)

sine+~ sinmn„D~„
bl+ b1+ oipoI22+ b2+ s0 s0

I
1 ) (4 4)

[1+rp cos71oIP+r„c os7IQ(g +prrM cos7I (ttp —n„)] 42&2&II' ~ 4m&2

where 7&, v-„ indicate the signature of the I', co trajec-
tory. All the other D functions can be obtained simply
by changing the indexes.

The circumstance that the coefficients D;; are perfect
squares is a result of the facts that the amplitudes can
be factored and that all particles are nucleons.

These same results have also been obtained directly
by expressing the cross section in terms of the Fermi
amplitudes Fr (I=S,T,A, V,P) and evaluating the rele-
vant traces. '~

B. Polarized Cross Sections

only I=0 poles),

2' I —LQQ~

f S AP If S )ct~ 1

+ I-p -I, I

—
I (4.6)

($0 ($0 l

The helicity representation also allows a simple dis-

cussion of polarization phenomena. "In the scattering
of unpolarized particles, it is possible to polarize the
particles normal to the scattering plane. If the fraction
of the scattered particles with spin up minus the fraction
of particles with spin down is called I', when the
particles have scattered at a given angle to the left, I' is
given asymptotically by

do 1 s )n; 1—
P—=—2 &m8'*t ) —.

I

S0'i

f s)"~' '
(re're'+gv'4 v')gx'r&01' (4 5)

~S0'I

As before, use of Eq. (2.12) allows us to evaluate
Eq. (4.5) explicitly. We find, asymptotically (including

27D. H. Sharp, Ph.D. thesis to be submitted to California
Institute of Technology (unpublished).

The coefficients L;; are again simple and have the form,

4 sinxo. J sinmnJ LI I

rp sin2rnp rp sin2roIp+rp—rp sin2r(ctp —ctp )

= (b,+pb, +p'+c2pn p. ( t/42&2~2) b,+pb2+.p—')

X (12P»2+pbi+p' —t2P b2+p'bop)

f t 2( t)1/ 2

XI 1—
4222&12 22&2~

The- other coefficients are obtained by changing the
labels appropriately. That polarization phenomena
occur only as a result of the interference between various
trajectories can be seen from Eq. (4.5).

C. Total Cross Sections

By the optical theorem, the total cross section is
related to the imaginary part of the forward-scattering
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amplitude,

Otot s ImT(s, t=0).
[s(s—4m~')g'n

(4.8)

To apply this formula, we need to evaluate the spin
average of each of the Fermi invariants in the forward
direction. We shall do this by computing the two
helicity amplitudes T(++,++) and T(+—,—+) for
t =0, where the ~ signs denote the helicities of particles
(1', 2', 2, 1). We find

5
T
A

jp

(++, ++)
4m~'

—4m~'
—(2s —4m~')

(2s —4m~')

0

(+—,—+)
4m~'

4m~'

(2s —4m'& ')

(2s—4m~')

0.

(4.9)

n~ ——0.3, o.„=0.3, np=0. 4.
(5.1)

Ke should like to make several comments on our
analysis and its results:

(i) The inclusion of the nucleon's spin does not give
any appreciable modification of the structure of the
Regge analysis of the total cross sections.

Since a trajectory with quantum numbers 7-I'= —,
( )rGI'= ——gives a contribution only to Fp, it makes
no contribution to the total cross section. In particular,
there will be no terms in formulas for the total cross
sections arising from the ~-meson and g-meson trajec-
tories. The contributions to the spin-averaged, total
cross sections from the I', I", co, and p trajectories are

O.„p= (BP B~R„(v)+—BP'Rp (v) B'R, (v) )—
X (1—1/v') '", (4.10a)

='(B BR (v)+B—'Rp (v)+BI'R, (v))
X (1—1/v') —'" (4.10b)

0 -= (B +B"R (v)+B 'R (v)+B&R (v)}
X (1—1/v') "' (4.10c)

where
B—(2m 2/s ) [aioi—l)P (0)$2

v = (s/2mi&, z) —1

Qzr[n (0)]!
R(v) = ~ &»(v).

2 &"[&z(0)——,'j!v
V. AN ANALYSIS OF RECENT DATA ON NN

AND NN SCATTERING

We have analyzed the data reported by Diddens et al.'
on the total cross sections for pp and zzp scattering and
those of Lindenbaum eZ &zl."on the pp cross sections. We
And that the presently available data indicate:

8"=38mb, 8 '=53mb, 8"=48mb, 8 =—9mb,

(ii) A study of the Legendre functions, P &Oi (v), indi-
cates that for a &2, P is represented by its leading term
to better than 10% for v&2. Since v= (Ei,b)/m, it is
certainly sufFicient, for incident energies above 2 GeV,
to keep only the leading term in any practical analysis
of data. Moreover, the replacement of the Legendre
functions of the first kind, 8 (v), by Legendre functions
of the second kind, Q i(v), does not alter the fact that
only the first term, v, in the expansion of these func-
tions need be kept in the analysis, even though the
Q i(v) are singular at v=+1. This simplifies the
analysis, but eliminates the hope that perhaps the
introduction of a second vacuum trajectory with n in
the range 0 to 1 could be avoided provided that one
included the full contribution from the Regge poles on
the Pomeranchuk, omega, rho, and "ABC"trajectories.

(iii) Our analysis requires that the location of a
possible second vacuum pole, up (0), be significantly
larger than zero, so that it is unlikely that the trajectory
could be associated with the ABC anomaly.

(iv) Our results are diferent from those of Hadjioan-
nou ez &z/. ,"who arbitrarily assumedu„(0) =np (0)=0.5
and neglected the p trajectory.

(v) The sign of the p term is opposite to tha. t of the
co term. If a pole analysis is to be taken at all seriously,
this is puzzling since it should be positive. This dis-
crepancy may well arise from present inaccuracies in the
zzp data. Alternatively, this may mean that the cut
associated with the p trajectory is not small near t=0,
and, indeed, overrides the pole part of the contribution.

(vi) We can interpret our results for the P and I"
trajectories as follows. The analysis of the data indicates
the presence of an additional singularity besides the I',
co, and p poles. This we attribute to a cut associated with
the I' trajectory. If the cut is approximated, near t=0,
by a pole, then this pole is described by the parameters
we have associated with the I", and whose numerical
values are as given above. In so doing, we have ignored
possible cuts associated with the p and co.

(vii) This analysis suggests a possible explanation
for the apparent lack of shrinkage"" in the zrp diffrac-
tion peaks. Note that the pp cross sections receive con-
tributions from the I', I", and co trajectories. (We sup-
pose the p contribution to be small. ) Each of these con-
tributions is individually large, but the contribution of
the I" is cancelled out by that of the co, leaving just the
I' as the dominant contributor. In zrp scattering, on the
other hand, the or can not contribute at all, which leaves
the I"as a competitor of the I'. These two contributions
could well combine to give a resultant shrinkage which
is much less rapid, over a given range of s, than that
observed in pp scattering. Note that this explanation
does not depend in any essential way on the supposition

C. C. Ting, L. Vf. Jones, and M. L. Perl, Phys. Rev. Letters
9, 468 (1962).

K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and I .C.L.Yuan, Phys. Rev. Letters10, 376 and 543 (1963).
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$t- —1 (GeV)']. The resulting quantity, F(t)/tr(t), we
expect to be nearly constant for small negative t.

The arbitrary parameter so is to be chosen so that
F(t)/tr(t) varies as slowly as possible with t W.e try the
values sp ——1, 2, 3 (GeV)'. Results are summarized in
Fig. 1.We see from the figure that the function F(t)/tr (t)
has a linear behavior for t & —0.40 (GeV)'. Beyond this
point, F(t)/tr(t) shows a marked increase reflecting a
corresponding increase in the experimental value of
do/dt. The graphs show quite clearly that the function
F (t)/cr(t) is most nearly constant for sp ——1 (GeV)'.
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POMERANCHUK RESONANCE"
FIG. 1.F(t)/n(t) versus t for sp ——1, 2, 3 (GeV)p. The experimental

uncertainty in each point is typically about 15%.

dt dt Ig p

b.'(t) —'(t)b '(t)
4m~'

( t 1 ' 2s+t —4mtv' '~p"& '
X/1—

4mtv' bP(0) 2sp
(5.2)

that the I" is a pole, rather than a cut associated with
the I' trajectory.

Finally, we have analyzed the data of Diddens et al. '
on the pp elastic differential cross sections. These data
lie in the range 12&(s/2 m)tv1=Et—/mtv&28 and
O& —t (0.60 GeV'.

Only the Pomeranchuk contribution was included.
The cross section is then given by Eqs. (4.2) and (4.3),

The Regge approach seems to afford an explanation
of the constancy of total cross sections at high energies
if the existence is assumed of a Regge trajectory trt (t),
having the quantum numbers of the vacuum, positive
signature, and txt (0)=1. Accepting this, it is possible
that a spin-2 resonance, C, having the same quantum
numbers and mass mo' 1 (GeV)' may lie on the
Pomeranchuk trajectory. ""Such a resonance should
show up as a peak in T=O ~x scattering and in EX
scattering. It is the purpose of this note to discuss the
two-body decay modes of this resonance.

The graviton 6 is coupled universally to the sym-
metrized stress-energy-momentum tensor T„„.We as-
sume, in complete analogy with Gell-Mann and Zach-
ariasen's treatment" of the p meson, that the spin-2
resonance is a slightly unstable spin-2 meson, that it
couples strongly to baryon and pion pairs, and that it
dominates the gravitational form factors. 34 If we write
a dispersion relation for the vertex shown in Fig. 2,
assume the approximation depicted in Fig. 3, andIdefine

We note that in this one-pole approximation, the differ-
ential cross section involves only ore unknown function,
namely,

G=(sirG) ~ mw)T~[Q ~ (4E E P2Lt'2

F(t) = bi+' (t)—~'(t)b +' (t) (t/4m~') .

We assume for n(t) the linear behavior

(5.3)
FIG. 2. Decay vertex for C meson.

rr(t) =1+t, (5 4)

in accord with existing data.
According to Gell-Mann's ghost suppression mecha-

nism, t the residue F(t) must contain a factor of cr(t) in
order to eliminate the possibility of a ghost at e=O

~Murray Gell-Mann has also obtained these results inde-
pendently.
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Thus, Xc (m /mc)Xcz. Replacing the pions by any
other pair of external particles to which the C is strongly
coupled gives the same relation, with the mass of the
new particles replacing the pion mass. This is the
principle of universality, which would hoM rigorously
if the C meson were massless.

We shall now compute the decay rate for C —& 2x, 2E.
The amplitude for the decay C —+ m+, x is

&= (Xc../2m. ).„„(p p') „—(p p')„—, (A2)

where p, p' are the momenta of the pions and p„„ is the
polarization tensor of the C meson, which is at rest in the
c.m. system. Kith inclusions of isotopic spin factors, we
6nd for the decay rate

mc Xc 'tt'mc)'( 4m ')'"
I'c

So 4~ kmi5 m, i
(A3)

Similarly, we find for the decay C —+ E+E the rate'

mc Xcxx mc) 4mx )I c-+K+K (A4)
60 4s mb) mc' i

If universality is approximately valid, Xc (mc/m )
Xcxx(mc/mz) Xcc, and the decay rates I'c ++-

and I'z z++z- differ only by the phase space factor.
Thus, for the ratio of the 2x and 2K rates, we find

the coupling indicated in Fig. 4, we obtain

(8 pro)"'E
= (Serg)'I'(mcP/Xcc)(E /m )Xc L1/(q'+mc')j~, 2=p

+ (contributions from higher

mass intermediate states). (A1)

————~=(SING) m g
G I/2

FrG. 4. De6nition of graviton-C-meson coupling.

residue can be identified with the coupling constant of
the unstable particle to two pions;

rtp..'(mc') 2m.'
2 X t."m x

Sp

(A7)

where pc ——d (RenP)/dt at t=mc'
From the optical theorem, the asymptotic total ~m

cross section is equal to itP '(0). It is thus apparent that
to make an estimate of the decay rate, one must know
the quantity 2fitp '(mc')/Zp '(0)](Pcsp) ', to which
the decay rate is proportional. Our estimate is crude
because we assume that the above factor is 2, which we
believe not to be off by an order of magnitude. From
the analysis of the differential cross section for elastic
nucleon-nucleon scattering, we know that

pp d(RenP——(t))/dt
~
i=p=1 (GeV) ',

and for the nucleon-nucleon channel we have found from
our data analysis that sp=1 GeV'. It is our conjecture
that the scaling factor sp is a property of the trajectory,
rather than a diRerent parameter for each reaction. The
last consideration in making our assumption is the
expectation, or hope, that the functions itP (t) and
d(RenP(t))/dt do not change drastically between t=0
and t= nzg~.

From the factorization theorem, and the asymptotic
zS and XE total cross sections, it follows that o-„

=rtP .'(0) =12 mb. '" Inserting this into Kq. (A7), we

are led to
I'c ."+ -/Fc x++x-——9.6 if me=1.25GeV

(A5=2.6X10P if me=1.00GeV, '
Xc. '/47r=m 'o /2pr'=0. 03.

This value gives the following decay rates:

(AS)

independent of the coupling constant Xqg.
Ke can now utilize the fact that the spin-2 resonance

lies on a Regge trajectory to arrive at a crude estimate
for its width. The contribution of the Pomeranchuk
trajectory to the T=O xx scattering amplitude is' 4"

Fg g
——32MeU
=66 MeV

j.'g kg=10 keU
=8.9 MeV

for mg ——1.0 GeV

for mt.-——1.25 GeV,

for mg ——1.0 GeV

for mt.-——1.25 GeV.

s )Ap 1+c 'i'rtxPiti

2sp7/P nP(t),
k spi & 2 sin~nP (t)

(A6)

C 6

FIG. 3. Dominance of gravitational form factor by C meson.

where we have defined the coupling g~„so that the ghost
suppression factor nP(t) is explicit in the amplitude. At
t equal to the energy of the resonance, the Regge pole

It is interesting to note that the universality concept
formulated by Freund'4 is identical to ours, but that the
consequences for the meson-meson, meson-baryon, and
baryon-baryon total cross sections are different. In both
papers, the coupling of the spin-2 particle to another
object is proportional to the mass of the object. How-
ever, if the pole term has the Regge character, the
coupling at t= 0, which regulates the asymptotic cross
section, is proportional to sp'"Xcpt/mc. Freund essen-

tially assumes that sp'I' is reaction. -dependent, and
proportional to the mass of the particle to which the
Regge pole is coupled, whereas we assume that the
scaling factor sp is a constant for each trajectory.


